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Abstract—An activity recognition system is a very important
component for assistant robots, but training such a system
usually requires a large and correctly labeled dataset. Most of
the previous works only allow training data to have a single
activity label per segment, which is overly restrictive because
the labels are not always certain. It is, therefore, desirable to
allow multiple labels for ambiguous segments. In this paper, we
introduce the method of soft labeling, which allows annotators to
assign multiple, weighted, labels to data segments. This is useful
in many situations, e.g. when the labels are uncertain, when part
of the labels are missing, or when multiple annotators assign
inconsistent labels. We treat the activity recognition task as a
sequential labeling problem. Latent variables are embedded to
exploit sub-level semantics for better estimation. We propose a
novel method for learning model parameters from soft-labeled
data in a max-margin framework. The model is evaluated on
a challenging dataset (CAD-120), which is captured by a RGB-
D sensor mounted on the robot. To simulate the uncertainty in
data annotation, we randomly change the labels for transition
segments. The results show significant improvement over the
state-of-the-art approach.

I. INTRODUCTION

Activity recognition is an important task for assistant robots,
particularly in elderly care [1] (Fig. 1). This topic has been
widely studied in both robotics communities [3, 5, 10, 14] and
other fields [15, 19, 20]. Most of the work uses a dataset where
labels are hard assigned regardless of uncertainty. Learning
from these data, however, is often quite problematic because
the labeling uncertainty is not captured.

The traditional way of labeling data requires human annota-
tors to watch through the video and choose the exact transition
point between consecutive activities. This is often quite hard as
frames near the transition field tend to be very similar to each
other, as is illustrated in Fig. 2. Also, labels of the frames can
be too uncertain to be visually discerned. A typical solution
to this problem is to play the video back and forth and to
check the context for disambiguation. This can reduce the
risk of assigning incorrect labels to the sequences, yet it is
a rather time-consuming task and the resulting labels can still
be erroneous. To be more efficient and also more accurate, the
labeling tasks are usually distributed to multiple annotators.
As annotating data is a very subjective process, the assigned
labels may contradict each other. To deal with this problem,
one can pick the most commonly assigned label as the final
assignment, thus throwing away the rest of annotations, even
though these may still be quite informative.

We formulate the task of activity recognition as sequential

Fig. 1. Assistant robot in elderly care. Assistant robot is usually equipped
with a RGB-D camera that can have both color and depth view. Based on
the sensory data, human activities can be recognized and the robot can then
provide proper services afterwards. The picture (left) shows after the elderly
drinks water, Care-O-bot 3 [13] offers the elderly its tray for placing the cup.
The image on the right shows a sample image captured by the depth sensor.

labeling problem. i.e. Knowing a sequence of observations
(e.g. a RGB-D video), we would like to predict the most
likely underlying sequence of activity labels. In our model, we
represent activities and video segments as nodes, and we use
edges to mode the compatibility among them. Hurried readers
may want to see our graphical model in Fig. 3, the details of
which will be presented in Section III.

In this paper, we introduce soft labeling (Section V-A),
a method that allows labeling a single video segment with
multiple choices. The name is defined in contrast to the hard
assignment of a single label for each video segment. This is
very useful when labels of the segments are not certain. For
example, the boundary between two activities is usually not
very clear, see Fig. 2. Using soft labeling, the annotator can
simply choose to assign both labels with 0.5 confidence. Soft
labeling can be used to represent partially labeled data as well.
For example, for segments where labels are missing or hard to
be defined, we can make the assignment uniformly distributed
over all the labels. Moreover, when multiple annotators are
involved, the soft labels can be encoded as a multinomial
distribution according to the voting from multiple annotators.
Therefore, the soft labeling is a more flexible way compared
with the normal annotation methods.

For learning, we propose a novel loss function that incor-
porates the soft labeling in a max-margin learning framework
(Section V). Unlike the typical zero-one loss, our loss function
can give values ranging from zero to one. Compared with the
approaches that model labeling uncertainty by adding nodes
in the graphical model [18], our method does not increase the
computational complexity of the model, as it is independent of
the graphical structure. Our source code is available at http:
//ninghanghu.eu/activity_recognition.html.

http://ninghanghu.eu/activity_recognition.html
http://ninghanghu.eu/activity_recognition.html


Moving Moving? Placing? Placing 

Moving Placing Moving Placing 

Placing Moving - 

Traditional way 

Our way 

or 

Placing 0.5 Moving 0.5 

Fig. 2. Comparison between the traditional way of annotation and our way (soft labeling). The video is sampled from the CAD-120 dataset [10]. Each
image in the picture represents a video segment. In this example, the subject performs two activities, “moving” (green) and “placeing” (blue). Labels of the
first two and last two frames are easy to assign. However, assigning labels for the frames between the two activities is purely based on personal preferences
(traditional way). Instead of assigning an arbitrary label, we propose to assign 0.5 to both labels (our way) and let the learning algorithm to determine which
label is correct.

