Syllabus

1 Course Description

This course is a fun, hands-on introduction to the key concepts of electrical / mechanical / computational systems. Each student will use a small mobile robot to learn about block diagrams, abstraction and modularity, energy storage and conversation, feedback and control, digital communications, and software design. The course will conclude with a multi-robot final design project. This class is for Freshman only. The course website is:

http://www.clear.rice.edu/engi128/

2 Prerequisites

None. All interested freshman are welcome, no previous experience or prerequisites are required.

3 Course Overview

discpline	low-level (grunge)	high-level(inspirational)
Mechanical Engineering	gears, torque & speed, transsmissions	feedback control
Electrical Engineering	bits/bytes/volts/amps, sensors	wireless communications
Computer Science	Python programming	robotics, distributed algorithms
Systems Engineering	abstraction, modularity	power systems, global localization

The curriculum covers electrical/mechanical/computational systems; with a focus on modularity, mathematical analysis, and feedback control, unifying themes in all engineering areas. The table above shows the concepts from the course. For each major, the instruction starts with a low-level "grungy" topic, and builds up to a challenging "inspirational" project that uses advanced concepts from sophomore or junior courses. Connecting theory to practice is a main goal of the course, and we will study many common, but complicated, engineering systems; hybrid cars, train locomotives, cell phones, and GPS receivers.

4 Goals

- 1. Understand engineering systems, especially electrical/mechanical/computational systems.
- 2. Understand the r-one robot as a model of an engineering system.
- 3. Understand which major is most interesting to you.

5 Text

None.

6 Design Challenges

There will be several in-class challenge activities over the semester. Completion of these activities is mandatory, they are an integral part of the academic content. Winning a challenge will not help your grade, but you will earn fabulous giveaways and prizes; like gift certificates to the Chocolate Bar restaurant, or small remote-controlled vehicles.

7 Robot

We will distribute a r-one (pronounced "are-one") robot to each student to use for the homework assignments and class activities. These robots are yours for the semester. Handle them with care. We will give each of you a sophisticated storage container for your robot. Not only will this help keep the robots fresh, but it will protect them from harm in your backpacks. Classes marked as "lab" or "design challenge" on the schedule will require you to have your robots in the classroom. There will be other classes where you will need them. We will announce this during lecture, and on the website. When in doubt, bring your robot to class.

8 Computers

You will need a computer to complete the robot programming assignments in this course. The best solution is for you to use your own laptop. If you do not have one, then we can arrange for you to use the OEDK computer classroom. Please talk to me if you do not have a laptop so that we can arrange access.

We have made the (very saddening) decision to not support Macs this semester. The best option for people with Macs is to use *Boot Camp* and create a basic Windows installation to run the course software. **Back up your data before you use Boot Camp**. The course staff can help you setup Boot Camp, but cannot cannot help you recover your lost files.

9 Staff

The course staff and office hours will be posted on the website. Please email questions to the entire staff: **engil28-staff@rice.edu**. This will ensure the quickest response from the correct person.

10 Meeting Times

Lecture: Tuesday & Thursdays, 2:30-3:45, Oshman Engineering Design Kitchen (OEDK) classroom. **Lecture attendance is mandatory**. You must register to get access to the OEDK. Please do this within the first week:

http://oedk.rice.edu/studentaccess

Tutorial Sections In addition to lecture, there will be a one-hour tutorial on Sunday afternoons each week. This will give you time to ask questions and get mroe help with your homework, especially when programming in Python. The first two tutorial sessions are mandatory, this is when we will get your computer setup with the software required to program your robot.

11 Collaboration

We encourage working in groups to think through the problems, and to get help in debugging your software. However everything you hand in, especially your programs, must be your own work. You must identify the people you worked with at the top of your assignments. We take the Rice Honor Code very seriously, misrepresenting your work will be dealt with harshly. It's not worth it, just do your best, and hand in your work.

12 Grading

- Problem sets (8): 70%
- Final project report and design: 10%
- Class participation: 20%

ENGI 128: Introduction to Engineering Systems	Rice University
Fall, 2014	August 26, 2014

There will be about eight problem sets (a.k.a. homework) this semester. Many of these will have a lab check-off that will require you to demonstrate some behavior on your robots. Homework is due in the **first 5 minutes of class on the due date**. Late homework will not be accepted. All answers must be on a separate sheet of paper, and we strongly prefer typed assignments. Work done on the handout sheet will not be graded, except when there is an explicate hand-in sheet provided.

13 Class Participation Points

We're serious about class participation. Class discussions are the best way to get your questions answered (even questions you didn't know you had), and will help all of us learn about engineering systems. In particular, answering questions incorrectly is one of the best way to start these discussions. You can be certain that you aren't the only one in the room who is confused about something, it is just that the other students are being quiet about it.

