ENGI 128

INTRODUCTION TO ENGINEERING SYSTEMS

Lecture 17:
Finite State Machines,
Behavior-Based Programming,
Final Design_ Challenge

“Understand Your Technical World”

Finite-State Machines
(Discrete Finite Automata)

Finite-State Machines (Discrete Finite Automata)

It sounds complicated, but you’ve been using them for a while:

Sample FSM diagram:

transition .
transition

state condition
resm.k> button
. ress blink blue
reset waiting 5 >

transition lights

no
button
press

Q: What does this program do?

An Example FSM: Wall detection

[Demo dark avoid code on robot]

An Example FSM: Wall detection

reset
move

forward

An Example FSM: Wall detection

reset
move

forward

An Example FSM: Wall detection

rotate
right
reset
move
forward
? rotate
H left

An Example FSM: Wall detection

rotate
right
left sensor
move
forward]
right sensor
detect wall
rotate
no wall left

Q: Note that the left sensor triggers a right rotate. Does this make
sense?

An Example FSM: Wall detection

resa’\}

move
forward

no wall

left sensor
detect wall

right sensor
detect wall

rotate
right

rotate
left

rotate
right
left sensor
move
forward .
right sensor
detect wall
rotate
no wall left

[Review dark avoid code in editor]

|angle]
> 1t/2

|angle]|
<7f2

|angle]
<7f2

|angle]
>1/f2

Finite-State Machines
(Quidditch Version)

For example

Let’s say you are programming a “Seeker” robot...

reset
move

around

For example

Let’s say you are programming a “Seeker” robot...

move
around

wall
detector

»| avoid wall |

timer
done

For example

Let’s say you are programming a “Seeker” robot...

=) ‘:\'33

move to

detect .
shitch

snitch

no
snitch
wall

detector

reset
move

around

»| avoid wall |

timer
done

For example

Let’s say you are programming a “Seeker” robot...

move to

capture
shitch

score!

detect .
wall
detector
»| avoid wall |
no
event
timer

done

wait
for
timer

Yikes!

Don’t worry, it looks simpler in code...

Behavior-Based
Robot Programming

A behavior is a small program (or finite-state machine) that reads
the sensors and controls the robot
e Each behavior only does one simple thing

e Each behavior has access to all the sensors of the robot and
produces motor outputs (tv, rv, active)

Only one behavior can be active at a time
e There is a prioritization of behaviors
e More important ones override, or subsume, less important ones

An Example Behavior-Based Program

Follow a robot
e Sensor: IR Communications
e Behavior: Follow another robot

Avoid Obstacles
e Sensors: Bump sensor to detect wall
e Behavior: Move away from wall

Wander

e Sensor: Encoders
e Behavior: Move forward and turn

Q: Which behavior should have the highest priority?

Q: Which behavior should have the lowest priority?

Combining Behaviors

We combine behaviors by overriding, or subsuming lower-priority
behaviors if a higher-priority behavior becomes active

highest priority subsume
operator
S Avoid Obstacle
Behavior: avoid walls
» 2
o 2
2 S Follow a robot S
S Behavior: Follow another robot E
Wander
—>»! Behavior: move and turn S

lowest priority

Genghis
The behavior-based poster child

Really simple hardware
e 6 legs, 2 motors per leg
e o-motor for forward/back, B-motor for up/down
e 2 bump sensors (feelers)
e 2 ground detection sensors (switches)
e 6 heat sensors (but they weren’t used for walking)

R. Brooks. “A Robot that Walks; Emergent Behavior from a Carefully Evolved Network”, ICRA 1989

Genghis in Action

N —

ﬂorlbak

sensor prowl | pitch
beta beta
force | T balance feeler 1
O
alpha
collide
leg beta
down pos 1 alpha
: — advancq

alpha
alan

’l steer

R. Brooks. “A robust layered control system for a mobile robot”, ICRA 1986

alpha
pos

Combining Behaviors

We combine behaviors by overriding, or subsuming lower-priority
behaviors if a higher-priority behavior becomes active

highest priority subsume
operator
S Follow a robot
Behavior: Follow another robot
» 2
o 2
2 S Avoid Dark S
S Behavior: avoid shadow at walls E
Wander
—>»! Behavior: move and turn S

lowest priority

Great, but how to you program this?

You can abstract this a bit more:

e Write each behavior as a function that returns a tuple of
(tv, rv, active)

e write a beh_subsume(high_priority, low_priority) function that
returns the high_priority or low_priority output, depending on
which has active == True

 If neither behavior is active, it returns the INACTIVE BEH output

INACTIVE BEH = (False, 0.0, 0.0)

wander out = wander (foo, bar)

gps_out = gps_navigation (bang, zoom)
obstacle out = obstacle avoidance (bif, bop)

beh = beh subsume (gps out, wander out)
beh = beh subsume (obstacle out, beh)
velocity.set tvrv(beh get tv(beh), beh get rv(beh))

Great, but how to you program this?

There are several ways:

e Write each behavior as a function that returns a tuple of
(active, tv, rv)
e Write getters to extract the different parts of the tuple

e Use if statements to overwrite the outputs of lower-priority
behaviors

INACTIVE BEH = (False, 0.0, 0.0)

wander out = wander (foo, bar)

gps_navigation out = gps_navigation (bang, zoom)
obstacle avoilidance out = obstacle avoidance (bif, bop)

beh = INACTIVE BEH
if beh get active (wander out):
beh = wander out
if beh get active(gps navigation out):

beh = gps navigation out
if beh get active (obstacle avoidance out):
beh = obstacle avoidance out

velocity.set tvrv(beh get tv(beh), beh get rv(beh))

