
  

  

Abstract—The objective of self-healing in mobile robot 
networks is to maintain not only logical topology but also 
physical one of a network when robots fail.  An interaction 
dynamics model is first established to describe both logical and 
physical topologies of the network. Considering the mobility of 
mobile robot networks, we propose a recursive, distributed 
topology control for self-healing when mobile robots fail, and 
give a metric of the topology structure for evaluating the 
performence of recovered network topologies. Then, we prove 
the stability of motion synchronization with the topology control 
based on Lyapunov exponent. Finally, the results of simulations 
have demonstrated the validity of the proposed modeling and 
control methods. 

I. INTRODUCTION 
OTION synchronization of mobile robots has been 
defined as follows: a large number of mobile robots 

with local interacting could achieve a global objective of 
synchronizing speeds of all robots [1]. It is mainly inspired by 
the research on animal behavior [2-5], for example, 
self-organizing flocks, schools and swarms in nature always 
tend to keep synchronized motions. Synchronization is also a 
fundamental concept, and is a universal phenomenon in many 
research fields of science and technology, including sensor 
networks [6], complex dynamical networks [7] and 
communication networks [8]. In multi-robotics, many 
complex practical tasks and applications can be decomposed 
into a series of motion synchronization, for example large 
object transportation and manipulation [9], formation 
generation and maintenance [10], exploration and 
map-building in an unknown environment [11], and 
reconnaissance and surveillance for military missions. 

Self-healing is viewed as one of these complex tasks based 
on motion synchronization. It refers to the process of 
recovering topologies and system performances of networks 
from failed robots. Clearly, the disadvantages of only 
self-healing communication topologies include more energy 
consumption with the enlarged communicating range in 
wireless networks, and more blind zones with the limited 
sensing range in sensor networks. Different with general 
networks, mobile robot networks possess the feature of the 
mobility of physical topologies. Therefore, the objective of 
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self-healing in mobile robot networks is to maintain not only 
logical topology but also physical one of the network to solve 
the problem of energy consumption and blink zones. 

The self-healing of sensor networks has been studied in 
sensor networks for many years. However, many literatures 
were focused on wireless sensor networks without mobility. 
Boonma et al. [6] proposed a biologically-inspired, 
decentralized architecture of sensor networks to self-heal 
false positive sensor data, with the mobility of mobile robot 
networks ignored. Furthermore, distributed control is one of 
the most challenging problems of designing self-healing 
control. Zhang et al. [1] proposed a topology control for 
self-healing and showed that the control can improve the 
robustness of motion synchronization, but its control was not 
completely distributed and the stability analysis of 
self-healing was not provided. 

Stability of motion synchronization is one of the most 
important characteristics in groups of mobile robots, and is 
widely studied in the related research. Lyapunov function is 
the main method to analyze the stability. Gazi et al. [12] 
investigated the stability properties of swarm aggregation and 
showed that the individual agents will form a cohesive swarm 
in a finite time. Olfati-Saber et al. [13] gave the Lyapunov 
stability of disagreement functions for consensus problems in 
networks of agents with switching topology and time-delays. 
Although these conclusions about stability conditions have 
been successfully applied in their corresponding models and 
controls, it is necessary for other controls to search for the 
suitable Lyapunov functions. Therefore, we expect to provide 
a more general tool of analyzing the stability of motion 
synchronization for mobile robot networks. 

In recent years, the research on synchronization in complex 
dynamical networks based on an interaction dynamics model 
has achieved many important conclusions on the stability and 
robustness [7, 14-16]. They have shown that synchronization 
of a complex dynamical network can be decided by the 
network topology and the maximum Lyapunov exponent of 
the individual nodes. However, the research on this topic has 
not involved in self-healing of mobile robot networks. 

The main contribution of this paper is to provide a 
theoretical modeling and control method for self-healing of 
mobile robot networks with motion synchronization. We 
propose a fully distributed topology control for self-healing, 
and give a metric of the topology structure to evaluate the 
performance of the network topology. Based on Lyapunov 
exponent, we also prove the global stability of the network 
with the proposed topology control. 
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The paper is organized as follows. Section II establishes an 
interaction dynamics model of mobile robot network. In 
Section III, we propose a recursive, distributed topology 
control for self-healing. Section IV proves the stability of the 
network with the topology control. The results of simulations 
in Section V have demonstrated the validity of the topology 
control for self-healing. Conclusions are given in Section VI.  

