
ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
October 9, 2014

Homework 6: Velocity Control
Due: October 23, 2014

You must hand in your code on Owlspace, bring a printout to class, and hand in your written
report in class. All of your code must be in a single python file called PS06 netid.py. Be sure to
comment your code. so that the graders will know what you are trying to do. You can’t do this in
one night. Start now! You will need to demonstrate your velocity controller in class.

Velocity Control
For this assignment you will implement a velocity controller for your robot’s motors. For the
first part of this assignment, we will characterize the motors on the robot, and write a open loop
controller to move a fixed distance. This won’t work very well, but that’s ok, because in the second
part of the assignment, you will write a closed loop controller to keep the velocity of each wheel
close to a specified value. This should give you much better results.

The key to a closed-loop controller is the feedback from the sensor to the computer, then the
control back to the motors. By measuring the actual velocity and comparing that to the desired ve-
locity, you can adjust the motor PWM and make the robot move very close to the desired velocity.

1 Open-Loop Controller
In this section you will build and measure an open-loop motor controller. An open-loop controller
does not use sensor feedback to control the motors. Since by now you must realize that feedback
is critical in all engineering systems, you might imagine that an open-loop controller won’t work
very well. You would be right. Let’s measure it. Remember, put your robot on its block while you
are working on the code, and run it on the ground, not your desk, for tests.

1.1 Characterize the motors

We know the motors don’t move when given low PWM values, so we need to characterize them
to see exactly how they perform. Your job is to complete the
characterize motors() function. This function will ramp the PWM from 0-100 for each wheel
and measure the resulting wheel velocity. Every second, print the current PWM, the elapsed
encoder ticks, and velocity. Note that the upper bound in the Python range() function is not
inclusive, so you will need to use for pwm in range(0, 101, 10):

First, you will need two helper functions for this: compute distance() and compute velocity().
These functions use encoder values. The encoders can only count between 0 and 65,535. So, if
the count is increasing, when it would have hit 65,536, it instead wraps to 0. Similarly, if the
count is decreasing, when it would have hit -1, it wraps to 65,535. We have provided a func-
tion, encoder delta ticks for you that takes a new and an old encoder value and returns
the difference, accounting for this wrapping behavior. 1 Note that your robot will not actually
travel at these velocities when it is on the ground, because friction and other effects will slow it
down. However, this is not important, as the feedback controller will correct these errors. Be care-
ful not to divide-by-zero in compute velocity(). Hand-in: Write compute distance()and
compute velocity()(2 pts each).

1This function will only return the correct value if the distance the robot traveled between encoder readings was
around 1.5 meters or less.

1 2014-10-09



ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
October 9, 2014

1.2 Plot and Analyze the data

Finish the characterize motors() function and use it to measure velocity vs. PWM for both
motors. This is nice, but not directly useful for our controller, because when we are driving our
robot, we want to specify velocity and determine the PWM value to set the motors to. In order
to do this, we need the inverse of the data we just collected. This is far easier than it sounds, just
switch the axis and re-plot. Hand-in: Write characterize motors()(3 pts), collect data, and
make a plot of velocity vs. PWM and PWM vs. velocity for each motor (3 pts each).

1.3 Compute Open-Loop Control Gains

We want to write the feedforward compute() function that will take a goal velocity as an
input, and return the required PWM. So, we need to create an equation that models the PWM vs
velocity data from above. We will use the form:

pwm = Kff offset + Kff · velgoal

Where Kff offset is the largest PWM value that does not produce any motion, velgoal is the desired
velocity, and Kff is the feed-forward gain — the relationship between velocity and PWM from the
data. Compute Kff from your data by computing the slope of the line:

Kff =
change in y-values
change in x-values

=
pwmmax − pwmmin

velmax − velmin

This is easy to see if you take a ruler to your data, you just need to find the slope of the line
between the points. Use the line from your best motor — the higher line. My data looked like this:

...but my robot had a low battery and one sticky motor. Your data will be different. Set the two con-
stants at the top of your file, K FEEDFORWARD = Kff and K FEEDFORWARD OFFSET = Kff offset

, with your calculated values.
Finally, we can write the feedforward_compute(vel) function. This function should take

a velocity and return the appropriate PWM value. It must always return a PWM value between
-100 and 100, whether the robot can operate at the goal velocity or not. As the controller tries to
increase or decrease speed (especially if the goal velocity is outside the controllable range of the
robot), the computed PWM values may be outside of the useable range, [−100, 100]. You should
write a function bound which takes a PWM value and returns a PWM value that is bounded to
the valid range, being careful to handle negative values. Hand-in: Compute Kff offset and kff .
(2 pts each) Write bound(val,val max) and feedforward compute(vel) (3 pts each)

2 2014-10-09



ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
October 9, 2014

1.4 Measure Open-loop controller performance

Use the controller test() function to test your controllers. Write open loop motion() to
test the open-loop controller. This function should compute the velocities for each motor, run
them for the correct time, then stop. Do not use the sys.sleep() function to measure time, it is
too inaccurate. Instead, use the sys.time() function. Get the start time, then make a while loop,
and compare the current time to the start time to determine when to stop.

