ENGI 128

INTRODUCTION TO ENGINEERING SYSTEMS

Lecture 14:
r-one-Communications Details,
Measuring Network Geametry

“Understand Your Technical World”

Representing
Digital
Information

00100101
A A A A A A I Ll’s
2’s
4’s
8’s
16’s
32’s
64’s

128’s

=32+4+1=37

00011011
+00011010
00110101

Text: ASCII Table

Assign a number to each letter.

ASCII ASCII ASCII
value Character | value Character | value Character
032 (space) 064 (@ 096
033 ! 065 A 097 a
034 ! 066 B 098 b
035 i 067 C 099 C
036 b 068 D 100 d
037 % 069 E 101 e
038 & 070 F 102 1
039 ! 071 G 103 g
040 (072 H 104 h
041) 073 I 105 i
042 : 074] 106 j
043 + 075 K 107 k
044 ’ 076 L 108 |
045 - 077 M 109 m
046 . 078 N 110 n
047 / 079 O 111 o
048 0 080 P 112 p
049 1 081 Q 113 q
050 2 082 R 114 r
051 3 083 3 115 s
052 4 (84 T 116 i
053 5 (85 U 117 u
054 6 086 Vv 118 v
055 7 087 W 119 W
056 8 088 X 120 b
057 9 089 Y 121 v
058 : 080 Z 122 Z
059 ; 051 [123 {
060 < 092 AN 124 !
061 093] 125 H
062 = 094 AN 126
? 09s - 127 D

063

\@/
\A/
\B/
\CI
\CI
\CI
\CI
\CI
\@I
\AI
\BI
\CI
\CI
\CI
\CI
\CI

64
65
66
67
67
67
67
67
64
65
66
67
67
67
67
67

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111

Text: ASCIl Table (and counting)

Assign a number to each letter. ‘@’ = 64 = 01000000
f:lflf: Character fc?l?zg Character 531?15 Character ‘A, = 65 = O :I— O O O O O 1
032 (space) 064 @ 096 ‘B! = 6 6 = 010000 1 0
033 l 065 A 097 a \ , _ _

rerd e 0% . C’ =67 = 01000011
0 5 o1 o o ‘D’ =68 = 01000100
e - o 6 05 o ‘E/’ = 69 = 01000101
o) 7 1 05 i ‘F/ =70 = 01000110
o ok w ‘G/ = 71 = 01000111
D44 ’ 076 L 108 1

o A ‘H' = 72 = 01001000
A | . ‘I’ = 73 = 01001001
50 2 e 1 a0 ‘J/’ =74 = 01001010
e 4 o T e ‘K’ = 75 = 01001011
0o 6 rer R he ‘I’ =76 = 01001100
0% 8 0% X I ‘M’ = 77 = 01001101
0y - w7 TR W/ = 78 = 01001110
0w - RN o ‘0’ = 79 = 01001111
061 - 093 | 125 : - -

062 = 094 A\ 126 -

063 ? gas - 127 M

Bandwidth

4

Ethernet
1000 mbps

3G and WiFi
384 kbps/54 mbps

WiFi Remote Control r-one robot
54 mbps 1.25 kbps 2 mbps/1.25 kbps

- Y wlm e wbm b s N el b wlm wbm b N b wbn el o o b b b el) wlm o el o el el o wlm i o el b el e el el b b el el e e o b b el b wbm N wm b el N el ek b

01101101110110011010101010101011000110010010101011011011011
101011000110010010101011011011101100010101101010101010101100
)11011011101100110101010101010110001100100101010110110110110
)10110001100100101010110110111011001010100110101010101010110
101101101110110011010101010101011000110010010101011011011011
101011000110010010101011011011101100110101010101010110001100
101110110011010101010101011000110010010101011011011011001101
)00110010010101011011011101100110101010101010110001100100101
110011010101010101011000110010010101011011011011001101010101
)10010101011011011101100110101101010101011000110010010101011
LO101010101%%%&030%%0&?%i$g£1010101010
)10101101101 1€CA0 1 1 1011011011
101010101100011001001010101101101101100110101010101010110001
101101110110011010101010101011000110010010101011011011101100
101100011001001010101101101101100110101010101010110001100100
110110011010101010101011000110010010101011011011101100110101
)11001001010101101101101100110101010101010110001100100101010
)11010101010101011000110010010101011011011101100110101010101

)01010101101101101100110101010101010110001100100101010110110
101010101011000110010010101011011011101100110101010101010110

N1 1 N1 1N11NT11NNT1T1NTNITNDNTNOATNININT1I1NNNDT 1NN T1TNDNTITNATITNDNTNTITNT1T1NDN\T111N1T11

- Y wlm e wbm b b N wlm b wlm wbm b N N wln el o o i N N el) wlm o el o el el o wm e o e wln el e wlm o b o el el o whm o e b el N wlm N =l b el N b ek

