Adaptive Noise Cancellation using the LMS Algorithm

December 7, 1999
Functional Description

• Adaptive Noise Cancellation DSP Circuit
 - Removes background noise from signals
• Application: Pilot Communication
 - Two signals:
 • Noise + Pilot’s Speech
 • Noise Reference Signal in Cockpit
Functional Description (cont’d)

- Filter input $x(k)$ to obtain $y(k)$
- Error $e(k) = \text{Desired Input } d(k) - y(k)$
 - Used to update filter frequency response
- 8-tap Finite Impulse Response (FIR) Filter
- LMS Algorithm
 - $W(k+1) = W(k) + u \times 2 e(k) \times x(k)$
 - Fixed Step-Size u
Overview

- Circuit Design
- PLA Description
- Layout
- System Performance Analysis
System Block Diagram

A Booth Recoding Multiplier
8bit x 8bit

Multiplier P[0,3]
Adder A[0,1] B[0,1]
Multiplier A[0,1] B[0,1]
PLA state bits [0,3]

DEBUG BLOCK
System Timing: Error Calculation
System Timing: Weight Update
Circuit Design

- 12-bit Carry-Look Ahead Adder
- 8-bit Radix-4 Booth Recoding Multiplier
- 8-bit Rotate Stack
Carry-Look Ahead Adder

4-bit Carry Look-Ahead Adder
Radix-4 Booth Recoding Multiplier
Rotate Stack
PLA Description

• 15 states, 5 inputs, 17 outputs

• 2 Phases:
 - Error Computation
 - Filter Tap Weight Update

• 2 Counters (count to 8):
 - Counter to count multiplier clock cycles
 - Counter to count # of multiply operations

• One Iteration ~200 clock cycles
State Diagram
-- Elec 422 Project MAIN CONTROLLER PLA

INPUTS: RESTART COUNT8 COUNT9;

OUTPUTS: STOREXD STOREW ROTATEX ROTATEW MDS MWE
 MMULT LOADMULT CLRCNT8 CLRCNT9 CNT8A CNT8B
 SUBTRACT LACCUM LERROR CLRALL CLRACCUM;

-- reset logic
reset on RESTART to init(CLRA ALL CLRACCUM);

init: -- initial state --> clear all latches
 goto LoadXD(STOREXD LOADMULT CLRCNT8 CLRCNT9);

LoadXD: -- X & D inputs
 goto RotateXW(ROTATEX ROTATEW CNT8A);

RotateXW: -- rotate X & W stacks
 goto StartCNT8b(CNT8B);

StartCNT8b: -- signal 8 counter w/ second control signal
 goto WaitMultXWDone;

WaitMultXWDone: -- wait for the multiply of X & W to finish
 case (COUNT9 COUNT8)
 10 => StartNextMultXW(LOADMULT LACCUM CLRCNT9);
 11 => StartNextMultXW(LACCUM);
 endcase => WaitMultXWDone;

StartNextMultXW:
 if COUNT8 then CalculateE(MMULT SUBTRACT)
 else RotateXW(ROTATEX ROTATEW CNT8A);

CalculateE:
 goto GetE(MMULT SUBTRACT LERROR);

GetE:
 goto WaitBeforeMult; -- CLKB2 happens on EVEN cycles

WaitBeforeMult:
 goto StartMultXE(MWE LOADMULT CLRCNT8 CLRCNT9
 CLRACCUM);

StartMultXE:
 goto GetWAdd(ROTATEX ROTATEW MDS MMULT CNT8A);

GetWAdd:
 goto StartCNT8b2(MDS MMULT CNT8B LACCUM);

StartCNT8b2:
 goto WaitMultXEDone(MDS);

WaitMultXEDone: -- wait for the multiply of X & W to finish
 case (COUNT9 COUNT8)
 10 => StartNextMultXE(MDS MWE STOREW LOADMULT
 CLRCNT9);
 11 => StartNextMultXE(MDS STOREW ROTATEX);
 endcase => WaitMultXEDone(MDS);

StartNextMultXE:
 if COUNT8 then WaitBeforeMult2 -- CLKB2 happens on EVEN
 cycles
 else StartMultXE(CLRA ALL);

WaitBeforeMult2:
 goto init(CLRA ALL CLRACCUM);
Layout

- Cell Hierarchy
- Plots of Low-Level Cells
- Floorplan
- Full plot of Chip
Cell Hierarchy

- PLA
 - Counter
 - 8-bit Multiplier
 - Product Register
 - Clearable Latch
 - 8-bit Adder
 - 4-bit Adder
- Full Chip
 - 12-bit Adder/Accumulator
 - 4-bit Adder
 - 4-bit Adder
- Leaf Cells

- 8-bit Stack
- 2x12-bit MUX
- 2x8-bit MUX
- 8-bit Latch
- 8-bit Latch

Dec. 7, 1999
XOR Gate Cell
5-Input NAND Gate Cell
Static Latch
Clearable Static Latch
4-bit Carry-Look Ahead Adder
12-bit Carry-Look Ahead Adder
8-bit Radix-4 Booth Recoding Mult.
8x8-bit Rotate Stack
Control PLA & Counters
Floorplan
Full Plot of Chip

- 5,600T Total
System Performance Analysis

- Longest Path: Multiplier Output to Error Output Latch
 - 12-bit Adder in critical path

- Spice Analysis of 12-bit Adder
Spice Analysis (Rise Time)

- Rise Time \(\sim 23.5\) ns

Dec. 7, 1999
Spice Analysis (Fall Time)

- Fall Time \(~22\) ns
Summary of System Performance

- 12-bit Adder Worst Case Delay: ~25 ns
- Maximum Clock Speed: ~42.6 MHz