II. RELATED WORK

Most prior works in robotics and computer vision formulate
the activity recognition problem as Conditional Random Fields
(CRFs) [4, 5, 6, 9, 10, 14, 15, 20, 21]. The CRFs model
the environment with nodes and edges. The activity labels
within such a framework can be interpreted by finding the
most likely states which maximize the overall score of the
graphical model. As such structure directly models the poste-
rior probability of the activities regardless of the correlation
between input features, it provides an easy way for data
fusing and thereby fits naturally to robotic scenarios where
usually multiple types of sensors are facilitated. A variety of
graphical models have been proposed in the literature. Vail
et al. [19] model the activities in a linear-chain structure, where
activity nodes of the temporal segments are inter-connected.
Koppula et al. [10] model both activities and objects affor-
dance as random variables. These nodes are inter-connected
to model object-object and object-human interactions. Nodes
are connected across the segments to enable temporal inter-
action. Given a test video, the model jointly estimates both
human activities and object affordance labels using a graph-cut
algorithm. Multiple segmentation hypotheses are considered
when predicting activities, and a two-step learning algorithm
is applied to combine predictions from different segmentation
hypotheses. Koppula and Saxena [8] also combine multiple
segmentation hypotheses by majority voting, which makes it
possible to express the uncertainty over labels at test time but
still ties the model to use the provided labels for training.
Hu et al. [5] encode the interactions between objects and
humans at the feature level. In addition, they propose to add a
latent layer to exploit underlying semantics between temporal
segments. The latent variables, activity variables, and input
features within the same segments are fully connected to avoid
making inappropriate conditional independence assumptions.
The inference algorithm of their model is very efficient as the
graph can be viewed as a linear-chain structure. Compared
with [10], they show significantly improved performance on a
challenging dataset [10] where the labels are fully annotated.
However, both of their models fail to capture the uncertainty
of the labels for training the model. In contrast, our method

explicitly incorporates the uncertainty over the labels at train-
ing time, and it is also very flexible in data labeling, i.e. the
temporal segment can have a single label, multiple labels, or
even a missing label.

The learning algorithm of our model is closely related to
recent work in the machine learning community. Parameters
of the CRFs are usually learned using the Structured SVMs.
Tsochantaridis and Hofmann [16] are among the first to gen-
eralize standard SVMs into Structured SVMs. The Structured
SVMs can give predictions to a set of random variables
that follow a certain structure. The model parameters can
be learned efficiently using the cutting plane algorithm. Yu
and Joachims [24] extend the Structured SVM framework to
allow for latent variables (Latent Structured-SVM) and show
that the model with latent variables has the capacity to model
more complex data. Their model parameters are learned with
the Concave Convex Procedure (CCCP), which is an EM-
like algorithm that iteratively estimates model parameters and
latent variables. Recently, Lou and Hamprecht [11] extend
the latent Structured-SVM to allow for learning with partially
annotated data. Their learning approach treats the missing
labels as latent variables, and the parameters are learned in
a similar way as in [24]. The model is evaluated in a tracking
task where only part of the detections have been associated
with tracks. In their framework, annotations of the training data
can either be a single label or completely missing. Assigning
a single label is problematic as data may not be distinctive
enough for hard assignment. In contrast, we propose a novel
learning method that allows for soft-labeled data which contain
labeling uncertainty.

III. MODEL

Our graphical model is illustrated in Fig. 3. Let x =
{x1, x2, . . . , xK} be the sequence of observations. Based
on these observations, we would like to predict the most
likely underlying activities y = {y1, y2, . . . , yK}. We write
z = {z1, z2, . . . , zK} as the latent variables in the model. Note
that during inference, we use y to denote activity variables that
are estimated. During training, we make distinction between
fixed labels y and uncertain labels h. See Table I for a
summary of the notations that are used in this paper.