01101101110110011010101010101011000110010010101011011011011
101011000110010010101011011011101100010101101010101010101100
)11011011101100110101010101010110001100100101010110110110110
)10110001100100101010110110111011001010100110101010101010110
101101101110110011010101010101011000110010010101011011011011
101011000110010010101011011011101100110101010101010110001100
101110110011010101010101011000110010010101011011011011001101
)0011€a§0010101911011011101100 %0101010101010110001100100101
1 'dhci

oojifllWe e se mgélsalmanlyom

)10010101011011011101100110101101010701011000110010010701011
Rits soquickly, how.do we..
)10 1 y 1 011
101010101100011001001010101101101101100110101010101010110001
LOllOlllOllOOmljlméma fﬁ@lOllOlllOllOO
0110001100100 11971 1 igﬁgi 1%1610110001100100
110110011010101010101011000110010010101011011011101100110101
)11001001010101101101101100110101010101010110001100100101010
)11010101010101011000110010010101011011011101100110101010101

)01010101101101101100110101010101010110001100100101010110110
101010101011000110010010101011011011101100110101010101010110

N1 1 N1 1N11NT11NNT1T1NTNITNDNTNOATNININT1I1NNNDT 1NN T1TNDNTITNATITNDNTNTITNT1T1NDN\T111N1T11

That’s a lot of bits!

A continuous stream of bits is hard to deal with.

Imagine a computer network: You might have many questions
about these bits:

e Are these bits for you?

e Where did these bits come from?
e What do these bits mean?

e Are these bits error-free?

The Packet

A packet is a chunk of data with a well-defined beginning, end, and
structure

A packet has four parts:

e Some kind of start indication that tells the network that a packet is
starting

e Some kind of header that tells the network what the packet is,
where it is from, and where it is going

e Some kind of data. That’s kind of the point of the packet...
e Some kind of error detection to check the validity of the packet.

start | header data error detection

Start Indication: The Preamble:

Some easy-to-detect sequence of bits to alert the receiver that a
packet is starting:

Start Indication: The Preamble:

Some easy-to-detect sequence of bits to alert the receiver that a
packet is starting:

101010101

The Header: Routing Information

This tells the packet:
e what itis,
e where it is from, and
e where it is going

This is how everything knows where it’s going
e On the internet,
® in your car,
* inside your robots,
e in between your robots via infra-red (IR),
e and in between the robots and your computer via USB

There are many sources of error in communications networks
e Errors can make our message invalid
e We highlight two: Noise and Collisions

Noise:
e Somebody comes along and changes your signal.
e They can change voltage, add radio waves, or mess with your light

Collisions:
e Somebody comes along and tries to talk at the same time
e Both messages are lost

Say | send you a (very) short email with your grade in ENGI 128:
‘A’

(Nice job!)

In ASCII, ‘A’ is 65, which is 01000001 in binary

But what if an error happens during communication, and a bit is
flipped? You receive:

01000011
What does this mean?
How can we prevent the bit from being flipped?

What else can we do?

Let’s send two pieces of information: The information, and
something to let us know if the data is intact

The sender composes the message data, then computes another
piece of information that summarizes the message. The sender
transmits:

check = f(data)

sender

msg = (data, check

sender)

When the receiver gets this information, it computes its own copy
of the check independently from the message data:

check = f(data)

receiver

If check == check then all is well. If not, then we discard

receiver ~

the entire message

sender 7

What can we use for f(data)?

Error Detection

Let’s send two pieces of information: The information, and
something to let us know if the data is intact

Plan A: We send the data again — the odds of getting two bits
flipped in the same place are slim:

msg = ‘A’, which is 01000001 in binary

we send:IOlOOOOOlDlOOOOOl

For a longer message, we need lots of extra bits to detect an error:

10010101 01100101 01011001 01010110 01010101 10010101 10010101 01100101 01011001 01010110 01010101

10010101 01100101 01011001 01010110 01010101 10010101 10010101 01100101 01011001 01010110 01010101

This will take twice as much bandwidth, and bandwidth is
expensive

Can we do better?

Population Count

Plan B: How about we count the total number of one bits in the
message?

msg = ‘A’, which is 01000001 in binary

we send:0100000100000010

This is better. For a longer message, we still only need 8 extra bits
to detect an error:

10010101 01100101 01011001 01010110 01010101 10010101 10010101 01100101 01011001 01010110 01010101 10010101

And only use one byte for Checksum. Sweet!

But there is a problem...