II. MODEL OF MOBILE ROBOT NETWORK 
Now we establish an interaction dynamics model 

describing logical and physical topologies of a network. In 
this paper, we assume that each robot only knows the 
information about its neighboring ones without any time 
delay of communication. 

A. Logical Topology of Mobile Robot Network 
Consider a network having n robots, whose logical 

topology can be viewed as a graph G defined by a set of 
vertices V and a set of edges E connecting the vertices. The 
vertex iv V∈ , 1, 2, ,i n= , corresponds to the robot i, and 

the edge ( ),i jv v E∈ , , 1, 2, ,i j n= , corresponds to an 

active communication connection between the robots i and j. 
The coupling matrix ( ) n n

ijA a ×= ∈ℜ  represents the coupling 

configuration of the network [1, 7],  where  

( )
( )

0, ,

1, ,

i j

ij

i j

v v E
a

v v E

⎧ ∉⎪= ⎨
∈⎪⎩

,  i j≠ ,  , 1, 2, ,i j n= ,                     (1)                                

indicates which vertices are linked by an edge, and thus 
which robots communicate. Moreover,  

1,

n

ii ij i
j j i

a a d
= ≠

= − = −∑ , 1, 2, ,i n= .                                    (2) 

where id  denotes the degree of the robot i. 
Remark: In this paper, the coupling matrix A is somewhat 

different with the adjacency matrix in graph theory [17].  
 Because of bi-directional communication between two 

robots, the graph G representing the network is undirected, 
i.e., TA A= . Suppose that the network is connected without 
isolate clusters. Then G is connected. The neighbors of the 
robot i are the robots having active connection with i. Let 

e ( )N i  denote the index set of neighbors of i, i.e., 

{ } { }e ( ) | 1 1, 2, ,ijN i j a n= ⊆ .                                       (3) 

Furthermore, the degree of the robot i is equal to the number 
of its neighbors. 

The topologies of mobile robot networks are often 
described by K-neighbor models [18], where the degree of 
each robot is required to be equal to or less than K, i.e., 

id K≤ , 1, 2, ,i n= . For example, Fig. 1 shows four typical 
topologies of robot networks with K=3, 4, 6, and 8, 
respectively. 

B. Motion Model of Mobile Robot Network 
Consider each robot operating in an N-dimensional space. 

Let N
ip ∈ℜ  and N

ix ∈ℜ  with 1, 2, ,i n=  denote the 
position and speed of the robot i, respectively. According to 
the motion models in [1, 7, 12, 13], we propose a double 
integrator system to describe the continuous-time dynamics 
of each mobile robot: 

e c

,
, 1,2, , ,

i i

i i i

p x
x u u i n

=⎧
⎨ = + =⎩

                                              (4) 

where e
iu  stands for the individual N-dimensional dynamics 

of the robot i, expressed as: 
e ( , )i i iu f p x= .                                                                   (5) 

For example, 
m( , ) ( ( ) )i i if p x a v t x= − , 1, 2, ,i n= ,                              (6) 

where m 0a >  and ( )v t  represents the value of a velocity 

field in the environment. The control c
iu  stands for the effect 

of the neighboring robots upon the robot i. Given a whole 
number 0k >  and a switched matrix ( )A k , c

iu  can be 
described as: 

c

1 1
( ) ( ) ( ) ,

n n

i ij j ij ij j
j j

u c a k p q c a k x
= =

= ⋅ − +∑ ∑  1, 2, ,i n= , (7) 

where 0c >  represents the coupling strength of the network, 
and d d

ij j iq p p= −  represents the desired relative position of 

the robots j and i, with d
jp  standing for the synchronized 

(desired) position of the robot j. In this paper, ijq  represents 
the physical topology of the network.  