TABLE I
SUMMARY OF NOTATIONS

Symbols Definition
x Input observations
y Activity labels (observed during training)
h Activity labels that are uncertain
z Latent variables
π Soft labels
ŷ, ẑ Predictions
N Total number of training examples
K Length of the training example
D Dimension of input features
M Cardinality of activities nodes
L Cardinality of latent variables
ψ Potential
φ(x) Feature mapping function
w Parameter vector
w(y, z) Parameters that are associated with y and z

Each observation xk itself is a feature vector extracted from
the segment k. The form of xk is quite flexible. It can be
collections of data from different sources, e.g. simple sen-
sor readings, human locations, human pose, object locations.
Some of these observations may be highly correlated with
each other, e.g. wearable accelerometers and motion sensors.
Thanks to the discriminative nature of our model, we do not
need to model such correlation among the observations.

A. Objective Function

Our model contains three types of potentials that jointly
form the objective function.

The first potential measures the score of seeing an observa-
tion xk with a joint-state assignment (zk, yk). We define φ(xk)
to be the function that maps the input data into the feature
space. w1 ∈ RM×L×D, w2 ∈ RM×L and w3 ∈ RM2×L2

are
the model parameters. We compute the first potential as

ψ1(yk, zk, xk;w1) = w1(yk, zk) · φ(xk) (1)

where the w1(yk, zk) selects the parameters that associated
with yk and zk.

This potential models the full connectivity among yk, zk and
xk, avoiding making any conditional independence assump-
tion. It is more accurate to have such a structure since zk and
xk may not be conditionally independent over a given yk in
many cases. For example, one could imagine that yk refers to
the activity “opening”. However, “opening” is a rather abstract
concept that can be associated with many subtypes, such as
opening a bottle (zk = 1), opening a microwave (zk = 2), and
opening a fridge door (zk = 3). Although all these subtypes
belong to “opening”, their input features may vary largely.
Therefore we use the latent variable zk to exploit the sub-
level semantics.

The second potential measures the score of coupling yk with
zk. It can be considered as either the bias entry of Eq. (1) or
the prior of seeing the joint state (yk, zk).

ψ2(yk, zk;w2) = w2(yk, zk) (2)
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Fig. 3. The graphical representation of our model. Input nodes x (black) are
observed during both training and testing. y and h are both the target labels
to be predicted. The difference is that y (gray) is fixed during training, while
h (white) is uncertain. The uncertain labels h are treated the same as the
latent variables z. Note that xk, yk, zk are fully connected within segments,
and the same for the nodes connecting consecutive segments.

The third potential characterizes the transition score from
the joint state (yk−1, zk−1) to (yk, zk). Comparing with the
normal transition potentials [22], our model leverages the
latent variable zk for modeling richer contextual information
over consecutive temporal segments. Not only does our model
contain the transition between states yk, but it also captures
the sub-level context using the latent variables. Intuitively, our
model is able to capture the fact that the subtype of an activity
is more likely to be preceded by a certain subtype of the other
activity.

ψ3(yk−1, zk−1, yk, zk;w3) = w3(yk−1, zk−1, yk, zk) (3)

Summing all potentials over the whole sequence, we can
write the objective function of our model as follows

F (y, z,x;w) =

K∑
k=1

{w1(yk, zk) · φ(xk) + w2(yk, zk)}

+

K∑
k=2

w3(yk−1, zk−1, yk, zk) (4)

The objective function evaluates the matching score between
the joint states (y, z) and the input x. The score can be seen
as the unnormalized joint probability in the log space. The
objective function can be rewritten into a more general linear
form F (y, z,x;w) = w · Φ(y, z,x). Therefore the model is
in the class of log-linear models.

Note that it is not necessary to specify the role of the
latent variables explicitly, but rather the latent variables can
be learned automatically from the training data. Theoretically,
the latent variables can represent any form of data, e.g. time
duration, action primitives, as long as it can help with solving
the task.

One may notice that our graphical model has many loops,
which in general makes exact inference intractable. Since our
graph complies with the semi-Markov property, next, we will
show that how we benefit from such a structure for efficient
inference and learning.

IV. INFERENCE

Given the graph, the model parameters and the input se-
quence x(i), the goal of inference is to find the most likely



joint states ŷ and ẑ that maximize the objective function.

(ŷ, ẑ) = argmax
y∈Y,z∈Z

F (y, z,x(i);w) (5)

Generally, solving Eq. (5) is an NP-hard problem that
requires evaluating the objective function over an exponential
number of state sequences. Exact inference is usually prefer-
able as it is guaranteed to find the global optimum. However,
exact inference usually can only be applied efficiently when
the graph is acyclic. In contrast, approximate inference is more
suitable for loopy graphs, but may take longer to converge
and is likely to find a local optimum. Although our graph
contains loops, we note that we can transform the graph into
a linear-chain structure, in which the exact inference becomes
tractable. If we collapse the latent variable zk with the target
variable yk into a single node, the edges between zk and yk
become the internal factor of the new node and the transition
edges collapse into a single transition edge. This results in
a typical linear-chain CRF, where the cardinality of the new
nodes is M ×L. In the linear-chain CRF, exact inference can
be performed efficiently using the dynamic programming.

