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Application Note BY NICK CAMILLERI AND CHRIS LOCKHARD

Summary

This Application Note describes XC4000 architectural features that can be exploited in high-performance
designs, and software techniques that improve placement, routing and timing. It also contains information
necessary for advanced design techniques, such as floor planning, locking down I/Os, and critical path
optimization.
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LCA Family

XC4000

Introduction

Designers sometimes assume that the Xilinx FPGA archi-
tecture is a gate-array-like sea-of-gates and that, conse-
quently, little or no architectural consideration is required
during design. This approach is valid and is supported by
XMAKE, the Xilinx fully-automated design procedure. It
can, however, lead to inefficient designs.

The Xilinx FPGA architecture is very regular and gate-
array-like, but it is not a simple sea-of-gates. An under-
standing of the architecture and the resources it provides
can make designs become more efficient in both speed and
density. This Application Note focuses on the features of
the XC4000 architecture and its supporting software that
improve design efficiency. It also describes advanced
design techniques that extract the maximum performance
from the architecture.

Some techniques described in this Application Note relate
specifically to XACT v1.42. In a subsequent version, XACT
5, Hard Macros will be replaced by Relationally Placed
Macros, and the operation of XACT Performance will
change significantly.

XC4000 Architectural Features

XC4000 CLB Overview
The XC4000 CLB is shown in Figure 1. Key features are the
three function generators and the two flip-flops. Unlike
previous LCA devices, the F and G function generators do
not share inputs, permitting them to operate totally inde-
pendently, if required. The H function generator combines
the F and G outputs with an additional H1 input.

The F-G-H combination can implement any function of five
inputs. In addition, some functions of more inputs can also
be implemented. Some functions of five inputs can be
implemented using just an F-H or G-H combination.

The two flip-flops can store the function-generator outputs
or a signal coming in on the DIN pin. If the H function
generator is not in use, the H1 input can pass through the
function generator and provide a second direct input to the
other flip-flop. Since separate pairs of output pins are
provided for the function generators and the flip-flops, the
F and G function generators and the two flip-flops can
operate independently.

Fast Carry Logic
In addition to implementing logic and providing storage, the
XC4000 CLB contains dedicated hardware to accelerate
the carry path of adders and counters, Figure 2. Using this
feature, adders and counters are very fast and efficient,
consuming a minimum number of CLBs.

While dedicated logic and interconnect are used to optimize
the carry path, function generators are used to form sums
from the operands and carries. In this way, two bits of
arithmetic (or one bit, if so desired) can be implemented in
each CLB. Since the dedicated carry logic can be config-
ured in approximately 40 different ways, CLBs can be
concatenated into a variety of arithmetic functions. The
carry propagates either up or down a column of CLBs.

The dedicated carry logic is accessible via hard macros.
Carry-logic hard macros are available in the Xilinx library, or
may be defined by the user with a program called HMGEN*.
The HMGEN package includes documentation which de-
scribes how to use both the HMGEN program and the
dedicated carry logic.

For additional information on the dedicated carry logic see
the Xilinx Application Notes Using the Dedicated Carry
Logic in the XC4000 (XAPP 013) and Estimating the
Performance of XC4000 Adders and Counters (XAPP 018).

XAPP 043.000
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Figure 1. XC4000 Configurable Logic Block

On-Chip RAM
The XC4000 on-chip RAM significantly reduces the cost of
data storage. Using this feature, up-to-64 bits of data can
stored in a single CLB that otherwise could only store two
bits in its flip-flops.

Any CLB can be configured as a RAM. In the RAM mode,
the F- and G-function-generator look-up tables become
writable, Figure 3. For a 16 x 2-bit RAM, the  F and G
function generators are used separately. For a 32 x 1-bit
RAM, they are combined in the H function generator.

The F- and G-input pins act as memory address lines, just
as they do in the non-RAM mode. Other CLB control pins,
however, are redefined. For a 16 x 2-bit RAM, DIN and H1
become the two data inputs, while in the 32 x 1-bit configu-
ration, DIN is the single data input, and D1 the fifth address
bit. In both cases, S/R is the Write Enable (WE) input.

In the 16 x 2-bit mode, read data is available at the F- and
G-function-generator outputs; in the 32 x 1-bit mode, it is

available at the H-function-generator output. Just as in the
non-RAM mode, these function-generator outputs drive the
X and Y output pins, or they can be registered in the flip-
flops.

Some non-RAM functionality remains when CLBs are con-
figured as RAM. In the 16 x 2-bit mode, the H function
generator can be used to implement any function of the two
RAM outputs.  In the 32 x 1-bit mode, both the write and the
read data can be captured in the flip-flops, since the flip-
flops have access to the RAM input data on the DIN pin.

The XC4000 RAM function is extremely fast compared to
monolithic SRAM devices that often have cycle times of
55 ns or longer. In those slower devices, 1 ns glitches in
control signals can be tolerated. This is not the case in the
XC4000 RAM, however, where cycle times are less than 10
ns. WE pulses as short as 1 ns are  easily recognized, and
good control-circuit design is essential.
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Figure 2. XC4000 Fast Carry Logic in Each CLB

Designing with the XC4000 SRAM is similar to designing
with very fast monolithic SRAMs (<25 ns cycle time). Many
factors, such as interconnect delays, that can safely be
ignored in slower monolithic SRAM designs become criti-
cal. For a discussion of  XC4000 RAM design, please refer
to the Xilinx Application Notes Using the XC4000 RAM
Capability (XAPP 031) and High-Speed RAM design in
XC4000 (XAPP 042).

3-State Buffers
To facilitate on-chip multiplexed busses, the XC4000 archi-
tecture includes Longlines that can be driven by three-state
buffers (TBUFs), Figure 4. Two TBUFs, located adjacent to
each CLB, drive the horizontal Longlines immediately above
and below the CLB.