Checksums Behaving Badly

Plan B: How about we count the total number of bits in the
message?

msg = ‘A’, which is 01000001 in binary

we send: |01000001b0000010

we receive:|0100001000000010

What is the problem?

Cyclic Redundancy Check (CRC)

Plan C: How about we make a fancy polynomial that is optimized to
detect the most common errors on our communication channel?

Duh... Of course this is what we should do!

msg = ‘A’, which is 01000001 in binary

they send: 01000001' D1101010
we receive: 01000011, 0110101(1

we compute our CRC: 11101011

They don’t match. Ta-da: Error detection!

Start Indication: The Preamble:

Some easy-to-detect sequence of bits to alert the receiver that a
packet is starting:

101010101

Start Indication: The Preamble, revisited

Some easy-to-detect sequence of bits to alert the receiver that a
packet is starting:

01010101
01010101
01010101
101010101/101101110110
01010101
01010101

01010101

r-one IR
Communications

The Packet

A packet is a chunk of data with a well-defined beginning, end, and
structure

A packet has four parts:

e Some kind of start indication that tells the network that a packet is
starting

e Some kind of header that tells the network what the packet is,
where it is from, and where it is going

e Some kind of data. That’s kind of the point of the packet...
e Some kind of error detection to check the validity of the packet.

start | header data error detection

The nitty-gritty

How do these bits actually get from robot to robot?

bits

Inter-Robot Communications

When the robots are moving, how often should they
communicate?

a. all the time
b. when they get to their goal positions

c. only when they need to

Periodic Communications

Ok, so they need to communicate all the time

But how frequently?

Ok, so they need to communicate all the time

But how frequently?

= one packet

b

Periodic Communications

We can avoid collisions with proper spacing

But now what is
our problem? d

Periodic Communications

Ok, we’ll be more relaxed about the timing.

But we waste % of
the bandwidth! d

Is this worth the
trade-off?

d

b

Each robot broadcasts its information to its neighbors at periodic
intervals
e This period is fixed across all robots, but the starting time is random

e This gives probabilistic assurances (not guarantees) that messages
won’t collide (Abramson, Aloha protocol, 1970(!))

If messages are 23ms and the round is 230ms:
1. How many neighbors can each robot have?
2. What if the messages collide?
3. What if they all start at exactly the same time?
4. How does ethernet handle collisions?
5. Why can’t we use this technique?

Local Coordinate
Systems and a
Bearing Motion

Controller

Local Coordinates

Measure pose of robot b in robot a’s coordinate system
Or

pose = (range, bearing, orientation)

orientation

Motion Control

Instead of controlling left and right motors, it’s often more
convenient to control

e Translational velocity: tv, and

e Rotational velocity, rv

How can we compute left and right velocities from tv and rv?

Vleft - tV — IV

Viight = tV + 1v

Motion Control

Instead of controlling left and right motors, it’s often more
convenient to control

e Translational velocity: tv, and

e Rotational velocity, rv

How can we compute left and right velocities from tv and rv?

Viesy = tv—rv * WHEEL_BASE / 2
Viight = tv + rv * WHEEL_BASE / 2

Motion Control

So, if we know the pose of a neighbor, can we compute rv and tv to
get us there?

Local Coordinates: Distance

So what about distance?

robot b
orientation

Scale-Free Coordinates

Can use angular graph rigidity to compute poses of neighbors
e Find triangles in the network
e Find the angles around this triangle
e This triangle is rigid: it can change size, but not shape

It’s not perfect
e Can only compute pose up to an unknown scaling constant, o

a rigid 3-cycle

42

Particle Filters

We can produce an estimate of the range over time

PS07: Follow the
Leader

Follow the leader

r-one
Communications
Details

Local Coordinates

Measure pose of robot b in robot a’s coordinate system
Or

pose = (range, bearing, orientation)

orientation

8 overlapping receivers create 16 distinct rO

r3 r2

ro

O
O

Local Coordinates: Bearing

We can measure bearing directly

e With an accuracy of around 7T/8

What else can we measure?

robot b
orientation

Local Coordinates: Orientation

How can we measure the orientation of robot b from robot a’s
point of view?

robot b
orientation

Local Coordinates: Orientation

Note that the orientation of robot b from robot a’s point of view is
the same as the bearing of robot a from robot b’s point of view

How can we get this information from robot a to robot b?

robot b
orientation

8 overlapping transmitters also create 16 distinct regions:

Local Coordinates: Improving Pose Estimates

Different sensors behave differently
e Qur IR sensor resolution is limited.
e But our encoders are very precise

We can keep track of our neighbors motion to estimate where the
robot is between sensor updates:

1.5xspeed

This shows howwe needreinjection

(> FilterGuess
> Neighbor
_' SensorReading (withIIR)

[communications oscilloscope demo]