Vk(yk, zk) =w1(yk, zk) · φ(xk) + w2(yk, zk)+

max
(yk−1,zk−1)∈Y×Z

{w3(yk−1, zk−1, yk, zk)

+ Vk−1(yk−1, zk−1)} (6)

Computing Eq. (6) once involves O(ML) computations. In
total, Eq. (6) needs to be evaluated for all possible assignment
of (yk, zk), so that it is computed ML times. The total compu-
tational cost is, therefore, O(M2 L2K). Such computation is
manageable when ML is not very large, which is usually the
case for the task of activity recognition. In our implementation,
we use LibDAI [12] as the inference engine.

V. LEARNING

We use a max-margin formulation for learning the model
parameters, see Algorithm 1. Different from the normal ap-
proach, we do not use hard assignment of labels, but rather we
propose to use soft labels which contain labeling uncertainty.

A. Soft Labeling

Assume there are N labeled training examples (x(1),π(1)),
. . . , (x(N),π(N)), where x represents a sequence of observa-
tions and π denotes soft labeling vector. Each training example
is a video that is formed with K temporal segments, where
K may vary over different training examples. We denote πk
as a soft labeling vector that models the possibility of all
activities. Specifically, πk is a vector of non-negative values
which satisfy ∑

y∈Y
πk(y) = 1 (7)

Intuitively, πk can be viewed as multinomial distribution
over activity labels of the video segment k, i.e. πk(a) models
the probability of the kth segment belonging to the activity a.

The soft-labeled data can be obtained very efficiently. After
annotation, we collect the labels for each segment, and let

Algorithm 1 Learning parameters with soft-labeled data
Input: N labeled training examples (x(1),π(1)), (x(2),π(2)), . . . ,
(x(N),π(N))
Set t = 0, s0 = +∞
Set activity nodes to h or y based on π
Initialize h∗ and z∗

repeat
Set t = t+ 1
f(w) = ‖w‖2

2
+ C

∑
max ∆(π(i),y) + F ((y,h), z,x(i))

g(w) = C
∑N
i=1 F (y(i),h∗, z∗,x(i);w)

Solve wt = argminw f(w)− g(w)
for i = 1 to N do

(h∗, z∗) = argmaxh∈Y,z∈Z F ((y(i),h), z,x(i);wt)
end for
update h∗, z∗ in g(w)
st = f(wt)− g(wt)

until st−1 − st < thres
Output: wt

us denote the label collection of segment k as Ak. Note that
the same labels may occur multiple times in the collection if
the labels are given by multiple annotators. We compute the
soft-label vector πk as

πk(y) =

{
qy/p if p > 0

1/M if p = 0
(8)

where M is the number of activities to be recognized, qy
counts the occurrence of the label y in Ak, and p is the total
number of labels in the collection, i.e. p =

∑
i qi.

The soft labeling can be considered as a generalized repre-
sentation of many other tasks. By adding additional constraints
to Eq. (8), our method can be changed into three special cases.
• When p = 1, only one label is allowed in Ak. This is

equivalent to the traditional labeling method (e.g. [5]),
where labels are hard assigned.

• When p = 0, there is no label in collection Ak, and all
labels obtain the same value 1/M . This is equivalent to
an unsupervised learning problem (e.g. [23]) where no
label is given.

• When p ∈ {0, 1}, part of the labels are given and part of
the labels can be missing, which is a typical problem of
learning with partially annotated data (e.g. [11]).

Benefiting from such a general representation, soft labeling
is a very flexible method for data annotation. For the labels
that are very certain, one can just assign a single label. For
the transition segment, labels are likely to be the confused
with its two adjacent segments. Thus both of the labels can be
selected. For data that are very ambiguous, the label can be left
as empty. In addition to the high flexibility, soft labeling is also
very useful when the data are labeled by multiple annotators.
With soft labeling, we can keep the uncertainty of the labeling
without throwing away any annotation.

B. Learning Parameters with Soft Labels

This section introduces how we incorporate soft labeling
into a max-margin learning framework. For each πk we use a
threshold δ to separate the activity variable into two groups,



labels that are known y and the ones that are uncertain h. If the
maximum of πk is larger than δ, it refers that the annotator is
highly confident with the label, therefore we treat these labels
as known. These known labels are fixed during learning. If
the maximum is below the threshold, we consider the label as
uncertain, and we treat these activity variables as latent nodes.