The benefit of the proposed model is that it allows one can 
describe not only logical topology but also physical one of a 
mobile robot network.  

III. TOPOLOGY CONTROL FOR SELF-HEALING 
Self-healing represents the self-organized collective 

behavior of mobile robot networks when robots fail. It refers 
to the process of filling the blank locations of the failed robots 

Fig. 1 Four typical topologies of mobile robot networks with 
K-neighbor model. 

(a) K=3 (b) K=4 

(c) K=6 (d) K=8 
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and recovering both logical and physical topologies from 
robot failures. The topology control for self-healing should 
satisfy: 

1) It can prevent the whole network from being separated 
into two or more small groups. 

2) It can recover the network topology from failed robots 
and keep system properties of the whole network with regard 
to the stability and robustness of motion synchronization. 

A. Network Topology with Failed Robots 
Now we study the network topology when robots fail. In [1, 

19], the second-largest eigenvalue 2λ  of the coupling matrix 
A is used to evaluate the stability and robustness of the whole 
network. A small value of 2λ  indicates the better stability and 
robustness of motion synchronization of the network [1, 7]. 
Moreover, 2 0λ = , iff the network is broken into two or more 
groups. 

Let rf
n nA ×∈ℜ  and ( ) ( )[ ] [ ]

rf
n n n nA − Δ × − Δ∈ℜ  denote the 

coupling matrices of the original network with n robots and 
the new network after failure of [ ]nΔ , respectively. Here, 

[ ]nΔ  stands for the smaller but nearest integer to the real 

number nΔ . Let also 2rfλ  and 2rfλ  denote the second-largest 

eigenvalues of rfA  and rfA , respectively. Moreover, assume 
that the robots 1i , 2i , , ][ ni Δ  have failed in the network. 

Then the new coupling matrix rfA  from the original matrix 

rfA  can be formed according to [1, 19]. 
Ref. [19] guaranteed that if a small fraction )10( <<Δ<Δ  

of robots whose degrees are sufficiently small 
0 , 1,2, ,[ ]id d i n< = Δ  are deleted in the network ( 1n >> ), 

then 

2rf 2rfλ λ≈ .                                                                           (8) 
It means that the second-largest eigenvalue of the coupling 
matrix is held almost fixed so that the synchronization 
stability of the network also remains. Assume that the degree 
of each robot in the K-neighbors model is far less than the size 
of the whole network, i.e., K n , then (8) can be also 
applied in our model, because the degree of each robot 

id K≤ , 1, 2, ,i n=  is sufficiently small.  
Ref. [1] has shown that the whole network will be broken 

into two small groups when the robots in one row or column 
fail, that is 2rf 0λ = . Therefore, it is necessary to self-heal the 
network topology from failed robots. 

B. Self-healing Rules and Algorithm 
Through controlling the network topology [20], the 

network can fill the blank locations of the failed robots. Let 

rf(1)A A=  denote the coupling matrix after robots fail. 
Assume that the robot fi  has failed with its neighbors e f( )N i . 
Our topology control for self-healing can be described 

through the following rules. 
Rule 1: The neighbors e f( )j N i∈ of fi  with 

fj id d≤  

become the candidate of filling the failed robot, whose the 
index set is denoted by: 

 { }fa f e f( ) | , ( )j iC i j d d j N i≤ ∈ .                                     (9) 

Rule 2: The robot in a f( )C i  with the smallest degree will 
fill the blank location of the failed robot, denoted by si . 

Rule 3: If there exist two or more robots with the same, 
smallest degree, then one robot is randomly chosen to be the 
filling robot si . Furthermore, a mark 

s fi iM q=  is generated 

and sent to the robot si′ , 
s si iq M′ = , s e s( )i N i′ ∈ . In next step, 

the robot si′  will fill the new blank of si , if the neighbors 

a s( )j C i∈  does not satisfy Rule 2. The mark M will also be 
sent to the next robot until not finding the corresponding 
robot.  

Note that the mark is used to avoid self-healing repeatedly 
for one robot. Thus, it forms a recursive, distributed topology 
control algorithm of self-healing as follows. 