The TBUF data inputs can easily be driven from the outputs
of the associated CLB, but can also come from elsewhere.
While any signal can be used to enable the TBUFs, if an
enable is routed on a vertical Longline, it can be used to
select a column-wise function to drive a horizontal bus.

Additional TBUFs are located near the Input/Output blocks
(IOBs) on the left- and right-hand edges of the array. These
permit IOBs to be included in a multiplexed bus, thus
possibly extending an external bi-directional bus onto the
chip.

TBUF Longlines can also be used to implement wired-AND
functions. Optional resistive pull-ups at each end of a
Longline cause it to go High while not being driven. En-
abling any TBUF that has a logic Low at its input will cause
the line to go Low, thus creating a wired-AND of the enable
signals.

Figure 3. XC4000 CLB RAM Mode

The TBUF Longlines are valuable routing resources, and
should be used sparingly. Multiplexers and AND-gates with
16 or fewer inputs can often be implemented more effi-
ciently using CLBs, thereby conserving Longline resources.
TBUFs are rarely appropriate for multiplexers with four or
fewer inputs.

Global Clock Buffers
Eight global nets run through XC4000 devices, potentially
reaching every CLB, Figure 5. These global nets are
optimized for the distribution of clocks and other time-
critical or high-fanout signals.

Four of the eight are primary global nets that offer minimum
delay and negligible skew. The other four are secondary
global nets. Due to heavier loading, the secondary global
nets introduce a slightly longer delay, about 1 ns more, and
some additional skew.

Primary and secondary global nets are driven by BUFGP
and BUFGS buffers, respectively, both of which can con-
nect directly to pads. The use of a global net is specified in
the schematic by using the appropriate buffer to drive the
desired signal. BUFGP and BUFGS symbols are in the
Xilinx library.

Switch matrices at the center of each column connect the
eight global buffers to four vertical lines used to distribute
global signals within the column. Figure 6 shows one of the
switch matrices. Each vertical line can be driven by only one
BUFGP, and each BUFGP drives a different vertical line.
The BUFGSs, on the other hand, can each drive any or all
vertical lines.

Consequently, BUFGSs are much more flexible in their
routing. This flexibility is particularly valuable when routing
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Figure 4. XC4000 TBUF Organization

non-clock global signals, since the vertical lines have
limited connections to non-clock CLB pins. Being able to
drive any, or even multiple vertical lines from a single buffer
is a tremendous advantage.

The routing of non-clock global signals also benefits by
using BUFGSs for clock distribution. A BUFGP would
constrain the clock routing to the same vertical line in every
column. With a BUFGS, however, any vertical line can be
used for the clock, possibly freeing a critical line for non-
clock routing. Whenever timing and skew requirements
permit, BUFGSs should be used for distributing global
signals.

The number of clocks in a system should be minimized.
Since only four clocks can be made available in a column
of CLBs,  a large number of clocks imposes considerable
constraints on CLB placement. In particular, gated clocks
should be avoided, unless absolutely necessary. In addi-
tion to consuming global nets, the gating logic introduces
uncontrolled clock skew and the potential for clock glitches,
both of which can cause a system to malfunction.

It is better to use a minimal number of clocks and disable the
flip-flops when clocking is not required. Clock-enable sig-
nals can often be routed on local interconnect or regular
Longlines, since they are not skew-critical.

Wide Decoders
Sometimes it is necessary to decode specific values from
a large number of bits, e.g., when decoding a specific

microprocessor memory address. To facilitate such decod-
ing, dedicated wide-decoder functions are provided along
each edge of XC4000 devices, Figure 7. These wide
decoders are separate from the CLBs, and do not consume
CLB resources.

SECONDARY  
GLOBAL NETS

PRIMARY   
GLOBAL NETS

Figure 5. XC4000 Global Net Distribution
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Figure 6. XC4000 Global Net Interconnection Matrix

On each edge of the chip, there are four decoders that share
a common set of inputs. Potentially, there are three decoder
inputs for each row or column of CLBs, one each from two
adjacent IOBs and one from local interconnect. While the
decoders share inputs, it is possible to decode different sets
of bits on the same edge, since all inputs need not be used
in every decoder. It is thus even possible to decode disjoint
sets of bits on the same edge.

An XC4000, for example, has a 20 x 20 array of CLBs, and
each edge has four wide decoders sharing 60 inputs. The
decoders on one edge could decode a specific byte ad-
dress and a specific word address from a 32-bit micropro-
cessor bus, and, at the same time, decode two specific
values from an internal 16-bit bus.

The wide decoders are implemented as wired-AND-gates.
Resistive pull-ups at each end cause the output to go High

when all inputs meet their specified condition. Any input to
the decoder that fails to meet its specified condition (High
or Low) causes the output to be pulled Low.

Each decoder can be split at its center to make two half-
sized decoders. There are, therefore, up to 32 decoders
available. Dedicated decoders should only be used to
decode ten or more inputs, since nine or fewer inputs can
be decoded more efficiently using a single CLB.

Note that XC4000A devices have two wide decoders per
edge, instead of the four found in non-A devices. The use
of wide decoders is specified in the schematic by using the
symbols DECODE4, DECODE 8, etc.

IOB Registers
The latches and registers located in the IOBs are an often-
overlooked resource, Figure 8. They are ideal for synchro-
nizing input and output signals, and can also provide
additional storage for internal signals. Using IOB registers
can significantly reduce CLB flip-flop utilization, and can
also reduce routing congestion.

The use of IOB registers or latches is specified during
design entry. They are represented by the schematic sym-
bols OUTFF, INFF and INLAT.

Master Set/Reset.
XC4000 devices contain a global-set/reset (GSR) line.
When GSR is asserted, every flip-flop in the LCA device is
simultaneously set or reset. No general-purpose routing
resources are consumed, however, since the GSR has its
own dedicated routing. Setting or resetting all the flip-flops
in this way is far more efficient that using the RD pins on
individual CLBs.