The task of learning is to solve the following optimization
problem.

min
w

{
1

2
‖w‖2 + C

N∑
i=1

∆(π(i), ŷ)

}
(9)

where C is a regularization constant and ŷ is predicted
by Eq. (5). ‖w‖2 is a regularization term to prevent over-
fitting. ∆(π(i), ŷ) is a loss function that measures the distance
between the annotation and the predicted labels.

We define a novel loss function as follows

∆(π(i), ŷ) =
K∑

k=1

1− π(i)
k (ŷk) (10)

In contrast to the zero-one loss which are commonly used
in related work, our loss function allows for soft assignment
to the labels and it is capable of encoding the uncertainty of
the labels. The zero-one loss can be viewed as a special case
when π ∈ {0, 1}.

Optimizing Eq. (9) directly is not possible as the loss
function is non-differentiable. Following [17] and [24], we use
the Margin Rescaling Surrogate that serves as an upper bound
of the loss function.

After substituting the loss function by the surrogate, the
objective function is a summation between a convex term and
a concave term. This can be solved with the Concave-Convex
Procedure (CCCP) [25]. By substituting the concave function
with its tangent hyperplane , the concave term is converted
into a function that is linear over the parameters.

min
w
{1

2
‖w‖2 + C

N∑
i=1

max
y,h∈Y
z∈Z

[∆(π(i),y) + F ((y,h), z,x(i);w)]

︸ ︷︷ ︸
convex function

−C
N∑
i=1

F ((y(i),h∗), z∗,x(i);w)︸ ︷︷ ︸
linear function

(11)

where

(h∗, z∗) = argmax
h∈Y,z∈Z

F ((y(i),h), z,x(i);wold) (12)

and wold is the model parameter from the previous iteration.
The inference problem of Eq. (12) can be solved in a similar

way as Eq. (5). The difference is that in Eq. (12) part of the
labels are observed. We can add the observed labels as the
evidence into the graphical model, thereby the same inference
algorithm can be applied for finding the latent states.

We can rewrite Eq. (11) in the form of minimizing a
function subject to a set of constraints by introducing slack

variables:

min
w,ξ

{
1

2
‖w‖2 + C

N∑
i=1

ξi

}
(13)

s.t. ∀i ∈ {1, 2, . . . , N} :

F ((y(i),h∗), z∗,x(i);w)− F ((ŷ, ĥ), ẑ,x(i);w) ≥ ∆(π(i), ŷ)− ξi

where the most violated constraints can be computed using
augmented inference.

(ŷ, ĥ, ẑ) = argmax
y,h∈Y,z∈Z

[∆(π(i),y) + F ((y,h), z,x(i);w)]

(14)
The above augmented inference can be solved in a similar

way as Eq. (5). We can plug the loss functions as extra factors
into the graph and attach them with the known target variables.
The unobserved target variables are treated the same as the
latent variables during augmented inference.

This transforms the optimization problem into a standard
Structured SVM form, which has been solved in [17].

Another intuitive way to understand our algorithm is to
consider it as solving the learning problem with incomplete
data using Expectation-Maximization (EM). In our training
data, both the latent variables and part of the ground-truth
labels are uncertain. We can start by initializing the latent
variables and the missing labels. Once we have done that,
the data become complete. Then we can use the standard
Structured-SVM to learn the model parameters (similar to the
M-step). After that, we can update the latent states again using
the parameters that are learned (as in the E-step). The iteration
continues until convergence, see Algorithm 1 for more details.

The CCCP algorithm decreases Eq. (9) in every iteration.
However, it cannot guarantee finding the global optimum. To
avoid being trapped in the local minimum, the latent variables
need to be carefully initialized. We use a data-driven approach
for the initialization, and details will be presented in Section
VI-D.

Note that the inference algorithm is extensively used in
learning. As we are able to compute the exact inference by
transforming the loopy graph into a linear-chain graph, our
learning algorithm is much faster and more accurate compared
with the other approaches with approximate inference.

VI. EXPERIMENTS AND RESULTS

Our experiments investigate the following three questions:
a) how detrimental are hard assigned labels, i.e. each segment
can only be associated with a single label when the labels
are uncertain. b) How much can we benefit from soft labeling
compared with the hard assignment. c) What are the effects
of using latent variables.

