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Discontinuous Distributions in Mechanics of Materials 
J.E. Akin, Rice University 

 

1. Introduction 
The study of the mechanics of materials continues to change slowly.  The student needs to 
learn about software support tools like general finite element systems, Maple, Matlab, and 
non-procedural case solvers such as TK Solver.   Learning to use those tools takes away 
time that in the past was spent learning multiple ways for solving problems in mechanics of 
materials.  Also, the focus of the study has changed.  Today, mechanics of materials 
solutions are no longer an end in themselves.  They are frequently used to validate the 
reasonableness of a complicated two- or three-dimensional finite element stress analysis. 
 
Some classical mechanics of materials analysis methods have to be eliminated from the 
educational programs in order to make room for the more modern and more general analysis 
methods.  Thus, the question is what analysis methods should be taught?  One should teach 
those methods that are easily applied to statically indeterminate systems.  For one-
dimensional bars, shafts, and beams the finite element method offers the most power, 
followed by integration methods based on discontinuous distributions.  The latter methods 
benefit from building on the student’s basic knowledge of integral calculus, and free body 
diagrams.  Here the use of discontinuous distributions for bars, shafts, and beams will be 
illustrated.  Some of the example applications will also be implemented in TK Solver so their 
numerical use can also be illustrated. 

2. Discontinuous Distribution Calculus 
 
2.1 Definitions  
The Macaulay distributions are denoted by a function, f(x), within triangular brackets that 
have an integer exponent, n: ൏ ݂ሺݔሻ .   The most commonly used ones in mechanics are: 
 

Positive exponent distribution, ݊  0: 

൏ ݔ െ ܽ ൌ 
0 0 ݎ݂ ൏ ݔ ൏ ܽ

ሺݔ െ ܽሻ ܽ ݎ݂  ݔ ൏ ∞ 

 
Heaviside (unit step) distribution, ݊ ൌ 0: 

ሻݔሺܪ ൌ൏ ݔ െ ܽ ൌ 0 0 ݎ݂ ൏ ݔ ൏ ܽ
1 ܽ ݎ݂  ݔ ൏ ∞ 

 
Pole (unit pulse) distribution, ݊ ൌ െ1: 

ܲ ൏ ݔ െ ܽ ିଵൌ  0 ݔ ݎ݂ ് ܽ
ܲ ݔ ݎ݂ ൌ ܽ 

 

ܲ ൌ ఌ՜ݐ݈݅݉݅ න
ܲሺݔሻ

ߝ

ାఌ/ଶ

ିఌ/ଶ
 ݔ݀
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Dipole (doublet pulse) distribution, ݊ ൌ െ2: 

ܯ ൏ ݔ െ ܽ ିଶൌ  0 ݔ ݎ݂ ് ܽ
ܯ ݔ ݎ݂ ൌ ܽ 

 

ܯ ൌ ఌ՜ݐ݈݅݉݅ න
ሻݔሺܯ

ଶߝ



ିఌ
ݔ݀ െ න

ሻݔሺܯ
ଶߝ

ାఌ


 ݔ݀

 
2.2 Products 
 

ܪܪ ൌ ,ܪ ܪܪ    ൌ ܽ ݎ݂ ܪ ൏ ܾ 
 
2.3 Integrals 
 

න ൏ ݔ െ ܽ  ݔ݀ ൌ ቐ
൏ ݔ െ ܽ ାଵ ݊ ݎ݂  0
൏ ݔ െ ܽ ାଵ

݊  1 ݊ ݎ݂  0
 

 

න ݔሻ݀ݔ݂ሺܪ ൌ ܪ

௫

ିஶ
න ݂ሺݔሻ݀ݔ

௫


 

 

න ݔሺܪ െ ܽሻ݀ݔ ൌ න ൏ ݔ െ ܽ ଵ  ݔ݀

 

න ൏ ݔ െ ܽ  ݂ሺݔሻ݀ݔ ൌ න ܪ ሺݔ െ ܽሻ݂ሺݔሻ݀ݔ ൌ ܪ න ሺݔ െ ܽሻ
௫


݂ሺݔሻ݀ݔ 

න ܪ ൏ ݔ െ ܽ  ݔ݀ ൌ ܪ
൏ ݔ െ ܽ ାଵ

݊  1 െ ܪ
ሺܾ െ ܽሻାଵ

݊  1 ܽ ݎ݂  ൏ ܾ 

 

3. Axial bars 
If you are learning to use only one or two techniques then you want to be sure that they can 
handle statically indeterminate systems.  Both discontinuous distributions and finite elements 
can do that.  Either approach requires the basic starting point of a correct “Free Body 
Diagram” (FBD) that displays both the loading and reactions. 
 