Each flip-flop is either set or reset according to an attribute
attached to it in the schematic. The default value for the

Figure 7 . XC4000 Wide Decoder
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Figure 9. Schematic Symbols for Global Set/Reset
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attribute is INIT=R, which causes GSR to reset the flip-flop.
Changing the attribute to INIT=S causes the flip-flop to be
set. The INIT attribute also determines the flip-flop state
immediately after power-up.

To use GSR, the STARTUP primitive should be included in
the schematic, and a pad connected to its GSR pin, Figure 9.
Any user-I/O pin may be used, and, if necessary,  the pad
can be locked to a specific device pin, just like any other
pad. If possible, however, PPR should be allowed to
choose the location, since any unnecessary constraint
reduces the freedom PPR has to implement the design,
and potentially degrades the result.

Boundary-Scan Circuitry
In production, boards must be tested to assure the integrity
of both the components and the interconnections. How-
ever, as integrated circuits become more complex and
multi-layer PC boards become more dense, it is increas-
ingly difficult to test assembled boards.

XC4000 helps solve this problem by providing boundary-
scan test facilities. All user-I/O pins are fully testable, and
the test protocols are compatible with IEEE Std 1149.1.
Boundary scan does not detract from the capacity or
capability of XC4000 devices, since it only uses dedicated
logic.

External testing (EXTEST) is fully supported, and there is
limited support for internal self-test. For more information
on boundary scan in XC4000 devices, see the Xilinx
Application Note Boundary Scan in XC4000 Devices
(XAPP 017).

Advanced Design Guidelines

Design Partitioning
The first phase of the design implementation process is
partitioning. LCA devices emulate logic using look-up tables,
and it is necessary to divide the schematic into groups of
gates that will fit into individual look-up tables. Inefficient
partitioning can both decrease the performance of a design
and cause it to use more CLBs than necessary.

Inefficient partitioning can have two causes. First, the logic
may have been drawn in such a way that convenient
partitioning boundaries do not exist. PPR does not split
large gates into parts that can be absorbed into unused

FunctGen
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X5261(b)

FunctGen

FunctGen

FunctGen

(a)

Figure 10. Improving Partitioning by Gate Decomposition

Figure 11. Improving Logic Partitioning by Gate
Duplication

portions of surrounding function generators. Instead, it
preserves gate boundary and may waste  function genera-
tors. Figure 10 shows the same logic drawn in two ways;
one way requires a cascade of three function generators,
while the other way requires only two.

If a gate has a fanout greater than one, the partitioner
always assigns the output of this gate to be the output of a
function generator. PPR will not replicate the gate, even if
the copies can be absorbed into other function generators.
Figure 11 shows a second example where drawing the logic
differently results in fewer CLBs and fewer levels of CLBs.
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Redrawing critical portions of an existing design can often
improve its performance. It is much better, however, to draw
the schematic initially in a way that guarantees a convenient
partition. This is not as difficult as it might seem, and does
not require gate-by-gate analysis or intimate knowledge of
the partitioning algorithms.

Typically, the design process starts with a high-level block
diagram, and progresses hierarchically through a series of
increasingly detailed block diagrams as blocks are decom-
posed into smaller blocks. Eventually, the lowest-level
blocks are translated into gates to create the logic diagram.
The key to convenient partitioning is to structure the lowest
level of blocks in such a way that it matches the XC4000
architecture.

Figure 12 shows four block structures that can conveniently
be implemented in XC4000 devices. The four-input blocks
correspond to F or G function generators, and the three-
input blocks correspond to H function generators. The five-
input block is a special case of the F-G-H combination.
These blocks are characterized only by their number of
inputs. Since a look-up table can emulate any function of its
inputs, it is guaranteed that the logic required by each block
will fit into a function generator, thus ensuring that a
convenient partitioning exists.

This technique also facilitates performance estimates
early in the implementation process. Each block in the
block diagram corresponds to a delay specified in the
XC4000 data sheet. With a simple routing allowance
(add  50% to 100% of TILO per route), it is possible to
estimate design feasibility. If necessary, structural de-

sign changes can be made before entering the sche-
matic. For more advice on performance estimation, see
to the Xilinx Application Note LCA Speed Estimation:
Asking the Right Question (XAPP 011).

The second cause of apparent inefficient partitioning is the
trade-off that PPR makes between area and speed. It is not
possible for the built-in rule to match the requirements of
every design. Partitioning can, however, be easily specified
in the schematic using FMAPs and HMAPs, Figure 13.

Figure 13. Using FMAPs and HMAPs
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If an existing design is being optimized, isolated FMAPs
and HMAPs can be added to improve critical paths. How-
ever, if the design technique described above is used,
FMAPs and HMAPs can be included for the entire design  to
guarantee the expected partitioning. Little additional work is
required since the FMAPs and HMAPs exactly match the
blocks in the lowest-level block diagram.

Pipelining
Even with optimal partitioning, every logic function has a
minimum achievable delay. If this minimum delay is too
long, the function must be broken into smaller functions
using pipelining.

Suppose a design needs to run at 20 MHz, and its worst-
case Clock-to-Set-up delay is as shown in Table 1. Clearly,
it does not meet its objective, and will only run up to 10 MHz.
Of the 99.4 ns delay, 54.5 ns is attributable to block delays,
and cannot be reduced by placement or routing improve-
ments. In the unlikely event that all the routing delays could
be reduced to the absolute minimum (~1.3 ns in XC4000-
5), the worst-case Clock-to-Set-up delay of 66.2 ns would
not still permit operation above 15 MHz. Using a  more
realistic routing estimate (50% to 100% of TILO per route),
the design might run at only 10 – 13 MHz.

To achieve 20 MHz, there are four choices: use a faster
device, improve the partitioning, restructure the logic to
make the critical path less deep, or add a pipeline stage to
break the function in two. While none to these may be
possible in a particular case, pipelining is often the easiest
choice.