A. Experiment Setup

We start the experiments by assuming labels from the CAD-
120 dataset are perfectly annotated, i.e. annotators are 100%
sure about their labeling, and they never make mistakes. In
practice, it is impossible to have undoubted labeling, especially
for the transition segments where labels are mostly very un-
certain. When the annotators are less confident of which label
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Fig. 4. The test performance of activity recognition on the CAD-120 dataset.
We show the change of performance with the increasing amount of noise at
transition labeling. The colors encode the two different segmentation methods,
i.e. uniform segmentation (purple) and graph-based segmentation (blue). The
type of the lines is used to distinguish three approaches, i.e. the baseline
(dotted line), the state-of-the-art (dashed line) and the proposed soft labeling
approach (solid line). We report the performance in accuracy (a), precision
(b), recall (c), and F1-score (d).

to assign, they are more likely to make mistakes. Therefore we
simulate the uncertainty of labeling by randomly flip the label
of transition segments to the label of the adjacent segment,
with certain probability which we vary. For example, when
the annotator is 90% sure of the labeling, we flip the labels of
the transition segments with probability 0.1. We decrease the
confidence level by 10% at each time to verify the impact of
labeling uncertainty.

In practice, the confidence values of labeling are hard to
obtain for a single annotator. For example, it is quite clear for
the annotator that which two labels should be associated with
the transition segment, however the annotator cannot give a
specific confidence values for that. Therefore, when evaluating
our soft labeling method, we assume two possible labels of
the transition segment are equally likely to be assigned, i.e.
we assign soft labeling of the transition segment as

πk(y) =

{
0.5 if y = yk−1 or y = yk+1

0 otherwise

where πk is the soft labeling vector for segment k, and πk(y)
refers to the confidence of assigning the segment to label y.
yk−1 is the label from the previous segment and yk+1 is the
label of the next segment.

We compare our approach against four baseline meth-
ods. The first baseline uses a linear-chain CRF for activity
recognition [19]. The second baseline is adopted from [10],
which assumes multiple hypotheses of video segmentation.
We report both the average and the best results over different

segmentation methods. The third baseline [10] uses majority
voting to assign the labels, i.e. the label that is predicted by
most of the segmentations is chosen. The fourth baseline is
Hu et al. [5]. As has been discussed in Section II, this work
adopts latent variables to model human activities and is shown
to outperform the work of Koppula et al. [10]. We therefore
consider it as the state-of-the-art approach.

The models are trained using the Structured-SVM frame-
work [16]. For optimization we use the 1-slack algorithm
(dual) described in [7]. All results are evaluated over number
of latent states (L) from 1 to 10. The optimal number of latent
states and the SVM parameters are chosen by cross-validation.

B. Data

The CAD-120 dataset contains over 120 RGB-D videos with
4 subjects performing daily life activities, and it contains a
total number of 61,585 RGB-D video frames. There are in
total 10 different sub-activities to be recognized, i.e. reaching,
moving, pouring, eating, drinking, opening, placing, closing,
scrubbing, and null. Start and end frame of these activities are
labeled.

The videos are discretized into temporal segments. Follow-
ing [2, 10], we apply a graph-based approach to parse the
video into temporal segments. Specifically, we use a node
to represent the skeleton joints at each frame. Edge features
connecting the nodes are measured as the replacement and
speed of the joints between two frames. Such a model favors
stable changes of the skeleton joints, and videos are more
likely to be split when the change is large. The segmentation
method starts with each frame as a single segment, and
then it merges similar frames iteratively. We use the same
set of parameters for video segmentation as described in
[5, 10]. In addition, we also use a uniform segmentation for
comparison. The results are averaged over the segmentation
with different parameters. We choose the CAD-120 dataset
for evaluation because of the following reasons: 1) CAD-120
is a very challenging dataset that presents significant variations
of activities, cluttered background, viewpoint changes, and
partial occlusions. 2) The dataset has been used in many recent
works in the robotics research [5, 10]. Therefore we can easily
compare the performance to the state-of-the-art approaches. 3)
The dataset is captured by a RGB-D camera mounted on the
robot, which is closely related to the applications in robotics.
For comparison, the same input features are used as in [10].

C. Evaluation

All results reported in this paper are evaluated with 4-fold
cross-validation. The folds are split based on different subjects,
i.e. the model is trained on videos of 3 persons and tested on
a new person. Each cross-validation is run for 3 times. To
check the generalization of our model across different data,
the results are averaged across the folds.

In this paper, accuracy (classification rate), precision, recall
and F1-score on the test data are reported for comparing
different models. In the CAD-120 dataset, more than half
the instances of the dataset are “reaching” and “moving”.