Self-healing Algorithm:  
Step 1: 1k = . Calculate the coupling matrix ( )A k . 
Step 2: 1k k= + . If one robot obtains the information 

about its neighbor’s failure, it will compare its degree with 

fi
d  and judge whether it belongs to a f( )C i .  

Step 3: If there exists a robot with the smallest degree in 
a f( )C i , it is the filling robot si . Go to Step 6. 
Step 4: If there exist two or more robots with the same, 

smallest degree, the robot with the mark M in a f( )C i  will be 
the filling robot si . Moreover, the robot si  will send M to the 
corresponding robot in its neighbors. Go to Step 6. 

Step 5: If there exist two or more robots with the same, 
smallest degree and without a mark, then one robot is chosen 
randomly in a f( )C i  with the smallest degree to be the filling 
robot si . A mark M is generated according to Rule 3. 

Step 6: The action of filling the blank location of the failed 
robot is described here. The filling robot si  cuts off the 
connections with its origin neighbors e s( )N i , and creates new 
connections with e f( )N i . Thus, the coupling matrix ( )A k  is 
obtained by: 

s s e s

e f

1,

( ) ( 1), , 1, 2, , [ ],
( ) ( ) 0, ( ),

( ) ( ) 1, ( ),

( ) ( ), 1,2, , .

s s

ij ij

i j ji

i j ji

n

ii ij
j j i

a k a k i j n n
a k a k j N i

a k a k j N i

a k a k i n
= ≠

= − = − Δ⎧
⎪ = = ∈⎪
⎪ = = ∈⎨
⎪
⎪ = − =
⎪⎩

∑

                       (10)                     

Other failed robots can also be substituted by (10). 
Step 7: If a new blank location appears, then go to Step 2. 

Otherwise, self-healing finishes.  
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C. Properties of the Switched Topology with Self-healing 
Now we study the properties of the switched topology with 

Self-healing Algorithm. Assume that the network is 
connected after robots fail, i.e., 2 (1) 0λ ≠ . 

The aim of Self-healing Algorithm is to substitute the 
filling robots 

1s
i , 

2si ,…, 
[ ]nsi Δ

 for the failed ones 1i , 2i ,…, 

][ ni Δ  with 
js jd d≤ , [ ]1,2, ,j n= Δ .  In K-neighbors models, 

the process of self-healing is to move the blank locations of 
the failed robot out of the network. Let sk  denote the final 
step number of self-healing.  

Lemma: Consider the mobile robot network (4). It follows 
with Self-healing Algorithm when robots fail. Then, the 
following statements hold: 

1) The whole network is prevented from being separated 
into two or more small groups, i.e., 2 s( ) 0kλ ≠ .  

2) The network topology recovers from failed robots and 
the second-largest eigenvalue of the coupling matrix of the 
network is kept, i.e., 2 s 2 s 2( ) ( 1) (1)k kλ λ λ≈ − ≈ ≈ . 

Proof: First, to prove statement 1), suppose that 2 p( ) 0kλ =  

with p 0k > . Because 2 (1) 0λ ≠ , it is clear that the new blank 
positions causes the broken network. Then the neighbors of 
the filling robot will fill the new blank positions, and 
therefore self-healing will continue, i.e., p sk k< . According 
to Rule 1-3, the blank locations of the failed robots are moved 
out of the network finally. Consequently, 2 s( ) 0kλ ≠ . 

Second, prove statement 2). Because the robot with the 
small degree substitutes the failed robot for each step, i.e., 

js jd d≤ , [ ]1,2, ,j n= Δ , based on (8) we have 

2 s 2 s 2( ) ( 1) (1)k kλ λ λ≈ − ≈ ≈ .                                         (11) 
Consequently, Self-healing Algorithm is effective.         □ 

IV. STABILITY ANALYSIS 
Hereafter, the mobile robot network (4) is said to achieve 

synchronous speeds if 
1 2( ) ( ) ( ) ( ),nx t x t x t v t t= = = → → ∞ ,                       (12) 

where ( ) Nv t ∈ℜ  can be an equilibrium speed, a leader’s 
speed or a value of a velocity field, given by (6). Now we 
investigate the stability condition of motion synchronization 
with Self-healing Algorithm.  