In an LCA device, every function generator has a flip-flop at
its output. If this flip-flop is not being used for other pur-
poses, it can be inserted into the logic path with minimal
layout changes. There are difficulties, however. The la-
tency introduced by pipeline flip-flops must be matched
elsewhere both in data and control signals.

In the example, a pipeline flip-flop at the output of BLOCK5
would be most effective. The worst-case Clock-to-Set-up
for the two halves of the function is 52.9 ns. This still does
not meet the 20 MHz target, but is close enough to expect
that routing changes could complete the job.

Of course, it is much better to anticipate such problems than
solve them when the design is almost complete. The design
technique discussed in the previous section provides delay
estimates that are more than adequate for the detection of
gross problems. Pipelining can then be built into the design,
and any timing complications handled much more easily.

Floorplanning
Structured designs with a datapath-like organization and
fixed data width can benefit greatly from simple floorplanning.
Designs that use multiplexed busses are also candidates.
In this section, floorplanning is discussed with respect to the
absolute placement of logic functions within an LCA device.
Relative placement control is discussed afterwards, in the
next section on Hard Macros.

FPGA floorplanning is similar to planning a schematic
diagram; an organization that permits gates to be con-
nected conveniently on the schematic usually permits them
to be connected conveniently in the FPGA. It must be
remembered, however, that busses have to run though
logic, not around it.

In most cases, the design itself suggests the floor plan. To
minimize routing, bits with the same weight should be
aligned in rows, and functions should be organized for the
best data flow. Alignment of bits in rows is particularly
important if a multiplexed bus is required, since horizontal
TBUF Longlines must used for the bus.

If no obvious structure can be exploited, Floorplanning
should be avoided. Arbitrary or poorly chosen placement
constraints can hinder PPR, and lead to a worse result than
if PPR were to run unconstrained.

In many instances of floorplanning, it is only necessary to
consider the relative position of bits and functions. When
planning busses, however, the absolute location can also
be significant.

As described earlier, there are two TBUF Longlines per
column of CLBs. Consequently, the widest bus that can be
accommodated has twice as many bits as there are CLB
rows in the array. This assumes that the busses require full-
length Longlines. If a bus can be implemented using half-
length Longlines, the center splitter can be opened, to
accommodate twice as many bits.

Table 1. Worst-Case Clock-to-Set-Up Delay

Logical Path                                             Delay Cumulative
Source clock net : “CLK10MHZ” (Rising edge)
From:BlkBLOCK1 CLOCK to CLB_R13C12.YQ:3.0 ns (3.0 ns)
Thru: Net NET1 to CLB_R13C11.C4 : 3.8 ns (6.8 ns)
Thru: Blk BLOCK2 to CLB_R13C11.XQ : 3.5 ns (10.3 ns)
Thru: Net NET2 to CLB_R23C11.F3 : 3.2 ns (13.5 ns)
Thru: Blk BLOCK3 to CLB_R23C11.X : 4.5 ns (18.0 ns)
Thru: Net NET31 to CLB_R18C9.C2 : 13.3 ns (31.3 ns)
Thru: Blk BLOCK4 to CLB_R18C9.XQ : 8.0 ns (39.3 ns)
Thru: Net NET4 to CLB_R13C10.F1 : 3.2 ns (42.5 ns)
Thru: Blk BLOCK5 to CLB_R13C10.Y : 7.0 ns (49.5 ns)
Thru: Net NET5 to CLB_R2C11.C4 : 8.7 ns (58.2 ns)
Thru: Blk BLOCK6 to CLB_R2C11.YQ : 8.0 ns (66.2 ns)
Thru: Net NET6 to CLB_R2C9.F3 :  3.7 ns (69.9 ns)
Thru: Blk BLOCK7 to CLB_R2C9.X : 4.5 ns (74.4 ns)
Thru: Net NET7 to CLB_R3C10.F4 : 1.6 ns (75.9 ns)
Thru: Blk BLOCK8 to CLB_R3C10.X : 4.5 ns (80.4 ns)
Thru: Net NET8 to CLB_R10C10.F3 : 4.8 ns (85.3 ns)
Thru: Blk BLOCK9 to CLB_R10C10.Y : 7.0 ns (92.3 ns)
Thru: Net NET9 to CLB_R9C11.G1 : 2.6 ns (94.9 ns)
To: FF Setup (D), Blk BLOCK10 : 4.5 ns (99.4 ns)
Target FFX drives output net “NET10”

Dest clock net : “CLK10MHZ” (Rising edge)
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Even if there are enough CLB rows to use full-length
Longlines, it is good practice to use half-length lines wher-
ever possible. The shorter lines have less capacitance and
are, therefore, faster. In addition, the unused Longline
halves are a valuable resource that can be used for other
purposes.

Vertical Longlines run across the TBUF Longlines, and are
often used for control signals. These vertical lines are also
splittable, and, again, it is best to use half-length lines
wherever possible. Floor plans should try to confine data
paths to a single quadrant of the array.

While it is possible to use both halves of a TBUF Longline
for two bits of a bus, this situation is far from ideal. Control
signals must be duplicated in two columns since the Longline
halves do not overlap. Functions like arithmetic carry that
run across the bus are also complicated if they split be-
tween the two halves of the array. It is much better to use
a device that is large enough to contain the full data path in
one half of the array.

There is an IOB at each end of every TBUF Longline, and
these IOBs have good connectivity to the Longlines. Con-
sequently, I/O pins that need to connect to internal busses
should be placed on the left or right sides of the chip, rather
than on the top or bottom edges, where they lead to
unnecessary routing congestion.

If signals are constrained to specific pins, the bit order of the
pins should match the bit order of the bus. Again, routing
congestion will result if the bit orders differ. Xilinx Hard
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Figure 15. Efficient Placement in an XC4003

Macros have their bits in order with the MSB at the top, and
if library macros are to be used, this standard should be
adopted.