Fig. 5. A transition segment where the label is “wrongly” classified by the soft labeling model. The “groundtruth” label provided by the CAD120 dataset
is reaching, and the prediction of our model is moving. We can see that the person is performing two activities at the same time, reaching for an apple (left
hand) and moving a cup (right hand). Assigning a single label to these frames is problematic. In contrast, the soft labeling method is able to capture both of
the activities and the inappropriate annotation is corrected by learning with soft labeling.

Therefore we consider precision, recall and F1-score being
relatively better evaluation criteria than accuracy, as they
remain meaningful despite class imbalance.

D. Latent Variables Initialization

The latent variables (i.e. z and h) need to be initialized
before training. The hidden variables z are initialized using
a data-driven approach. We apply K-means clustering on the
input data x, and we assign the cluster labels as the initial
latent states. To reduce the risks of converging to local minima,
we repeat the K-means algorithm for 10 times. Then we
choose the best clustering results that have the minimal within-
cluster distances.

We applied a pre-learning approach to initialize the latent
activity labels h. We split the training data at the position
of uncertain labels to form a new dataset where the labels
are complete. After the model parameters are learned, we can
initialize the uncertain activity labels using Eq. (5).

E. Results

Fig. 4 compares the performance of our method with
two baseline models at different annotation confidence levels.
Confidence level 100% indicates that the models are trained
based on the ground truth labels and no label is changed.
Conversely, if the annotator is completely ambivalent about
the labels at all transition segments, i.e. the confidence level
is 0%, we simulate the annotation by changing the labels for
all transition segments.

1) How detrimental is hard labeling: Fig. 4 shows the
performance of two baseline approaches ([5] in dashed lines
and the state-of-the-art approach [19] in dotted lines). We
can see that both of the baselines drop dramatically with
the decreasing confidence level. Both of the baselines can
only learn from data that are labeled with hard assignment.
When the data is complex, the human annotators become
less confident of the labels and they are more likely to make
mistakes. Hard labeling does not incorporate the uncertainty
of data labeling, but rather the erroneous labels are treated as
the true ones for learning the model parameters. The drop of
the performance suggests that hard labeling is very sensitive
to mistakes, and it is therefore risky to use hard labeling
on complex data. Fig. 5 illustrates a transition segment that
is “wrongly” classified by the soft labeling method. In this
example, the person is performing two activities at the same
time. Hard labeling to these frames is very harmful because

only one label can be preserved. Using soft labeling, both
activity labels can be considered in learning, and the most
suitable label of the segment is predicted.

2) How much can we benefit from using soft labeling:
Instead of using hard assignment, we use soft labeling in our
model. The performance of soft labeling (solid lines in Fig. 4)
drops gradually with a slower rate compared to the decrease
rate of the confidence. Notably, we show that our model retains
almost the same performance as using the ground truth data
until the confidence drops below 60%. When the confidence
is 0%, we have a gain of over 10 percentage points in both
precision and recall compared with the baseline approaches.
Interestingly, with a small part of the labels being changed,
at the confidence of 90%, soft labeling with the uniform
segmentation achieves better results than using the “ground
truth” labels from the CAD-120 dataset (confidence of 100%).
This suggests a small part of the “ground truth” labels are
incorrect, and our model can recapture the true labels by using
soft labels.

Table II compares the F1-score of the approaches quanti-
tatively. As annotators are less confident, the benefit of soft
labeling becomes more obvious, outperforming the baselines
by 10% when the confidence of transition labels is 0%. Results
of the T-test show that our model performs significantly better
(p < 0.05) than the state-of-the-art approach at confidence
levels from 10% to 90%. Table II also compares different
approaches that use a single segmentation (Avg. segmentation
and Best segmentation [10]), multiple segmentation methods
(Majority voting [10]), and soft labeling. The best single
segmentation performance outperforms the average by around
3 percentage points. In practice, however, it is hard to decide
which single segmentation method is the best to use because
the best segmentation method on the training data may not
generalize well to new data. Majority voting combines all
segmentation hypotheses, and it outperforms the Best segmen-
tation method in most of the cases. However, Majority voting
is very expensive in both training and testing compared with
soft labeling, and the execution time grows with the number
of segmentation hypotheses. Besides, Majority voting does
not incorporate any labeling confidence during training. In
contrast, our model builds upon a unified framework which
incorporates confidence of labels for training the model, which
explains its better performance.

3) Effect of latent variables: We investigated the role of the
latent variables and visualize how they relate to our intuition.



TABLE II
PERFORMANCE OF F1-SCORE ON THE CAD-120 DATASET. STANDARD ERROR IS ALSO REPORTED.

