The GSAT Chip

<u>The SAT Problem</u> Given a Boolean expression of the form:

$(A+\overline{B}+C)\cdot(\overline{D}+E+\overline{A})\cdot(B+\overline{C}+\overline{E})\dots$

Choose truth values for the variables such that the expression is satisfied.

Is this hard? Computer science says yes: it's NP- Complete.

Is This Useful?

- This form (3CNF) is completely general Satisfiability finds application in:
 - Project scheduling (Continental and NASA even use the GSAT algorithm)
 - Instruction scheduling for compilers
 - Logic network verification

The GSAT Algorithm

A hill -climbing incremental improvement technique

- Randomly initialize the variables Until all of the clauses are satisfied:
 - Select a variable ai at random
 - Complement ai
 - If that decreased the number of satisfied clauses, undo it
- Output a1...an

Chip Capabilities

Problems involving up to 128 variablesExpressions with as many as 1500 clausesPause at any time and have random access to the current variables

Major Components

128 bits of on-chip register space4 KB address space for off-chip memoryCounters for memory addressing andexpression evaluationA controller to manage it all

System Block Diagram

Register Cell

- Input runs horizontal at top
- Output runs horizontal at the bottom
- Power, ground, and control signals run vertically
- 12 transistors total

Register File

Ten-Bit Comparator

Used for comparing the number of satisfied clauses before and after a complement operation

Floorplan

The Plan on the Floor

Conclusion

- SAT is an important, computationally intensive problem.
- Our chip implements a heuristic algorithm to search for solutions.
- There is potential for multi-chip parallelism.