ARBITER: Fuzzy Logic Controller

Elec 422 Group A:
Kevin Duh, Vernon Evans, Chris Flesher, David Suksumrit

AMD-Rice VLSI Design Contest
Dec 5, 2002
Precision vs. Significance

Precision and Significance in the Real World

A 1500 kg mass is approaching your head at 45.3 m/sec.

Precision

Significance

LOOK OUT!!

Conventional Logic

Fuzzy Logic / Human Logic
Words are inherently imprecise. This imprecision is captured by MF.
Basics: IF-THEN Rules

- Example
 - “If falling object looks BIG, then yell ‘Watch Out!’ LOUDLY”
 - “If falling object looks SMALL, then tell him ‘Watch Out!’ CALMLY”

- BIG, LOUDLY, SMALL, CALMLY are defined by membership functions

- Enables fuzzy chip to make decision like humans!
Why VLSI Implementation?

- **Speed**
 - Needed for Real-time applications
- **Scalability**
 - Parallel processing of fuzzy rules
- **Our Design Goal:**
 - General-Purpose VLSI Fuzzy Controller
 - Flexible & Fast (best of both worlds)
 - Analagous to DSP Chip
Functional Description

- 2 Input, 1 Output, 3 Fuzzy Rule
- Loadable Membership Functions (MF)
- 2-Stage Pipeline
Main PLA

Controls loading, IF & THEN PLA’s, pipeline
IF Unit: Purpose

- Evaluates height of intercept ("degree of truth") for each IF statement
Challenge: How to represent membership function?

- Problem: Space vs. Flexibility
- Possible solution: Lookup Table
 - Pros:
 - Flexible expression of function
 - Fast access
 - Cons:
 - Takes too much space
 - Zero values waste space
 - Not challenging
Solution: Point-Slope MF

- **Our solution:**
 - Represent geometric shape with slopes & point
- **Cons:**
 - Math hardware required
 - Slower, variable-time calculation
- **Pros:**
 - Much less space
 - Represent most MF shapes
Algorithm for Finding Intercept

- Begin at apex, iterate subtractions until x
 Result is y (height/degree of truth)

```
Triangle Representation

output

Input apex location

subtract slope values until you reach point closest to input
Output height at that point
```
THEN Unit: Purpose

- Find the areas under the “cut” value for each THEN statement and Aggregate into a big MF
- Find Center of Mass for big MF -> final answer!
Challenge: Center of Mass

- Problem: complicated Center of Mass equation -

\[
COM = \frac{\sum_{i=1}^{16} x_i y_i}{\sum_{i=1}^{16} y_i}
\]
Possible Solution

- Possible Solution: Direct Implementation

\[
COM = \frac{\sum_{i=1}^{16} x_i y_i}{\sum_{i=1}^{16} y_i}
\]

- Too much hardware!
- Too slow (multiplication)
Our solution: DoubleLoop Adder

- Calculate Num & Den simultaneously
- No multiplier needed

\[
\frac{\text{num}}{\text{den}} = \frac{\sum_{i=1}^{16} x_i y_i}{\sum_{i=1}^{16} y_i}
\]

<table>
<thead>
<tr>
<th>t</th>
<th>(y_{16})</th>
<th>(y_{16} + y_{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(y_{16})</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(y_{16} + y_{15})</td>
<td>(y_{16})</td>
</tr>
<tr>
<td>2</td>
<td>(y_{16} + y_{15} + y_{14})</td>
<td>(y_{16} + (y_{16} + y_{15}))</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>(y_{16} + (y_{16} + y_{15}) + (y_{16} + y_{15} + y_{14}))</td>
</tr>
</tbody>
</table>
More on DoubleLoop Adder

• Proof:

\[num = 16y_{16} + 15y_{15} + 14y_{14} + ... + 1y_1 \]
\[= y_{16} + (y_{16} + y_{15}) + (y_{16} + y_{15} + y_{14}) + ... + (y_{16} + y_{15} + y_{14} + ... y_1) \]
\[= y_{16} + (y_{16} + y_{15}) + (y_{16} + y_{15} + y_{14}) + ... + \text{den} \]

• Pros:
 - Fast: Only 17 cycles
 - Minimize hardware: no multipliers needed

• Division:
 - Re-use hardware!
Standard Cell Layout: LATCH

- Compact
- Scalable in any direction
Full Layout & Status
Design for Test

- Decoder
 - 15 mutually control signals
 - Watch 105 signals total, 7 at a time
 - Asynchronous

- Matlab verification
 - Simulate test vector solutions
Timing Analysis

- Main PLA: 15.72ns -> clock freq: 63MHz
- 11 bit Carry-Select Adder: 14.74ns
Conclusion

We have:
- Demonstrated a fuzzy controller that’s both FAST and FLEXIBLE

Applications:
- Expert system:
 - FuzzyMD
 - Data Mining
- Real-time:
 - robot control
 - image processing
 - environment control