
ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
September 25, 2014

Homework 4: Python Programming I - Sense, Compute, Act
Due: October 2, 2014

You must hand in your code on Owlspace and bring printouts to class. DO NOT make us print
your code, that will cost you 25% of your grade. All of your code should be contained in a single
python file called PS04 netid.py, where netid is your netid. Be sure to comment your code so that
the graders will know what you are trying to do. Please be sure to write on your printed code and
your python file who you worked with, and who had what role.

Note: You can’t do this homework in one night, especially if you are new to programming. Start
early, and come to office hours and tutorial. Don’t get stuck. One of the keys to engineering is
experimentation. While it is important for you to think through what your software should be
doing, it is equally important for you to try things out. Do not be afraid to have your robot run
code that you know is not exactly correct. You will very likely learn something from the attempt
that will help you improve your code. If you wait for your program to be perfect before trying it
out, you will have a very hard time completing this assignment:

Think, program, test, repeat!

1 Driving in a Square
For the first half of this problem set, you will program your robot to drive in a square.

1.1 Write motion helper functions

Finish the four motion helper functions:
move stop(time),
move forward(time),
move rotate right(time), and
move rotate left(time).
Each of these functions takes one argument, time. They move the wheels in the proper directions
for the desired time to produce motion. Note that we have defined a global variable, MOTOR PWM
to use as the PWM value in all of these helper functions. This way, if you want to change the
PWM, you can do so in one place. Don’t use a PWM of more than 80 unless you have a lot of
space, or your robots could impact things harder than we would prefer.

Hand-in: Write move stop(time), move forward(time), move rotate right(time),
move rotate left(time). (2 pts each)

1.2 Test your helper functions

It is important to test your modules before you build them into larger programs. Test each of your
helper functions with the move test() function.

Hand-in: Use the move test() function to test all of your motion functions. Verify that
each function is moving the robot in the proper direction. (4 pts)

1.3 Square motion

Use your motion functions to write square motion(), which will drive the robot in a 1 foot ×
1 foot square. Your answer must use a for loop, and your robot must use move stop() after the

1 2014-09-25



ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
September 25, 2014

square is finished. It might be easier to write this part twice, first without the for loop, then see
what you’ve duplicated and add the for loop later.

Hand-in: Use the motion helper functions and a for loop to write square motion(). (5
pts)

2 Driving Towards Light
For the second half of the problem set, we will use these motion functions and the light sensors to
drive the robot towards light.

2.1 Write light diff

This function should read the two front light sensors, then return the difference between the left
sensor and the right sensor: diff = left − right.

Hand-in: Write light diff() (3 pts)

2.2 Test light diff

We’ve given you a test function, light diff test() that is more complicated that you might
expect. Use it to test your function. Note: You do not need to modify light diff test(). Do
not aim the flashlight at the robot until it starts printing data.

Hand-in: Test your light diff() function. Record the values when you have a flashlight
aimed at the left sensor, between the two front sensors, and then at the right sensor. Explain
why we are storing the initial diff value in diff start (2 pts)

2.3 Move towards light
Use your light diff() function to complete light follow(). We’ve given you a bit of starter
code. Use an if, elif, else structure and your motion primitives from Section ?? to make
the robot drive towards the light.

Hand-in: Use the motion helper functions, light diff(), and a if, elif, else struc-
ture to write light follow() (10 pts)

3 Avoiding Obstacles with the Bump Sensors
Driving towards things is only half of what robots do. Now let’s drive away from things. In the
third half of the problem set, we will move away from obstacles we run into using the bump
sensors.

3.1 Test bump test()

We’ve given you three nifty functions: bump left get value(), bump front get value(),
bump right get value(). They each return a boolean variable indicating if the bump sensor
is pressed from the indicated direction. First, let’s test these helper functions. Write a function
bump test() that uses an infinite while loop to read, then print the values of these three functions
every 50 milliseconds. Print the values on a single line so they are easy to read. You can print
multiple variables to a single line like this:

a = 4
b = 3.14159
c = True
print a, b, c

2 2014-09-25



ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
September 25, 2014

Hand-in: Write the bump test() function. This function must use an infinite while loop
and have a 50 ms delay. Can the more than one bump function return True at the same time?
Is this surprising? (5 pts)

3.2 Moving away from walls
Finish bump avoid() to move the robot away from collisions. We’ve given you a bit of starter
code. Use an if, elif, elif, else structure and your motion primitives from Section ?? to
finish this. This answer will look similar to the answer from Section ??.

Hand-in: Use the bump sensor helper functions and a if, elif, elif, else structure
to write bump avoid() (10 pts)

4 Avoiding Obstacles with the IR Sensors
Running into walls is sooo last problem. In the fourth half of this problem set, we will avoid walls
altogether using the IR system to detect them from a distance.

4.1 Test obstacle detect

We’ve given you a nifty function: obstacle detect(). It returns a tuple of boolean vari-
ables indicating where the obstacle is relative to the front of the robot. Test this helper function.
Write a function obstacle detect test() that uses an infinite while loop to print the value of
obstacle detect() every 50 milliseconds. Move your hands around the robot and watch the
output. The range is pretty far, you will need to get your robot away from things around you to
see the program work. Note: this question might be easy. Like one additional line easy.

Hand-in: Write the obstacle detect test() function. This function must use an infinite
while loop and have a 50 ms delay. Note how nifty the output from obstacle detect() is.
Record the average range it detects your hand when in front of the robot (5 pts)

4.2 Avoiding walls
Use obstacle detect() to move the robots away from walls. We’ve given you a bit of starter
code. Use an if, elif, else structure and your motion primitives from Section ?? to finish
this. This answer will look similar to the answer from Section ??, copy and paste your code and
modify it, don’t start from scratch. We have given you the code to call obstacle detect() and
unpack the tuple into three variables: obs front, obs left, obs right. After they have
been unpacked, you can forget about the tuple, and use these booleans just like any other variable.

Hand-in: Use the motion helper functions, obstacle detect(), and a if, elif, else
structure to write obstacle avoid() (10 pts)

3 2014-09-25