Consider the example shown in Figure 14. Two 8-bit
registers, A[7:0] and B[7:0], and two 8-bit counters, C[7:0]
and D[7:0], are multiplexed onto an 8-bit bidirectional bus,
X[7:0], and routed to I/O pins. The registers each take four
CLBs and should be arranged in columns. The soft macro
counters also take four CLBs each. The part is an XC4003
with a 10 x 10 array of CLBs. Each quadrant is, therefore,
a 5 x 5 array that can contain the logic.

Figure 15 shows a good placement that does not waste
Longline resources. This placement constrains the bus and
its multiplexed functions to one quadrant. It, therefore, only
needs one set of horizontal and vertical Longlines. The bus
I/Os are conveniently located to the left-hand end of the
TBUF Longlines that drive them. A second choice for I/O
placement would be at the right-hand end of the TBUF
Longlines. This would, however, require the use of full-
length TBUF Longlines.

Figure 16 shows an example of poor placement. It uses
both halves of the horizontal Longlines to construct the 3-
state bus, and additionally, might have to use both halves
of the vertical Longlines to route the enable signals to the
TBUFs. When the bus I/Os are located on the top or bottom
of the graph  (X6 and X7), routing them is difficult. X0-5 are
not aligned with the bus, and require extra routing re-
sources. This implementation would be slower than the
previous one and consume more resources.
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and an additional function generator, outside of the Hard
Macro, might be necessary  just to implement the inverter.

The third factor is pin-swappability. PPR often swaps func-
tion generator pins to improve routability. However, when a
Hard Macro includes a carry-logic function, all the pins are
locked on CLBs that use carry logic. Since PPR can no
longer swap pins to improve routability, pins must be
carefully selected when the macro is created.

Hard Macros are created from an unrouted LCA design that
contains just the desired CLBs. The .lca file is converted to
a Hard Macro using the program HMGEN. Also available
from the Xilinx Technical Hotline is a Hard Macro Style
Guide document that describes how to create macros that
are compatible with those provided in the Xilinx library.

Locking Down I/Os
PPR permits the user to lock I/O signals to specific pins. Pin
locking is sometimes necessary to ease congestion on the
printed-circuit board, match the pin-out of an existing socket,
or simply to allow printed-circuit-board design to start
before the FPGA design is complete. Like any other con-
straint, however, pin locking limits PPR, potentially reduc-
ing performance or even preventing the design from routing
completely.

Any locking of I/Os should be done as late as possible in the
design process. If possible, 75 - 80% of the design should
be completed before I/Os are locked. At this stage, the
preferred pin locations for the FPGA design will be known,
and a workable compromise between the needs of the
FPGA and the needs of the printed-circuit board can be
reached.

While it might be convenient to lock pins earlier, there is a
danger that the pin constraints will prevent the FPGA
design from completing successfully. When this occurs, the
only solution is to remove some of the pin constraints, thus
invalidating any printed-circuit-board design that has al-
ready been done.

Software Techniques

XACT Performance
With XACT Performance, the designer can specify timing
objectives in XC4000 designs. These objectives are used
by PPR primarily to optimize its use of routing resources. If
a critical net needs a particular routing resource that has
already been allocated to a non-critical net, the timing-
driven router can choose to re-route the non-critical net,
thus making the desired resource available. Timing objec-
tives permit PPR to make such trade-offs intelligently, by
telling it which nets are critical and how much freedom it has
to slow non-critical nets.

XACT Performance does:

•  Provide easily understood control of critical routing

•  Allow PPR more freedom in critical areas

X3264
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Figure 16. Inefficient Placement in an XC4003

Hard Macros
In the previous section, portions of the design were as-
signed fixed locations in the CLB array. If these fixed
locations are chosen poorly,  it can be more difficult for PPR
to complete the design. There may, for instance, be many
signals that must connect to the top of logic that is placed
near the top of the array, thereby forcing PPR to generate
the signals undesirably far from their destination.

This complication can be removed by creating Hard Mac-
ros. Hard Macros let the designer specify the placement of
critical logic elements relative to each other, while allowing
PPR the freedom to place the group where it is most
convenient for the completion of the design. Unless specific
I/O or Longline resources are needed, relative placement
provides all the benefits of absolute placement without
over-constraining PPR.

There are, however, factors that must be considered while
creating Hard Macros. Firstly, all Hard Macros are rectan-
gular; non-rectangular groups of CLBs convert to rectangu-
lar macros large enough to contain the original CLB group.
In the process, empty CLBs are added that are not available
to PPR, and will, therefore, remain unused in the final
design. Holes in Hard Macros also remain unused. Leaving
too many CLBs unused will cause a design to outgrow a
device in which it would otherwise fit.

Secondly, the function generators in Hard Macros are
closed, that is, no additional logic can be added into them.
With a regular macro, an inverter driving a control pin will be
absorbed into the macro, changing all the function genera-
tors to which the control pin connects but requiring no
additional resources. With a Hard Macro, this is not possible
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•  Compensate for logic depth wherever possible

•  Give early warning if timing expectations are unrealistic

XACT Performance does not:

•  Perform delay matching

•  Permit arbitrarily deep logic

•  Guarantee that timing specifications will be met

This section provides hints and suggests options that can
be used with XACT Performance. For a full description of
XACT Performance that defines the terminology used in
this section, see the XACT Development System Refer-
ence Guide.

Effective use of XACT Performance requires an under-
standing of two fundamental concepts, the Forward Tracing
mechanism, by which net attributes are applied to paths,
and the arbitration mechanism used when multiple at-
tributes apply to the same path.

Forward Tracing:  Although TIMESPEC attributes are ap-
plied to nets, they specify path delays between flip-flops, or
between flip-flops and I/O. Each TIMESPEC applies to a
group of flip-flops that is determined by tracing forward from
the net with the TIMESPEC attribute. The TIMESPEC is
applied to any flip-flop with an input that can be reached
from the TIMESPEC net either directly, or through any
depth of combinatorial logic.