The differential equation of equilibrium of an axially loaded linearly elastic bar, in terms of its 
displacement, u(x), is 
 

-[E(x) A(x) {u(x)’ – α(x) ΔT(x)}]’ = p(x) 
 

where E, α are the material’s elastic modulus and thermal expansion coefficient,  A is the 
cross-sectional area, ΔT is the temperature increase, p is the axial load per unit length, and   
( )’ = d( )/dx.  Clearly, you must select the x-coordinate system relative to the bar to be 
studied. Usually, one end of the bar is chosen as the origin.  Examine the free body diagram 
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to see if either end has a prescribed displacement.  Selecting such a point as the x-origin 
usually slightly simplifies the study, but it is not required. 
 
 
 
 
 
As a first example, consider a statically indeterminate bar with constant E, A, α, and ΔT.  The 
bar is fixed at both ends, so place the origin at the left end.  Then the boundary conditions are 
u(0) = 0 = u(L), and thus the FBD should show that it has two point reaction forces of R0 and 
RL at x = 0 and x = L, respectively. The bar is subjected to an axial point load Pa at x = a < L.  
The external load per unit length is easily given by three unit pulse discontinuous distributions 
as 
 

p(x) = R0<x>-1 + Pa<x-a>-1 + RL<x-L>-1 
 

Integrating this distribution once gives the resultant axial force, F(x), acting at each point 
along the full length of the bar:  
 

F(x) = R0<x>0 + Pa<x-a>0 + RL<x-L>0 + C, 
 

where the constant of integration is always zero because all loads and reactions were 
included in p(x).  That is, F(0) = R0 = R0 + C, so you normally omit C.  The axial stress at a 
point is σ(X) = F(x) / A(x).  Next, you observe the closure (force equilibrium) condition that 
F(L+) ≡ 0 (or ΣFx = 0):  
 

R0 + Pa+ RL = 0,        (Eq 1) 
 

This is the first equation involving the two unknown reactions.  Since -EA [u(x)’ – α ΔT] = F(x), 
or -u(x)’ = F(x) / EA – α ΔT one more integration will give the axial displacement:  
 

-u(x) = [R0<x>1 + Pa<x-a>1 + RL<x-L>1] / EA – α ΔT x + C2 
 

The first displacement boundary condition gives u(0) = 0 = 0 - 0 + C2.  The second 
displacement boundary condition gives 
 

-u(L) = 0 = [R0 L + Pa(L-a) + 0] / EA – α ΔT L     (Eq 2) 
 

which is the second equation for the reactions.  In general, the two unknown reactions are 
obtained by solving the simultaneous Eqs. 1 and 2.  That is easily done numerically with TK 
Solver, or symbolically with Maple or similar software tools. 
 
There are two common special cases:  

a) Pa = 0 so only the thermal load is present which gives R0 = EA α ΔT = - RL so  
u(x) = [EA α ΔT <x>1 ]/EA - α ΔT x = 0.  There is no displacement, but there is a 
constant thermal force, R0, and a constant compressive thermal stress, R0 / A. 

R0 

RL Pa 

X = 0 X = a X = L 
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b) T = 0 so there is only the point load.  That gives the reactions of R0 = -Pa(L-a) / L 
and  RL = -Pa(a / L), as expected.  There are two regions of constant stress in the 
bar and its deflection is 

-u(x) =[-Pa(L-a) <x>1/ L + Pa<x-a>1 - Pa(a / L) <x-L>1] / EA 
 

-u(x)  = [-(L-a) x/L + <x-a>1] Pa / EA 
 

    which of course vanishes at x = 0 and x = L, as required.   
 

Combining these two cases gives the general solution 
 

-u(x) = {[EA α ΔT - Pa(L-a) / L] x + Pa<x-a>1} / EA – α ΔT x. 
 

Note that the right end point term involving <x-L> n need not appear explicitly in the 
final expression for the displacement, u(x).  However, its inclusion is necessary, in 
p(x), to obtain the reactions which always appear in u(x).  The above examples, and 
others including distributed loads per unit length, are illustrated in the following 
sections on software implementations.  
 
A more general form of this example would be to assume that the end displacements are 
given non-zero values of u0 and uL, respectively.  Then one can include support settlement 
cases rather than just fixed ends. 

4. TK Solver example implementations 

The TK Solver case solving software has been widely utilized in engineering.  The theory 
behind case solvers is covered in [1, 3], and descriptions of the general capabilities of TK 
Solver are found at [6].  The text by Norton [4] covers many mechanical engineering 
applications including statics, dynamics, mechanics of materials, etc. solve with TK Solver. 