Graph-based segmentation

Confidence Level 100% 90% 80% 60% 40% 20% 0%

Linear CRF [19] 68.4±1.0 66.9±1.4 66.0±1.1 63.3±1.4 60.4±1.5 56.8±1.7 51.9±1.7
Avg. segmentation [10] 63.7±2.3 62.7±2.0 62.9±2.1 61.7±1.8 59.9±2.4 57.1±1.8 54.2±2.0
Best segmentation [10] 65.5±1.5 64.6±1.4 63.7±1.5 63.3±2.2 61.2±2.5 59.4±1.5 56.6±2.7
Majority voting [10] 65.2±2.9 63.5±2.9 64.3±2.9 63.0±1.8 62.0±2.2 59.5±1.3 56.7±2.1
Hu et al. [5] 69.0±1.2 68.1±1.2 67.0±1.2 64.3±1.4 61.2±1.4 57.9±1.7 53.3±1.5
Our method 69.0±1.2 68.7±1.5 68.8±1.4 68.3±1.1 66.6±1.3 64.7±1.3 62.6±1.5

Uniform segmentation

Linear CRF [19] 67.8±1.3 67.1±1.3 65.9±1.2 62.9±1.8 58.2±2.0 54.6±2.1 50.6±1.5
Avg. segmentation [10] 60.3±2.8 60.9±2.8 60.3±2.6 59.1±2.4 57.6±2.8 56.7±2.6 53.1±2.8
Best segmentation [10] 63.1±2.1 64.3±2.3 63.7±1.7 63.4±2.3 60.6±2.8 59.6±2.8 56.4±2.3
Majority voting [10] 64.3±3.0 64.0±3.1 64.2±2.6 64.1±2.3 61.9±3.0 60.6±2.7 56.0±3.0
Hu et al. [5] 68.9±1.5 68.2±1.5 66.7±1.6 63.9±2.1 59.1±2.2 55.2±2.5 51.1±2.5
Our method 68.9±1.1 69.1±1.5 68.2±1.5 67.1±1.6 65.9±1.8 64.1±1.4 61.2±2.0

Fig. 6. Visualization of the latent components. The columns are six activities and rows refer to the four latent components. Due to the limitation of space,
here only 6 activities are illustrated. See more examples at http://ninghanghu.eu/index.html#rss14.

We visualize the 4 latent states of our model by sampling
frames for each activity and latent component pair. Fig. 6
shows that the activities vary largely over different actors and
the objects that the actors are manipulating with. e.g. For the
activity of eating, the viewpoint can be front (comp. 1) or
side view (comp. 3). The actor can be right-handed (comp. 2)
or left-handed (comp. 4). For the activity of opening, we can
see that the latent components capture the difference between
opening a door (comp. 1 and 2) and opening a lid (comp. 3
and 4). This illustrates the large range of variation that can
be found in humans activities, and how our model tries to
capture as much as possible of this variation in the limited
cardinality of the latent variables. These latent variables are
able to capture the sub-level semantics that are informative for
activity recognition.

VII. CONCLUSION

In this paper, we present a method to train discriminative
graphical models, which allows annotation uncertainty to be
explicitly incorporated, in the form of soft labeling. The
advantage of soft labeling is that it incorporates the uncertainty
of labels during annotation and can deal with missing labels
or annotator disagreement. As soft labeling is a very general
representation, our model can be extended to solve other
tasks, e.g. learning with partially annotated data, unsupervised
learning. We propose a novel approach for learning, where
computation of the loss functions considers the annotation
uncertainty. We evaluate the framework on the benchmark
dataset for activity recognition. Our cross-validated results on
the CAD-120 dataset demonstrate the benefits of soft labeling
in handling annotation uncertainty at transition.

http://ninghanghu.eu/index.html#rss14


ACKNOWLEDGMENTS

The research is funded by the European project ACCOM-
PANY (grant agreement No. 287624) and the European project
MONARCH (grant agreement No. 601033).

We thank Joris Mooij for useful discussions and we also
thank Hema Koppula for providing us with the CAD-120
dataset and details of her implementation.

REFERENCES

[1] F. Amirabdollahian, S. Bedaf, R. Bormann, and Others.
Assistive technology design and development for accept-
able robotics companions for ageing years. Paladyn,
Journal of Behavioral Robotics, pages 1–19, 2013.

[2] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
Graph-Based Image Segmentation. International Journal
of Computer Vision (IJCV), 59(2):167–181, 2004.

[3] N. Hu, G. Englebienne, and B. Kröse. Posture Recog-
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