Multiple Attributes:  In many cases, more than one
TIMESPEC will trace forward to the same flip-flop. Such
conflicts are resolved according to the pin type on which the
TIMESPEC arrives at the flip-flop. The arrival pin priority is
shown in Table 2. By selecting an appropriate net for the
TIMESPEC attribute, TIMESPEC priority can be set in the
schematic. If more than one TIMESPEC has the same
priority, the fastest TIMESPEC wins. Separate arbitrations
occur for C2S, P2S and C2P specifications.

Once flip-flops have been assigned TIMESPECs,
TIMESPECs can be assigned to paths. The TIMESPEC for
a path is the faster of the TIMESPECs at its source and

destination. If either the source or destination flip-flop does
not have a TIMESPEC, the path does not have a TIMESPEC.
This situation can only occur if default TIMESPECs have
been set to IGNORE.

As stated above, XACT Performance operates primarily by
allocating routing resources according to a net criticality.
The simplest tactic that gives critical nets maximum access
to routing resources is to minimize the criticality of non-
critical nets. PPR, however, calculates default specifica-
tions for paths with no user TIMESPECs, and sometimes
these defaults are unnecessarily demanding.  Critical paths
can benefit if the objectives of non-critical paths are re-
duced to match the design requirement.

In light of the “fastest wins” rule, the unattached attributes,
DC2S, DP2S and DC2P, should be set to the slowest
requirement for each path type. Other faster paths can then
be specified explicitly. Alternatively, if there are “don’t care”
paths, the unattached attributes can be set to IGNORE.

Another way PPR creates default specifications is by modi-
fying a flip-flop C2S specification to provide missing P2S or
C2P specifications. Again, these defaults can be unneces-
sarily demanding. This problem is solved by providing the
missing specifications, or disabling the default mechanism
by setting EXTEND_C2S = FALSE, as described in the
PPR Options section.

When PPR creates default specifications for a design, it
does so by estimating a typical path delay based on logic
depth in the design. The same estimate can be used in any
TIMESPEC by setting the delay to AUTO, rather than a
number of nanoseconds or megahertz.

AUTO is beneficial when a realistic estimate of achievable
delay is not available. Overly loose specifications lead to
unnecessarily slow results, since PPR stops improving a
design once it has met the specified objectives. Impossibly
short delay specifications are equally unproductive. As the
optimizer tries to perform the impossible task, it will often
create excessively long path delays, and overall, the design
will be slower that one using AUTO delays.

Table 2.

Specification
Level Specification Method on a Schematic Comments

1 Unattached attribute of type DP2S, DC2S or DC2P Applies to all flip-flops in the design. Can be overridden
(the leading D is used to indicate a default attribute.) by a Level 2 or Level 3 specification.

2 TS attributes of type C2S, P2S, or C2P plus Applies to all flip-flops whose clock pins are reached by
corresponding flag attached to a net that can be the forward tracing mechanism. Can be overridden by a
traced forward to flip-flop clock pins. Level 3 specification.

3 TS attribute of type C2S, P2S, or C2P plus corres- Applies to all flip-flops whose non-clock pins are reached
ponding TS flag attached to a net that can be traced by the forward tracing mechanism. Overrides a Level 1 or
forward to flip-flop input pins other than clock pins. Level 2 specification.
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The number of warnings is increased if the same TIMESPEC
is applied to many nets and several of them trace to a single
flip-flop. Each copy that arrives at the flip-flop is treated as
a separate specification, thus increasing the number of
specifications that must be eliminated and the number of
warnings that are created. Careful placement of TIMESPECs
will minimize the number of warning messages.

There are times, however, when P2S or C2P specifications
can be completely overridden or ignored. In Figure 17, for
example, all four TIMESPECs trace to the flip-flop D-pin,
and the fastest, TS02, wins. TS01, TS03 and TS04 are
overridden. Figure 18 shows an even worse example.
Again, TS02 wins, but it is limited to paths from pads with
name that start with “B” (the wild-card group B*). Conse-
quently, the paths from A0, C2 and D3 are treated as
unspecified, in spite of their TIMESPECs.

The solution is shown in Figure 19. When multiple P2S
TIMESPECs are placed on a single net and they are
qualified to operate with separate pads, all of the specifica-
tions are retained if the net wins in the arbitration. All
specifications are then used by XACT Performance, each
specifying the paths from the group of pads for which it is
qualified.

In the example, there is only one net with TIMESPECs
attached, and so it must win. All four specifications are
retained since they come from the winning net. TS01 is
used for A0, since it is qualified for the A* group. Similarly,
TS02 is used for B1 and TS03 is used for C2. TS04 is used
for all pads not in the A*, B* or C* groups. In this case, only
D3 remains to be controlled by TS04. To simplify the
schematic, the four TIMESPECs could be linked into a
single specification, TS05, and this single TIMESPEC
attached to the net in place of the other four.

When creating custom hard macros for use with XACT
Performance, following these guidelines will help PPR
analyze the design more effectively.

•  If there is a clock pin on the Hard Macro, make certain
that it is named C. This allows PPR to recognize the
presence of flip-flops in the macro. If there is no clock
pin on the hard macro, no other pin should be named

Whenever AUTO is invoked in a TIMESPEC on a net, a
typical path delay is calculated based on only the logic to
which the particular TIMESPEC applies. Each automatic
TIMESPEC creates a different specification for the logic it
controls, and consequently,  multiple AUTOs lead to differ-
ent speed objectives for different parts of the design.
Exploiting these differences can benefit designs containing
both simple logic that must be fast, and complex logic that
can be slower.

Automatic TIMESPECs should placed in the design such
that each TIMESPEC controls logic with a particular com-
plexity and speed requirement. This arrangement causes
the objectives for simple logic to be faster than those for
complex logic, as desired. A single automatic TIMESPEC
for the whole design, would set the objective according to
the most complex logic, and no attempt would be made to
make the simple logic faster.

