ENGLESSION TO ENGINEERING SYSTEMS

Lecture 4: Torque, Gears & Torque , Transmissions & Torque, Bicycles & Torque

"Understand Your Technical World"

Outline

Goal: Add rigor to the concepts of gears and torque that you learned last time.

Gears are in almost every modern vehicle, so we'll use different vehicles as our systems *du jour*.

Speed and Force, Translation and Rotational

	speed	force
linear	speed	force
motion	S	f
rotational motion	angular speed	twisting force
	ω	τ

Torque always makes people unhappy

Torque is simple: It is a "force" that makes anything rotate

It's just that simple. Any time anything rotates, there is a torque involved.

It's also called a "rotational force" or a "twisting force"

You can feel torque if you try...

The power of radius:

The equation for torque is simple:

$$\tau = fr$$

But that 'r' is what causes all the mental problems

Imagine these two cranes:

The power of radius:

The equation for torque is simple:

$$\tau = fr$$

But that 'r' is what causes all the mental problems

Imagine these two cranes:

Gears & Torque

LEGO Gears

The red gear has 8 teeth, yellow gear has 24 teeth.

How far will the yellow gear turn per revolution of the red gear?

The Gear Ratio

The gear ratio is the ratio of input turns to output turns

$$g = \frac{\theta_1}{\theta_2}$$

Ratios can be written as fractions, or with a colon

g = 3:1

Is usually written with the right hand side normalized (set to) 1 How do we compute the gear ratio? **Gear Ratio**

LEGO Gear reduction

The red gear has 8 teeth, yellow gear has 24 teeth

Gear Ratio

The "no slip condition"

Gears can't slip. They have teeth.

Basic equation for distance around a circle-

Gear Ratio

 $s = \theta r$

We want to compute g_{-} in terms of r_1 and r_2

Definition: The gear ratio is the ratio of input turns to output turns:

$$g = \frac{\theta_1}{\theta_2}$$

Constants: $r_1 = 1$ $r_2 = 3$

$$g = \frac{\theta_1}{\theta_2} = \frac{r_2}{r_1}$$

$$g = \frac{3}{1} = 3:1$$

Gears & Speed

Rotational (angular) Speed

First think: Should the output gear be going faster or slower?

By how much?

Angular Speed

 $\frac{\theta_1}{\theta_2}$

g

We want to compute ω_2 in terms of ω_1 and g

 ω_1

 ω_2

 r_2

$$\omega_2 = \frac{-2}{t}$$
$$t = \frac{\theta_2}{\omega_2} = \frac{\theta_1}{\omega_1}$$

 θ

 \overline{t}

 $\frac{\theta_1}{t}$

 $\frac{\theta_2}{\theta_2}$

 $\omega =$

 $\omega_1 = -$

$$\omega_2 = \frac{\theta_2}{\theta_1} \omega_1$$

$$\omega_2 = \frac{\omega_1}{g}$$

Gears & Torque

Torque and gears

First think: Should the output gear have more or less torque?

By how much?

Gears and torque

Let's start with our torque equation: -

Gears and torque

 $\tau = fr$

Summary

No free lunch: If you want more torque, you have to give up speed (and vice versa)

When trading torque for speed, something is conserved...

Transmissions

Transmissions

What is a transmission?

Where can you find them?

Car Transmission

Rear Wheel Drive Layout

http://www.familycar.com/transmission.htm

2010 Ford Mustang

2004 Ford F-150

2009 Ford F-150

Automatic Transmission

Different sets of gears trade torque for speed

Most cars have 4-6 gear ratios + reverse

Automatic Transmission

They're ridiculously complicated, but look, they have gears!

Final Drive

A set of *bevel gears* rotate the power 90 degrees, ...

And a *differential* splits it between the two rear wheels

2009 Honda CBR 600RR

Where is the transmission? How many gears? Why?

2009 Honda CBR 600RR

Where is the transmission? How many gears? Why?

2014 Specalized Stumpjumper FSR Comp Evo

Where is the transmission? How many gears? Why?

Other types of transmissions?

Or maybe just things that use the word "transmission"?

[Hoover Dam]

Transmission Lines

Critical for Green Energy

Green power sources are often far from people

Abstraction

What do all these transmission have in common?

What is a transmission block diagram element?

What do all these transmission have in common?

What is a transmission block diagram element?

What do all these transmission have in common?

What is a transmission block diagram element?

What do all these transmission have in common?

What is a transmission block diagram element?

Wait a minute...

Power in and power out...

[wait for the realization from previous "no free lunch" comment]

Conservation of Energy

Power in = power out!

How do you compute power in a system of gears?

Summary, part II

No free lunch: If you want more torque, you have to give up speed (and vice versa)

When trading torque for speed, something is conserved...

Summary, part II

No free lunch: If you want more torque, you have to give up speed (and vice versa)

When trading torque for speed, **power** is conserved!

Speed and force and power

	speed	force
linear motion	speed s	force f
rotational motion	angular speed ω	twisting force τ

Funding of the second s

The "Brakie"

$mgr_1 - \mu Nr_2 = 0$

μ

2014 Specalized Stumpjumper FSR Comp Evo

What is this bike designed for?

Slickrock Trail, Moab, UT

[slidewhow]

Question 1: Torque and Brakes

Which has more stopping power?

A. Front brakes

Braking Torque

[todo: finish slide: add torque arrows]

Braking Torque

Application of brakes creates a torque

- This torque increases the normal force on the front wheel
- With more normal force, the front wheel can generate more friction
- Almost ³/₄ of braking force comes from the front wheels!

2009 Honda CBR 600RR

Question 2: Torque and Steering

What makes a bicycle go straight?

- A. Rider balance
- B. Gyroscopic force
- C. Torque around front wheel axis

Caster

Caster angle in Bicycles

Caster angle in cars

www.familycar.com Upper Ball Joint

Question 3: Torque and Bunny Hops

How does a "bunny hop" work?

A. Toe clips

- B. Torque around the center of mass
- C. Bouncing off of the tires

Try This: Shopping Cart Bunnyhops!