We will award class participation points (CPPs) during each class. Students start with 0 CPPs. Each student will be responsible for keeping track of their own participation points. We will review the distribution of points at the end of the semester and award full points to students who are regularly contributing to the class discussion. If we discover that full participation will not allow students to receive full points, we will change this structure as the semester progresses. Points will be awarded as follows:

- Answering a question correctly: **1 pt**
- Answering a question with "I don't know": **0 pts**
- Answering a question incorrectly, but trying your best to think through the answer: **2 pts**

You are allowed two missed lectures over the semester, as long as you give us advance warning, and have a **very** good reason for missing class. Good reasons include hospital visits, family emergencies, and serious illness (one that requires a hospital visit). Bad reasons include everything else.

14 Students with Disabilities

Any student with a documented disability seeking academic adjustments or accommodations is requested to speak with the instructors during the first two weeks of class. All such discussions will remain as confidential as possible. Students with disabilities will also need to contact Disability Support Services in the Allen Center.

15 Miscellaneous

The official course color is Safety Orange: http://en.wikipedia.org/wiki/Safety_orange. It's a powerful color, use it with care.

Date	Lecture Topic	Tutorial Topic	Problem Set
Tue, Aug 26	Lec01: Course overview, engineering systems 101,	-	PS01: System Safari
	block diagrams		
	Lec02: Abstraction and modularity	-	-
, 1	Safari round-up	-	PS01 due
Thu, Sep 04	DC01: Cookie Crane Challenge	-	PS02: Gears and Transmissions
	Lec03: Transmissions, Gears, torques, BMX Physics	-	-
Thu, Sep 11	Lec04: Circuits I: Voltage, current, resistors, power	Sun, Sep 14:	PS02 due
	multimeters	r-one gui setup and testing	PS03: Electrical circuits, r-one sensor
	r-one GUI and sensor measurements intro	(Mandatory)	testing, measuring voltage
Tue, Sep 16	Lec05: Circuits II: Non-linear elements	-	-
	breadboards		
Thu, Sep 18	DC02: Sensor Madness	Sun, Sep 21:	PS03 due
		Reprogram r-ones with python	
		(Mandatory)	
Tue, Sep 23	Lec06: Digital data, frequency, PWM	-	PS04: Python Programming I: Sense,
	Computers, microprocessors, and microcontrollers		Compute, Act
	r-one software: Assembly, C, Python		
	Python I: interactive, the rone API		
Thu. Sep 25	Lec07: Python II: Variables, types, loops,	Sun, Sep 28:	-
	conditionals	Problem set help session	
Tue Sen 30	Lec08: Python programming III	-	_
140, 500 50	Data structures: Tuples, Lists, dictionaries		
	Sense, Compute, Act		
Thu Oct 02	DC03: Insect Wars	Sun, Oct 05:	PS04 due
111u, Oct 02	DC05. Insect Wars	Problem set help session	F304 due
Tuo Oct 07	Lec09: Measuring distance, odometers of all types	Problem set help session	PS05: Python Programming II: My Simo
Tue, Oct 07		-	
Thu: 0-+ 00	Measuring speed, motor control	Sur. 0-+ 12:	PCOE due (are 10/10)
Thu, Oct 09	Lec10: Feedback control, PID Control	Sun, Oct 12:	PS05 due (on 10/10)
T 0 -+ 14	Mildama Daaraa	Problem set help session	PS06: Feedback control
	Midterm Recess	-	-
Thu, Oct 16	Lec11: Energy I: Storage, conversion, transmission,	Sun, Oct 19:	-
	dissipation	Problem set help session	
	Lec12: Energy II: Vehicles and energy	-	-
Thu, Oct 23	DC04: Robot croquette	Sun, Oct 26:	PS06 due
		Problem set help session	
Tue, Oct 28	Lec13: Communications: bits, bytes, ASCII,	-	PS07: Robotics and Communications
	bandwidth		(Follow-the-Leader)
Thu, Oct 30	Lec14: Inter-robot communications, Local	Sun, Nov 02:	-
	coordinate systems	Problem set help session	
Tue, Nov 04	Lec15: Communication networks	-	-
	IR comms demo		
Thu, Nov 06	DC05: IR Olympics Judging	Sun, Nov 09:	PS07 due
	Lec16: Global Coordinates I: Pose, South-Facing	Problem set help session	PS08: Global coordinates, waypoint
	Chariot		navigation
Tue, Nov 11	Lec17: Global Coordinates II: Longitude, GPS	-	-
Thu, Nov 13	Lec18: Final challenge intro, group brainstorming	Sun, Nov 16:	-
	Distributed Algorithms: Consensus and agreement	Problem set help session	
Tue, Nov 18	DC06: Tic-Tac-Toe	-	PS08 due
	Lec18: Final challenge intro, group brainstorming	Sun, Nov 23:	PS09: Final project report
	Distributed Algorithms: Consensus and agreement	Problem set help session	
	Lec19: Robotics I: Controllers, Finite state machines	•	-
140, 1404 23	Robotics II: Behavior-Based control, System design		
Thu Nov 27	Thanksgiving	-	
	Lec20: Course Review	-	-
· ·	DC07: Final challenge	-	- Final project report due