A frequent cause for concern is the XACT Performance
warning message [pa:SPEC_DOES_NOT_APPLY]. This
does not necessarily mean that a specification was wrongly
entered or has been ignored by XACT. As stated above,
multiple TIMESPECs are often traced to a single flip-flop,
where only one can be applied. After eliminating the redun-
dant specifications, the arbiter documents its activity by
issuing the warning.
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C.

•  Avoid creating hard macros with more than one clock,
since PPR can recognize only one clock input per hard
macro.

•  Avoid combining clocked and non-clocked outputs on the
same hard macro. When PPR detects a clock pin on a
hard macro, it assumes that all outputs of hard macro are
sourced by flip-flops.

Prior to PPR v1.31, two problems existed when using Hard
Macros with XACT Performance. First, PPR was unable to
analyze Hard-Macro timing adequately during the partition-
ing and placement phases of the implementation. This
would result in early PPR predictions that timing require-
ments could be met, that were later proven untrue during
routing. Second, analysis of false paths through carry logic
would result in false notification that timing requirements
could not be met.

Both problems have been resolved in PPR v1.31. However,
there are still some difference between PPR and XDELAY
timing analyses. These are described in the section on
XDELAY.

When analyzing clock-to-set-up paths, PPR ignores clock
skew. This is appropriate if clocks are distributed on global
nets using BUFGP or BUFGS buffers. If clocks are routed
on local nets, however, the skew can be significant, and
must be anticipated when setting TIMESPECs.

To ensure correct operation, all completed designs should
be carefully analyzed using XDELAY, and this is especially
true when clock skew may be present. Since the -Analyze
option of XDELAY does not consider clock skew either, a
separate clock analysis must be performed. If PPR and
XDELAY timing results differ, the XDELAY results should
be used.

PPR Options
As its name suggests, PPR performs three principal func-
tions: partitioning, placement and routing. In the partitioning
phase, schematic gates are collected into function genera-
tor-sized groups. These groups and any associated flip-
flops are then assigned to specific CLBs in the placement
phase. First, an initial placement is created, typically using
a Mincut algorithm. This placement is then improved by
analyzing connection distances. Routing is an iterative
process where early connections are often re-routed in
order to free critical resources for nets that are routed later.

This section describes the more important PPR options and
their recommended settings. At the end of the section, two

examples of PPR settings are given.

DC2P = {(number), "auto", "ignore"}
DC2S = {(number), "auto", "ignore"}
DP2S = {(number), "auto", "ignore"}
DP2P = {(number), "auto", "ignore"}

Entry Method:  command line, paramfile or /pprdx2x in
XACTINIT.DAT file

The parameters are character strings that represent XACT
Performance Default-Clock-to-Pad (DC2P), Default-Clock-
to-Set-up (DC2S), Default-Pad-to-Set-up (DP2S) and De-
fault-Pad-to-Pad (DP2P) specifications. The path-delay
objectives may be specified in tenths of nanoseconds (0.1
to 3000.0), "auto" for individual automatic setting by PPR,
or "ignore" to request timing be ignored for particular path
types (except where explicit specifications are defined in
the schematic).

For example, if there are no explicit TIMESPECs on P2P
paths, setting DP2P to "ignore" will cause PPR to ignore all
P2P paths in the design. If the design has no P2P require-
ments, this setting helps PPR meet the TIMESPEC require-
ments that are present. If DP2P is set to "ignore," explicit
TIMESPECs that deal with P2P paths are honored, but only
paths with P2P TIMESPECs are optimized; the delay could
increase on other important paths. The default setting for
these parameters is "auto".

Recommended setting:

ignore if unconcerned with unspecified paths.
(number) if trying to reach a specific delay.
auto to let PPR decide a reasonable delay

to try for.

extend_c2s={True, False}

Entry Method: command line, paramfile or /ppr/extend_c2s
in XACTINIT.DAT file

When the variable is True, PPR automatically generates a
P2S and C2P TIMESPEC for each C2S TIMESPEC without
a corresponding P2S or C2P.  The specifications are
assigned reasonable values. To ignore P2S and C2P paths
unless they have explicit TIMESPECs, set the variable to
False. PPR can then concentrate on the C2S TIMESPECs,
without optimizing P2S and C2P paths unnecessarily. The
default setting is True.

Recommended setting:

False To avoid unnecessarily demanding.
automatic specifications.

True To extend C2S specifications to P2S
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and C2P paths.

ripup_allowance = (number)

Entry Method:  /ppr/mxmazer/ripup_allowance = (number)
in XACTINIT.DAT file

This option tells the router how many regressions to permit
in the rip-up and retry process. Higher allowances increase
the probability that a design will complete successfully,
since the router tries longer.  For example, if the router is
close to its allowance and finds a minimum in the number
of unroutes, it may stop. With a larger allowance, it might
continue, and achieve a better result, although the number
of unroutes may increase temporarily.

When running PPR multiple times to obtain the best place-
ment, set the ripup_allowance low. Otherwise PPR can
take a long time to produce a design that does not com-
pletely route anyhow due to a poor placement. By setting
the parameter low, PPR can generate a result more quickly,
and can go on to the next iteration of the loop.

If a design has hundreds of unroutes with a small
ripup_allowance, increasing the allowance will probably
not make it route completely. If the number of unroutes is 0-
30, however, re-running PPR with a higher ripup_allowance
will probably completely route the design. The default for
this parameter is 2.

Recommended setting:

-1 Rips up and reroutes exhaustively, use
if design will route  or comes close to
routing.

5-10 Use if unsure whether a design will
route, or when running PPR loops.

improvecount = (number)

Entry Method:  command line/paramfile

This option sets the number of iterations PPR makes
to improve placement. The higher the number, the longer
PPR attempts to improve the placement. If the place-
ment ceases to improve, PPR stops with the best result
it has obtained, regardless of the improvecount setting.
Default = 3.

