
ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
November 11, 2014

Homework 8: Pose Estimation and Waypoint Motion
Due: November 20, 2014

Hand in your code on Owlspace before class, and bring a printout of the student code to class.
Please only print your functions, do not print the distribution code. All of your code should be
contained in a single python file called PS08 netid.py. This assignment will be due at the begin-
ning of class, and you will need to demonstrate your pose estimation and waypoint navigation
behavior during class.Be sure to comment your code so that the graders understand what you
were trying to do.
Questions? email engi128-staff@rice.edu.

Pose Estimation and Waypoint Navigation

For this assignment, you will write software that lets the robot keep track of its current pose,
and a waypoint navigator to command the robots to go to specified locations. You will test your
software by programming the robot to move forward a fixed distance, turn left 90 degrees, then
move forward the same fixed distance again and repeat four times to drive in a square.

Sound familiar? This is similar to the data collection assignment you had for PS04, but now
you have a velocity controller, a pose estimator, and a waypoint motion controller. These systems
will make your motions much more accurate. The goal of this assignment is to measure how much
the robot’s performance varies across trials.

Getting Started

Download the distribution code from the website. Program the following modules into flash
memory on your robot:
owlpy.connect()
... Robot Startup Stuff ...
owlpy>loadrun PS08 netid.py PS08Libs.zip

1 Estimating Pose

The first step is to estimate the pose of the robot. Recall that the pose is a tuple of the position and
angle of the robot on the 2-dimensional plane: pose = (x, y, θ). We can keep a running estimate
of the robot’s pose by using the wheel encoders to measure distance. We’re going to write this
software backwards, starting with the function that initializes the pose, them moving on to the
functions that access the pose, print the pose, and finally update the pose. Why work in this way?
Because deciding how you want to use a software module is one of the best ways to figure out
its structure. In other words, defining the interface to a module constrains its design, and makes it
easier to see how to build it. (Remember “interfaces”? From, like, 8,000 weeks ago?)

1.1 Review pose init()

This function builds the state of your pose estimator. This state is stored in a dictionary. We’ve
given this dictionary global scope, because there is only one pose state; i.e. the robot can only be
in one place at a time. Using global variables is dangerous, and is almost always bad form, so
don’t use them in your code. In order to access a global variable within a function, you need to
tell Python you are sure you want to do this. The global keyword tells python that the following

1 2014-11-13

ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
November 11, 2014

variables are defined globally, and that this function should use these global variables instead of
creating a new local variable.

1.2 Review the “Getters” and “Setters” of the pose state

Storing all of the pose estimator’s state in a single variable is good, but we need a convenient way
to access parts of it. That is what “getters” and “setters” are for: they access a particular piece of
data from a larger, more complex data structure. We’ve written three getters:
poseX.get pose(), poseX.get theta(), poseX.get odometer()

All of these return a single floating-point number, except for pose.get pose(), which returns a
tuple of floats: (x, y, θ). There is only one setter:
pose.set pose(x, y, theta)

which takes as its argument the three components of the pose.

1.3 Write pose update()

Recall the derivation from the lecture:

∆d =
dR + dL

2
(1)

∆θ =
dR − dL

b
(2)

x′ = x+ ∆d · cos(θ) (3)
y′ = y + ∆d · sin(θ) (4)
θ′ = θ + ∆θ (5)

Use these equations to write pose update(pose state). The trigonometric functions sin and
cos are part of the math package, call them with the syntax: math.sin(angle). We’ve provided
a marh2.normalize angle(theta) function that takes an angle theta, and returns the same
angle, but within the bounds of −π < θ ≤ π. Use it on θ after you update it in Equation 5, but
before you store it in pose state

You will also make an odometer, a counter of the total distance the robot has travelled since it
was reset. It always increases, even when the robot is driving backwards. It should be a float.
You will need to update it in this function, and store its current value in the pose state so that
poseX.get odometer() returns the correct value.
Hand-in: Write pose update()(8 pts).

1.4 Run a Sanity Check

Run your pose estimator. The distribution code prints the pose every 250ms. You may test your
program by imagining a coordinate axis on the floor. Put your robot at a pose of (0, 0, 0), which is
the origin, facing the x-axis. Move your robot forwards, this should increase the x value. Rotate it
π
2 degrees counter-clockwise (left turn). This should increase θ to π

2 . Now push it forward again.
This should increase the y value. If you don’t get these kind of output, check your code for bugs,
it was quite accurate on my desk. Maybe you need a better desk.
Hand-in: Sanity check passed?(1 pt).