The rules for TK Solver can be in any order and thus are non-procedural, unlike C, Fortran, 
Visual Basic, etc.  The unknown can be on either side of the equals (=) symbol.  Mixed units 
can be used so long as the unit selected exists as a symbol in the Units Sheet.  When adding 
new rules you must give the units symbol (in column 5 of the Variables Sheet) before solving 
the first time.  A function sfn (x, a, n) to evaluate the logic for < x – a >n was defined in the 
Function Sheet to include the range of applications common to mechanics of materials.  Its 
name is short for singular function to be consistent with the notation of [4].  Two examples of 
defining such procedures are given in Figure 1. 

This implementation is for the first axial bar example, plus the addition of a constant line load 
over part or all of the length.  The end at x = 0 is always fixed, but the far end displacement 
can be assigned a non-zero value.  The rules are given in Figure 2.  Those rules that have 
the position, x, as an argument can be evaluated at any point, and produce line plots when 
computed as a List Solve.  The equilibrium rule, F(L+) = 0, and the displacement boundary 
condition, u(L) = u_L, provide the data necessary to recover the two reaction forces. 
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Figure 1  Functions to evaluate discontinuous distributions 
 
 

 
 

Figure 2  Rules for axial bar with point loads and partial uniform load 
 
The Variable Sheet is seen in Figure 3.  The particular input data displayed there are for a 
point load acting near the middle of the bar.  Three variables (Reactions, Applied, and u) 
have been displayed in metric units just to note that it is easy to switch them.  Just enter the 
new symbol in the units column and the numerical value is instantly converted. 
 
The basic list plots for those data are given in Figure 4.  They include the load per unit length, 
axial force, axial stress, and axial displacement, respectively from top to bottom.  In Figure 5  
similar plots are given for a bar with a constant load per unit length of w = 100 lb/in and 
having both ends fixed.  The top half of the bar is in tension while the bottom half has a mirror 
image compressive stress distribution. 
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Figure 3  Variables for axial bar with point loads and partial uniform load 
  



Draft 2 (01/06/09) 

Page 7 of 20.  Copyright J.E. Akin 2009.  All rights reserved. 

 

 

 

 
Figure 4  Graphs for fixed-fixed bar with a point load 
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Figure 5 Graphs of a fixed-fixed bar with constant load per unit length  
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To model a bar hanging under its on weight you view w as the weight per unit length, set R0 
= wL, the total weight, so RL is set to zero.  A Direct Solve yields the end displacement of u_L 
= 1.2e-3 inches, which corresponds to the analytic free end displacement of umax = (wL / 2) 
L / EA.  Now the linear stress distribution is all tension, being zero at the free bottom end and 
maximum at the top (x = 0) support.  The corresponding list plots are seen in Figure 6.  
 

 

 

 
 

Figure 6  Graphs for fixed-free axial bar hanging under its on weight 
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The following section will address the torsion of circular shafts.  Then the more common use 
of discontinuous distributions for beam deflections will be reviewed.  Finally, the process for 
changes in materials or part sizes will be outlined, even though they are better suited to finite 
element analysis. 

5. Axial shaft in torsion 
 
The problem of a circular bar subjected to axial torsional couples is basically the same as the 
above problem expressed with different symbol meanings.  The differential equation of 
torsional equilibrium, in terms of its angular displacement (rotation), θ(x), is 
 

-[G(x) J(x) θ(x)’ ]’ = t(x) 
 

where G is the material’s shear modulus, J is the polar moment of inertia of the cross-
sectional area, t is the axial torque per unit length, and ( )’ = d( )/dx.  The classic example is a 
bar with constant GJ, fixed at x = 0, and subjected to a torque TL at its free end.  The torque 
per unit length is 

t(x) = T0 <x>-1 + TL <x-L>-1 

 
where T0  is the unknown reaction torque.  Integration gives the axial torque, 
 

T(x) = T0 <x>0 + TL <x-L>0. 
 

The closure of T(L+) ≡ 0 (or torque equilibrium Σ Tx = 0) gives T0 + TL = 0. The wall reaction 
torque is T0 = -TL.  Integrating -GJ θ(x)’ = T(x) yields the rotation 
 

-GJ θ(x) = -TL <x >1 + TL <x-L>1 = -TL (x + <x-L>1). 
 

The maximum rotation is θ(L) = TL L /GJ, as expected. 
 