Recommended setting:

20 If runtime is not a factor.
6 - 8 Normally gives good results.

seeds_to_try = (number)

Entry Method: command line/paramfile

This option defines how many different seeds PPR tries in
the placement improvement phase. For each of the speci-
fied number of seeds, PPR  makes an initial placement and
runs one improvement iteration. After this, the placement
algorithm continues for (improvecount-1) iterations starting
with the result that had the best score. Default = 1.

Recommended setting:

10 If runtime is not a factor.

3 - 4 Normally gives good results.

mincut_passes = (number)

Entry Method:  command line/paramfile

This option sets the maximum improvement passes per
partitioning attempt. Partitioning stops earlier if any pass
shows no improvement. Default = 12.

Recommended setting:

20 If runtime is not a factor.
12 Reasonable value.

mincut_method = (number)

Entry Method:  command line/paramfile

This variable selects the algorithm used during initial place-
ment. The legal values are 0-3, and the default is method 3,
which has proven to be best overall. On particular designs,
however, methods 0-2 may yield better results. These other
methods are most useful with designs that have low I/O
utilization and/or large differences between flip-flop and
function-generator utilization (check the PPR.LOG file for
usage percentages).

Use these methods when placement achieved by method 3
is inadequate. There is no guarantee that the placement will
improve, but a little experimentation can be very worthwhile.
Default = 3.

Recommended setting:

3 Factory-tuned to normally yield good
results.

0,1,2 Use experimentally to improve
placement.

mincut_tries = (number)

Entry Method:  command line/paramfile

This option sets the maximum number of initial configura-
tions per partitioning step. While constructing a good initial
partition, and improving upon it, a number of attempts are
made at each partitioning step. The best result from these
attempts is used in the design. Default = 2.

Recommended setting:

10 If runtime is not a factor.
2 For reasonable quality.

justflatten = (True, False)

Entry Method:  command line/paramfile

When this option is set to True, the design is simply flattened
into an .LCA file; the design is neither placed nor routed.
Hard Macros, if they exist, are merged into the design.
Using this option, a design is quickly translated into an .LCA
file for back-annotation and unit delay simulation. This is
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only necessary when there are hard macros in the design,
and unit-delay simulation is required. Default is False.

Recommendations
The following sets of PPR options are recommended. For
better results than are given by the default settings at the
expense of a slightly longer run-time, use these values.

On the command line or in the paramfile:

improvecount = 7
seeds_to_try = 3
extend_c2s = False
DC2P = ignore (if not concerned
DP2S = ignore with unspecified
DP2P = ignore paths.)

In the XACTINIT.DAT file:

/ppr/mxmazer/ripup_allowance = 8

For results that are potentially much better than those given
by the default settings but with a much longer runtime, use
the following values.

On the command line or in the paramfile:

improvecount = 20
seeds_to_try = 10
extend_c2s = False
mincut_passes = 20
mincut_tries = 10
DC2P = ignore (if not concerned
DP2S = ignore with unspecified
DP2P = ignore paths.)

In XACTINIT.DAT file:

ppr/mxmazer/ripup_allowance = -1

The XDELAY Static Timing Analyzer
XDELAY provides static timing analysis of Xilinx FPGA
designs. It analyzes all logic paths through a design, and
produces a report that can be automatically analyzed for
worst-case performance, viewed on-line, or stored as a file.
XDELAY is documented in the XACT Development System
Reference Guide.

Since, the XDELAY report for a single path can require
many lines of text, and large designs can contain thousands
of paths, XDELAY report files can be very large, sometimes
occupying several megabytes of disk space. The size of
these reports can be reduced significantly by using the
filters provided.

Reports can be restricted to a single path type, clock-to-set-

up, for example, eliminating the reports on path types that
are of no interest. For a worst-case-path analysis, setting
the Delaygreater variable can eliminate paths that are too
fast to be relevant. Localized analysis can be performed
using the From, To or Ignorenet filters to limit the scope of
the search.

PPR also provides static timing analysis as a part of its
report, and sometimes there are differences between
XDELAY and PPR timing results. These difference arise
either because PPR does not trace certain paths, or be-
cause is analyzes some delays incorrectly.

XDELAY is the definitive Xilinx-FPGA timing analyzer,
and its results should have more authority than those
from any other source. XDELAY analysis should be
part of the design process for all designs.

The following situations can result in PPR tracing paths
differently than XDELAY.

• PPR does not trace through the asynchronous path from
a reset-direct or set-direct pin to a flip-flop output. By
default, however, XDELAY traces through this asynchro-
nous path. The XDELAY option Flagblk
CLB_Disable_SR_Q disables this tracing. See the item
PPR v1.30: Asynchronous Set/Reset Inputs Treated as
Path Endpoints in the release notes for more information.

• PPR treats RAM elements as combinatorial logic and
continues tracing to the next clocked element or I/O pin.
See the item PPR V1.30: RAM Elements are NOT treated
as Path Endpoints in the release notes for more informa-
tion.

• PPR does not trace through bi-directional IOBs as
XDELAY sometimes does. See the item  XDELAY v4.30:
Flagblk IOB_Disable_O_I and IOB_Disable_T_I Ex-
plained in the release notes for more information.

The situations that causes PPR to analyze delays incor-
rectly are as follows.

• PPR always uses TIO1 as the delay through a TBUF. TIO1

is the delay from the TBUF I-pin to the output. Conse-
quently, the delay from the T-pin of the TBUF will be
incorrectly assigned the TIO1 delay. In some cases, TIO1 is
less than the correct  delay. WAND and WORAND
elements are implemented with TBUFs, and are, there-
fore, also affected by this problem.

• If a BUFGP is sourced by internal logic, PPR must route
that signal out through the dedicated IOB and back into
the BUFGP input. In computing the delay of this path,
PPR assumes that the output driver is configured for the
FAST slew-rate, which is usually not the case. Thus, the
delay may under-reported.

• Small discrepancies, typically less than 1 ns, appear in
various places due to modeling differences between PPR
and XDELAY/LCA2XNF.