First, the model (4) can be expressed as: 

1

( )0 0
( ) ,

( , )

n
j iji i

ij
j ji i i N N

p qp x
c a k

xx f p x I I=

−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑ (13) 

1,2, , ,i n=  s1, 2 ,k k= ,                                                                                          
where NI  denotes the N-dimensional identity matrix. Let 

d d
1i iq p p= −  denote the desired relative distance between the 

robot i and 1. Note that iq  just simplifying the following 
analysis does not affect the distributed control for 
self-healing. 

Denote 
0 0

N NI I
⎡ ⎤

Γ = ⎢ ⎥
⎣ ⎦

 and [ ] 2T N
i i i iy p q x= − ∈ℜ , 

1, 2, , ,i n=  and rewrite (13) as: 

1
( ) ( )

n

i i ij j
j

y F y c a k y
=

= + Γ∑ , 1,2, , ,i n=                         (14) 

                                             ( )k s t= , ( )A k ∈ Ω , 
which is a hybrid system with a continuous-state iy  and a 
discrete-state ( )A k  that belongs to a finite set of switched 

coupling matrices { }( ), ( )A k k s tΩ = = . Let 0( ) :s t ≥ Ωℜ → Λ  

denote a switching signal where ΩΛ ⊂  is the index set 
associated with the elements of Ω . 

Note that the relative positions of the neighboring robots 
are also stable when achieving the synchronized state (12). 
Let i i ip p q′ = − , and the state ip′  is synchronized at the 
stable states: 

1 2 1( ) ( ) ( ) ( ),np t p t p t p t t′ ′ ′= = = = → ∞  .                     (15) 

Denote [ ] 2
1( ) ( ) ( ) NS t p t v t= ∈ℜ . Thus, the synchronized 

states of the dynamical network (14) becomes  
1 2( ) ( ) ( ) ( ),ny t y t y t S t t= = = = → ∞ .                     (16) 

Assume that the network is connected without isolate 
robots. Then its coupling matrix ( )A k  is therefore a 
symmetric irreducible matrix. In this case, zero is an 
eigenvalue of ( )A k  with multiplicity 1 and all the other real 
eigenvalues of ( )A k  are strictly negative [7], denoted by 

1 2 30 ( ) ( ) ( ) ( )nk k k kλ λ λ λ= ≥ ≥ ≥ ≥ , ( )k s t= .           (17) 
Denote by max 1 2, , , Nh h h h=  the corresponding 

Lyapunov exponents of each individual N-dimensional 
mobile robot. If it is stable, the maximum Lyapunov 
exponents maxh  will be negative. In the following, assume all 
the individual robots are stable with  max 0h < . Assume that 
any interswitching time is enough large during switching 
topologies. 

Theorem: Consider the network (14) with identical stable 
robots. It follows with Self-healing Algorithm when robots 
fail. Then, the synchronized states (16) are exponentially 
stable.  

Proof: The exponential stability of (16) is transformed to 
the exponential stability of the following systems [7]: 

[ ( ) ( ) ]iDF s c kω λ ω= + Γ , 1, 2, ,i n= , ( )k s t=  ,           (18) 
where ( )DF s  represents the Jacobian of ( )F s about s. To 
prove its stability, recall the concept of transversal Lyapunov 
exponents [21]. For every eigenvalue ( ), 2, ,i k i nλ = , 

( )k s t= , the corresponding transversal Lyapunov exponents 

for (18) is a function of ( )i kλ , denoted as ( ( ))j iL kλ , 
1, 2, ,j N= , and given by 

( ( )) ( )j i j iL k h c kλ λ= + , 1, 2, ,j N= , ( )k s t= .         (19) 
To stabilize the synchronized states, if suffices to require that 
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these ( ( ))j iL kλ  for each ( ), 2, , , ( )i k i n k s tλ = =  be 
negative. According to Lemma, when satisfying (17) and 

max 0h < , it indicates that the following equivalent inequality 
should hold: 

max max 2( ( )) ( ) 0iL k h c kλ λ= + < , ( )k s t= .                          (20) 
The minimum in (20) always exists and is achieved because 
Ω  is a finite set. That is, the synchronized states (16) are 
exponentially stable with Self-healing Algorithm.                     □ 

