
ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
September 30, 2014

Lab 3c: Python III - Tuples, Lists, and Measuring Time

0.1 Getting Setup

Download the sample files, Lab3c.py, from the web site. Setup your robot, and run the sample
file. It should do nothing but print all done. You are now ready to begin.

1 Tuples
A tuple is a simple way to combine multiple pieces of data into a convenient package. We will only
really use them for one purpose: to return multiple values from a function.

To make a tuple, surround any number of variables with parenthesis, like so:

a = 4
b = 5
c = 6
q = (a, b, c)

When you print a tuple, it prints with the parenthesis, to show you that there this data is stuck
together. The variable names do not get stored in the tuple, jus the values. To get the values out of
the tuple, use this syntax, with new variable names to assign the values to:

(q1, q2, q3) = q
q1
q2
q3

Tuples are commonly used to return multiple values from a function, like so:

def foo(x, y):
t1 = x + y
t2 = x - y
t = (t1, t2)
return t

def use_foo(x, y):
val = foo(x, y)
print val

(val1, val2) = val
print val1, val2

use_foo(2, 1)

1 2014-09-30

ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
September 30, 2014

2 Lists
Tuples are useful, but limited. You can’t modify them after they are created. A List lets you add
and remove elements. Let’s make some variables and put them in a list.

a = 1
b = 2
c = 3

print a, b, c

l = [a, b, c]

print l

We can access elements at specific locations in our list using square braces syntax:

print l[0]
print l[1]

We use the append method to add variables to the list. A method is like a function, but it it called
by using dot notation on a particular piece of data that you want to work with. This is part of
object-oriented programming, and is beyond the scope of this course, but you can still use the syntax
to operate on lists.

this = True
that = False

l.append(this)
l.append(that)

print l

Note that you can have variables of multiple types in a list. Python doesn’t care, but usually lists
are of a single type.

The for loop is a compact way to iterate over a list:

l = [1, 23, 5, 13, 12]
sum = 0
for x in l:

print x
sum = sum + x

print sum

Note the use of the in keyword. This tells Python to pull elements from the list, one at a time, in
order, and store them in the temporary variable x. Recall for loops from last time? What is actually

2 2014-09-30

ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
September 30, 2014

happening is that the range() function is making a list on the fly for the for loop to iterate over.
This temporary list can’t be printed, but still works like a list for the for loop.1

There are many other list methods, we will introduce them as we go. The full reference is on
the web at:

http://www.clear.rice.edu/engi128/Resources/library_reference.html

3 Measuring Time
We have showed you the sleep() function, which makes python wait for a specified number of
milliseconds before continuing. This was useful, but a bit wasteful, because the computer can’t
do anything else while it is waiting. Another way to measure time is to use the time() function.
This function returns the current time on the robot, in milliseconds.

import sys
sys.time()

#wait for a bit
sys.time()

We can use the ability to measure time to rewrite the move forward() function from your
homework (answers turned in for your homework should only use the sleep)(function:

moves forward for the argument time
arguments: time
return: nothing
def move_forward(time):

time_start = sys.time()
time_end = time_start + time
while sys.time() < time_end:

rone.motor_set_pwm(’l’, 65)
rone.motor_set_pwm(’r’, 65)
print sys.time()
wait a bit before checking again
sys.sleep(10)

rone.motor_set_pwm(’l’, 0)
rone.motor_set_pwm(’r’, 0)

move_forward(1000)

1Note to advanced Python users, range actually returns a xrange on the robots.

3 2014-09-30

