ENG128

INTRODUCTION TO ENGINEERING SYSTEMS

Lec 15: Global Coordinates

"Understand Your Technical World"

PUMA

Review: Local Coordinates

Local Coordinates

Measure pose of robot b in robot a's coordinate system

pose =
$$(x, y, \theta)$$

-or-

pose = (range, bearing, orientation)

Gobal Coordinates

Global Coordinates

We can also describe the robot's pose in an external reference frame:

This is useful for getting the robots around in the world

How can we compute this with the sensors the robots have?

Pose Estimation

We assume the robot starts at (0, 0, 0)

We compute incremental changes to the pose using the encoders

This is called *dead reckoning*

What is the drawback of this technique?

Wheel Slippage

Wheels are always slipping, therefore Dead Reckoning is always accruing errors

Even worse, the errors *integrate*, i.e. they increase little by little but have no bound. Soon the robot has **no idea** where it is.

We can do better, right?

First, we make a map

Use laser scanner to detect obstacles

Use sensor model and "better pose" to produce a map

Particle Filter Localization

Produce lots of estimates of current position

Keep the good ones

KLD-Sampling: Adaptive Particle Filters. D. Fox. NIPS-01.

Particle Filter Localization

Produce lots of estimates of current position

Keep the good ones

KLD-Sampling: Adaptive Particle Filters. D. Fox. NIPS-01.

We can do them both at the same time

SLAM = Simultaneous Localization And Mapping

M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. SLAM in Large-scale Cyclic Environments using the Atlas Framework. International Journal of Robotics Research

SLAM in Large-Scale Cyclic Environments Using the Atlas Framework

Michael Bosse, Paul Newman, John Leonard, Seth Teller

International Journal of Robotics Research February, 2004

But what if we don't have a laser range finder?

Then you're stuck with odometry and dead reckoning.

But at least the math is easier...

Goal: Update the Pose

Parameters we know

Parameters we want to compute

Pose estimation from odometry

[white board]

Change in Pose

Pose Update Equations

$$\Delta d = \frac{d_R + d_L}{2}$$

$$\Delta \theta = \frac{d_R - d_L}{b}$$

$$x' = x + \Delta d \cdot \cos(\theta) \qquad b$$

$$y' = y + \Delta d \cdot \sin(\theta)$$

$$\theta' = \theta + \Delta \theta$$

$$pose' = (x', y', \theta')$$

Waypoint Navigation

Waypoint Navigation

We assume that we know our current pose

How can we get from one point to another?

We don't want to specify θ_2 , just (x₂, y₂)

Waypoint Navigation

- 1. Compute θ_{rotate} and d
- 2. Rotate, then move a fixed distance

Will this work? Will it work well?

Νο

Small angular errors will be magnified over long d

But we know how to deal with errors: a feedback controller

But what information do we feedback on?

Waypoint Navigation with a controller

- 1. While $d > \varepsilon$:
- 2. Compute θ_{rotate} and d
- 3. Rotate while translating

Global Localization Throughout History

Dead Reckoning in Ancient times

Like, before 1980.

How far back does the idea go?

a. 1961-1963?

b. 1624-1647?

c. 200-265?

South-Pointing Chariot

But dead reckoning is limited

Why?

What about feedback?

What can you measure to give you position feedback?

Earth's Magnetic Feild

Compass

We take the lines on the earth for granted...

But getting them on the globe was one of the biggest scientific problems on the modern age

Latitude (North/South) is easy. Wait until dark and look up...

We take the lines on the earth for granted...

But getting them on the globe was one of the biggest scientific problems on the modern age

Latitude (North/South) is easy. Wait until dark and look up...

Longitude, (East/west), well now this is hard.

Very hard...