V. SIMULATIONS 
The simulations utilized the programming of MATLAB, 

and performed the process of self-healing in mobile robot 
networks. The operating space of robots was a 2-dimensional 
plane 2ℜ  in simulations, i.e., 2N = . The step length in 
simulations was 0.05 (s). The initial positions were selected 
randomly within the interval [-1, 1] around the corresponding 
positions according to K-neighbor model with K=6, and the 
initial speeds were chosen randomly with [-5, 5]. 

A. Self-healing for One Failed Robot 
We performed two simulations of the proposed topology 

control for self-healing in mobile robot networks when robots 
fail. In the first simulation, one robot failed in a network of 25 
robots ( 25=n ). The total time of experiments was 10 seconds 
and other parameters were configured as above. The results 

of the simulation were shown in Fig. 2 and 3. 
In Fig. 2, the plots of (a)-(d) represent the topologies of the 

mobile robot network at the time t=1.5, 2.0, 3.0 and 7.5 (s), 
respectively, where the black points marked by numbers and 
the red arrows are the positions and speeds of the robots, 
correspondingly. Fig. 2(a) shows the original topology of the 
network. Robot 17 was failed at the time t=2.0. Because robot 
22 and 23 had the same, smallest degree (d=3) in the 
neighbors of 17. The robot 22 was randomly chosen to fill in 
the blank position of 17 in Fig. 2(b) according to Self-healing 
Algorithm. Meanwhile, robot 21 filled in the new blank 
position of 22 in Fig. 2(c). Because there was no robot with 
the smaller degree than 21, self-healing finished. Fig. 2(d) 
shows the final topology after self-healing.  

In Fig. 3, the second-largest eigenvalue of the coupling 
matrix decreased from -0.4367 to -0.5889 with the topology 
control. It means that the topology control is effective to keep 
system performance of the network fixed.  

B. Self-healing for Failed Robots 
Now we illustrate the second simulation to demonstrate the 

self-healing behavior in a robot network of 100 robots with 
K=6 for failed robots. In the simulation, 10 robots failed 
randomly in the network. The total time of experiments was 
10 seconds and other parameters were configured as above. 

In Fig. 4, the plots of (a) and (b) represent the topologies 
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Fig. 2 Simulation results of self-healing for one failed robot. 
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Fig. 3 Second-largest eigenvalue of coupling matrix in the case of 
self-healing for one failed robot. 
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before and after self-healing, respectively, where the circle 
represents the sensing range of the robot. Obviously, 
self-healing has decreased the blind zones of sensing in the 
network. The dashed and the solid lines in Fig. 5 represent the 
variation of the second-largest eigenvalue of the coupling 
matrix for Fig. 4(a) and (b) with the time, respectively. Fig. 5 
shows that the whole network spends six steps for 
self-healing, and the second-largest eigenvalue of the 
coupling matrix decreases, which indicated that the proposed 
topology control for self-healing is effective.  

VI. CONCLUSIONS 
Self-healing in mobile robot networks refers to the process 

of maintaining not only logical topology but also physical one 
of the network. We first establish an interaction dynamics 
model describing both logical and physical topologies of the 
network. Considering the mobility of mobile robot network, 
we provide a recursive, distributed topology control for 
self-healing when mobile robots fail, and give a metric of the 
topology structure for evaluating the performance of 
recovered network topologies. Based on Lyapunov exponent, 
we prove the global stability of the network with the fully 
distributed topology control. Finally, the results of 
simulations have demonstrated the validity of the proposed 
modeling and control methods. 

The conclusions about self-healing in mobile robot 
networks can be also applied in mobile sensor networks. 
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Fig. 4 Simulation results of self-healing for failed robots. 
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Fig. 5 Second-largest eigenvalue of coupling matrix in the 

case of self-healing for failed robots. 
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