Run 10 trials to drive the robot 10 seconds at 100 mm/sec. Measure the error between the
calculated position and the actual position. Also, determine the lowest velocity before your robot
doesn’t drive properly. Hand-in: One table with 10 error measurements, and the lowest control-
lable velocity of your robot (4 pts)

2 Closed-Loop (Feedback) Control
In order to drive straight, you must command each wheel to travel at the same velocity. This
will require different PWM values for each wheel and those values will change depending on the
battery voltage, the unevenness of the floor, and other factors. You cannot manually account for
these issues. This is the job of a feedback control loop.

We start by breaking time up into fixed periods, 30ms in this problem set. For each period, you
measure the current velocity of each wheel, and increase or decrease the PWM value to each motor
according to the difference between the measured velocity and the desired velocity. We will use
the feedforward compute() function to make a good guess of PWM, then use our controller
to fine-tune the values. The type of controller we will be building is called an proportional-integral
controller. The following equations show how the controller operates. First, you must initialize the
encoder values, time step, and integral term:

ticks0 = rone.encoder get ticks()

time0 = sys.time()

iterm0 = 0

Then, at each period, you measure the velocity error and update the PWM sent to the motor. The
following equations show how the controller is updated at each timestep, n (for n > 0):

velocityn =
distancen

∆t
(1)

fftermn = feedforward compute(goal veln) (2)
errorn = goal veln − velocityn (3)
ptermn = (Kp ∗ errorn) (4)
itermn = itermn−1 + (Ki ∗ errorn) (5)
pwmn = fftermn + ptermn + itermn (6)

In these equations, ∆t is the duration of the last time period, which you must calculate in your
code. First, compute the feedforward term based on the current goal velocity (Eqn. 2). This does
not use any feedback. Then you measure the actual velocity (Eqn. 1), calculate the error in the
velocity (Eqn. 3) and update the feedforward term(Eqn. 2), the proportional term(Eqn. 4), and the
integral term (Eqn. 5). The new PWM value to drive the motors (Eqn. 6) In the code, K INTEGRAL

3 2014-10-09



ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
October 9, 2014

= Ki and K PROPORTIONAL = KP . Note that the PWM value given to rone.motor set pwm()
must be an int. Use PWM = int(PWM) to cast the variable as an int.

For this problem set, the goal velocities for both wheels will remain the same, but you can
build programs that command different velocities. Because each motor is different, they will re-
quire different PWM values, even for the same goal velocity. So you will need to calculate these
equations separately for each motor, and then give each motor its own PWM value.

2.1 Computing the Proportional and Integral terms
First, write the proportional compute() function. This takes as input the goal velocity, and
the current velocity, and implements Eqn. 3 and Eqn. 4. It returns the p term. Next, write the
integral compute() function. This takes as input the goal velocity, current velocity, and cur-
rent i term, and implements Eqn. 3 and Eqn. 5. It returns the new i term. Hand-in: your
proportional compute() function (6 pts), and your integral compute() function (6 pts)

2.2 Implementing the Velocity Controller
We’ve given you the closed loop motion() function, which does the task of keeping all the
variables organized. It calls the velocity controller() function, which is where all the
magic happens. This function should implement the integral controller from Section 2. Use
integral compute() from the previous section. Whenever you read the encoder, you should
immediately also read the time. You should not rely on sleep or other mechanism to keep track
of when the encoders are being read. We’ve put comments in the code for you to use to get started.

You will need to select Kp and Ki by experimentation. First, write a program that commands
a constant velocity. Set Ki = 0 and increase Kp until the robot’s velocity becomes unstable, then
back down a bit. Once you have set Kp, use this value and repeat the same process to determine
Ki. For Ki, start small, around 0.01, and increase this parameter until the robot stutters. Note
that setting Kp = 0 and Ki = 0 transforms the feedback controller to a feed-forward controller.
Hand-in: A wonderful velocity controller() function (6 pts).

2.3 Measure Closed-loop Controller Performance
Use controller test() again to test your closed-loop controller. We’ve given you the
closed loop motion() function, because you’ve done enough work. Again, run 10 trials to
drive the robot 10 seconds at 100 mm/sec. Measure the error between the calculated position
and the actual position. Determine the lowest velocity before your robot doesn’t drive properly.
Hand-in: One table with the 10 error measurements, and the lowest controllable velocity of
your robot (4 pts)

3 Design Challenge 4: Robot Croquet
On the due date, you will demonstrate your robot driving straight in a Robot Croquet Design
Challenge.2 The first wicket on the croquet course is the check-off for this lab, and is manda-
tory. Completing more advanced hoops will earn you fabulous prizes. You must have your code
working by the start of class or you will not be able to complete this challenge.

2See http://en.wikipedia.org/wiki/Croquet for more information on Croquet.

4 2014-10-09


	Open-Loop Controller
	Characterize the motors
	Plot and Analyze the data
	Compute Open-Loop Control Gains
	Measure Open-loop controller performance

	Closed-Loop (Feedback) Control
	Computing the Proportional and Integral terms
	Implementing the Velocity Controller
	Measure Closed-loop Controller Performance

	Design Challenge 4: Robot Croquet

