RAKE Correlator

Roy Ha Graham Hull Lakshmi Sreekumar Jason White

Why should you care?

Channel Model

What is it? How does it work?

Our RAKE finger Specs

Why should you care?

- Wireless Devices
 - DSP
 - Vocoder
 - RAKE Correlator

Channel Model

- Standard, Basic
 Channel Model
 - Additive noise
 - Amplitude Changes
 - Phase Changes

Channel Model

 More "realistic" channel model

- Additive noise
- Multiple Paths
 - Amplitude Changes
 - Phase Changes
- Added Together at receiver

Channel Model

Reasons

- Signals bounce off buildings
- Amplitude, phase distortion
- Delayed paths summed with direct path

What is it? How does it work?

RAKE = Matched Filter for Channel Model

• RAKE Correlator

- Multiple paths increase performance
- Acts like a set of mini-correlators, called RAKE fingers
- Each finger is delayed and scaled for a given path (ie. A reflection from a building)

Our specs

- Up to 8 RAKE fingers, Max delay of 16 chips
- 4 bit, 2's complement
- 32 chips/symbol, 1 bit/symbol
- Assume no inter-signal interference

Full Chip

Previous

Basic Floorplan

Arithmetic

Carry Look-ahead Adder

- Carry Look-Ahead is
 3x faster than ripple
 carry
- Carry Eqns
 - Carry{i} = G{i}+P{i} C{i-1}
 - $G{i} = A{i} \cdot B{i}$
 - $P{i} = A{i}+B{i}$
 - Used in Multiplier and Summation blocks

Multiplier

- 1st Multiplier with a Manchester Adder and rounding of bits
- 2nd Multiplier with a CLA

Control

Control

Timing Control

Major Points

- Followed 2-phase clocking discipline
 - Internal outputs all latched to clock B
 - Internal Inputs all latched to clock A

Speed Optimizations

- Split up main PLA into 4 sub PLAs
- Always full pipeline
- .5 μM process
- Carry Lookahead Adders
- Fast Tree Multipliers

Memory

Memory Layout

Basic Latch Cell

Latch Array

Previous

Testability

- "Test Control" chooses what appears on "Test Out"
- Final output is a 0 or 1, on "Output" pin
- Main PLA state bits are outputs

Reset Begin CLKA CLKB Input 0 Input 1 Input 2 Input 3 Signal in 0 Signal in 1 Signal in 2 Signal in 3 Delay in 0 Delay in 1 Delay in 2 Delav in 3 Channel in 0 Channel in 1 Channel in 2 Channel in 3

Data Ready Output Main PLA StBit0 Main PLA StBit1 Main PLA StBit2 Main PLA StBit3 Test Control 0 Test Control 1 Test Control 2 Test Control 3 Test Out 0 Test Out 1 Test Out 2 Test Out 3 GND GND GND Vdd Vdd Vdd

Spice Analysis

Multiplier plots ~8 ns

4 bit adder plots ~2.2 ns

Previous

Performance Summary

Max Delay Paths

Theoretical Maxima

- 15.5 ns longest path in PLA
- 8 ns multiplier
- 2.2 ns four bit CLA (8 ns 16 bit adder)

Clock ~ 50 MHz

- Input ~ 6.4 Mchips/sec
- Output ~ 200 kbits/sec

Current Status

Integrating and fitting components into pad frame
High level Integration testing
Developing test strategies

Future...

Previous