2 2014-11-13

ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
November 11, 2014

2 Waypoint Navigation
Recall from lecture that you can program waypoint navigation by combining translational velocity
and rotational velocity. In this section, you will refine this idea into a slick motion controller, then
measure how well it works.

2.1 Review the Motion Controller API

The motion controller API is int he zip file we’ve provided. You don’t need to unzip it to pro-
gram the robots. You can read files in the zip file without unzipping them: motionX.init(),
motionX.update(), motionX.is done(), motionX.set goal(goal pos, tv max),
motionX.get goal()

2.2 Write helper functions

You’ll need three functions to compute the distance and the direction to the goal position. Write a
function called topolar(x, y) to convert cartesian coordinates to polar coordinates and return
a tuple of the form: (r, theta). We use this to compute the distance to the goal. You can
compute x2 in two ways: x**2.0 or x*x. Use the second way, it’s faster. The square root function
is in the math package, access it with the statement a = math.sqrt(b).
Hand-in: Write topolar(x, y)(2 pts).

Second, write compute goal distance and heading(). This returns a tuple of the form
(goal distance, goal heading, robot heading). The goal heading is the angle between
the current (x, y) position and the goal (x, y) position. In other words, this is the heading along
which the robot must travel. It is not the angle the robot needs to rotate to point itself at the goal
position. That is the next function.
Hand-in: Write compute goal distance and heading()(6 pts).

Finally, write a third function called smallest angle diff(current angle, goal angle)
that computes the smallest angle difference from the current angle to the goal angle. This is
the angle that the robot needs to rotate from its current heading to the goal heading, heading error.
Normalize this error to lie between −π < θ ≤ π, in other words, compute the most direct rotation
to point the robot towards the goal position. The robot should never robot more than π or −π.
Computing this angle is tricky. Test this function carefully. Be sure to test with start and goal po-
sitions in multiple quadrants. Pay careful attention as all the different angles wrap around from 0
to 2π and −π to π. Review the lecture notes on global coordinates before you start this section.
Hand-in: Write smallest angle diff()(3 pts).

2.3 Build a Controller for tv

We want the robot to slow down as it approaches the goal position. In order to do this, we want
to command a velocity profile of the form:

tv profile vs. distance

0

20

40

60

80

100

120

140

0 50 100 150

distance to goal (mm)

tv
 (m

m
/s
) tvtemp = ktv · d+ tvmin (6)

tv =

{
tvtemp if tvtemp ≤ tvmax

tvmax otherwise
(7)

3 2014-11-13

ENGI 128: Introduction to Engineering Systems
Fall, 2014

Rice University
November 11, 2014

You need to write motion controller tv(d, tv max) We’ve provided these parameters for
you:
tvmax = tv max, an argument to the function
tvmin = MOTION TV MIN
ktv = MOTION TV GAIN
Hand-in: Write motion controller tv()(3 pts).

2.4 Build a Controller for rv

The controller for rv is simpler:

rv = krv · θrotate (8)

Set krv = MOTION RV GAIN and use the math2.bound(rv, MOTION RV MAX)function to limit
the values of rv to MOTION RV MAX.
Hand-in: Write motion controller rv()(3 pts).

2.5 Test with the waypoint list

Build a list to store a series of waypoints, which are (x, y) tuples that are the points that the robot is
supposed to visit. We’ve given you the example list I used to test with the 1 ft-square tiles in my
office. Units are in millimeters. Make your list appropriate for the tiles you have to work with.
The list is on line 165 of the code.
Hand-in: Waypoint list working?(1 pt).

3 Data Collection
Find a floor with a regular grid tile pattern. We’ll use these to make collecting data easier. Note
how many tiles can fit into a meter, probably three, if your tiles are one foot squares. This dis-
tance will be our reference distance, d. Place the robot at a tile intersection. This will define our
coordinate system:

The program we’ve given you waits for the user to press the red button to load the waypoint list.
Modify this waypoint list to move the robot in a square 1 m on a side. Measure the actual final
position, (x, y), of the robot. Measure from the center of the robot. This is one experimental trial.
Move the robot back to the starting position and run the program for a total of 10 trials. Each robot
will perform differently in these tests and the measurements will vary. Make a scatter plot of the
(x, y) positions of the robot.
Hand-in: A plot of the final positions of the robot after moving in a 1 m square.(6 pts).

4 2014-11-13

	Estimating Pose
	Review pose_init()
	Review the ``Getters'' and ``Setters'' of the pose state
	Write pose_update()
	Run a Sanity Check

	Waypoint Navigation
	Review the Motion Controller API
	Write helper functions
	Build a Controller for tv
	Build a Controller for rv
	Test with the waypoint list

	Data Collection