As a second example, consider the shaft to have both ends fixed and a linear distributed 
torque per unit length given by [Ta + (Tb – Ta) x / L].  Including the two indeterminate reaction 
torques you begin with 
 

t(x) = T0 <x>-1 + H0 [Ta + (Tb – Ta) x / L] + TL <x-L>-1 

 
which yields a torque along the length of the bar of 
 

T(x) = T0 <x>0 + H0 [Ta x + (Tb – Ta) x2 / 2L] + TL <x-L>0. 
 
The maximum shear stress, for a circular bar, is τ = T(x) r / J.  Equilibrium closure gives  
 

T(L+) = 0 = T0 + [Ta L + (Tb – Ta) L / 2] + TL , or    T0 + TL + (Ta + Tb ) / 2 = 0 . EQ 1 
 

For constant GJ the rotation becomes 
 

-GJ θ(x) = T0 <x>1 + [Ta x2 / 2L + (Tb – Ta) x3 / 6L] + TL <x-L>1. 
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Enforcing the second boundary condition, θ(L) = 0, reduces this to 
 
0 = T0 L + [Ta L / 2 + (Tb – Ta) L2 / 6] + 0, or   0 = T0 + Ta / 2 + (Tb – Ta) L / 6 .  EQ 2 
 
Combining equations 1 and 2 gives the expressions for the reactions T0 and TL.  Substituting 
their expressions gives the final shaft rotation 
 

-GJ θ(x) = -x [Ta / 2 + (Tb – Ta) L / 6] + [Ta x2 / 2L + (Tb – Ta) x3 / 6L] + 0 
 

-GJ θ(x) = (x2 / L – x) Ta / 2 + (x3 / L – x L)(Tb – Ta) / 6. 
 

This example, and others including distributed torques per unit length , is illustrated in the 
later sections on software implementations. 
 
5.1 TK Solver shaft models 
A similar set of TK rules for shaft torsion are given in Figure 7  .For the  classic problem of 
two equal and opposite end torques, the rotation is a linear function of position as given by 
the above equation and as shown in Figure 8. That was accomplished by specifying a zero 
far end reaction torque and solving for the non-zero end rotation. 
 

 
 

Figure 7  Rules for shaft with torques at given points 
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Figure 8  Shaft with two equal and opposite end torques 
 
One difference in the torsional rule set is that the distributed torque per unit length has been 
defined by a variable Line_t so that its contribution to t(x) will be easy to modify.  Here it is set 
for a trapezoidal variation in the distributed line torque. The next example applies that 
trapezoidal distributed torque, and fixes the rotation at each end of the shaft.  No external 
point torque (Tp) is applied.  The distributed and resultant torques are shown in Figure 9, 
while the shaft rotation is given Figure 10.  The corresponding input and output variables are 
given in the Variable Sheet of Figure 11. 
 

 

 
 

Figure 9  Fixed-fixed shaft with trapezoidal distributed torque per unit length 
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Figure 10  Rotations of fixed-fixed shaft with variable distributed torque 
 

 
 

Figure 11  Variables for point and distributed shaft torques 
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6. Axial beam in bending 
Consider a straight, elastic beam undergoing small transverse displacements, v(x), when 
subjected to a transverse load per unit length of q(x).  The governing differential equation of 
equilibrium, assuming no thermal moment due to temperature change through the depth, is 

[E(x) I(x) v’’(x)]’’ = q(x) 

where E is the elastic modulus, I = ∫ y2 dA is the moment of inertia of the cross-sectional area, 
A, and ( )’ = d( )/dx.  It is also assumed that the slope of the deflection is small, v’ << 1.  
Integrating once gives the transverse shear force V(x) as 

[E(x) I(x) v’’(x)]’ = dM(x) / dx = V(x) 

followed by the bending moment-curvature relation 

E(x) I(x) v’’(x) = M(x) 

the slope 

v’(x)  = θ(x) = ∫ [M(x) / E(x) I(x)] dx 

and finally the deflection 

v(x) = ∫ θ(x) dx. 

In most problems the product of EI is a constant.  Then you get the common terminology for 
the beam: 

Load:  EI v’’’’ = q(x) 

Shear:  EI v’’’ = V(x) 

Moment: EI v’’ = M(x) 

Slope:  v’ = θ(x), and 

Deflection: v(x). 

Of course, these will involve constants of integration to be determined from the displacement 
and slope boundary conditions in conjunction with the static equations of equilibrium: 

Σ Fy = 0,  Σ Mp = 0, 

where p is any point in the x-y plane. 

6.1 Statically determinate example 

As an example application of discontinuous distributions applied to beams consider a simply 
supported beam with a constant EI, a length L, with a downward point load, Pa, at x=a, a pure 
couple -Cb at x=b, and a downward uniform load per unit length, w, running from point x=c to 
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the end of the beam.  A FBD shows upward reaction forces at the two ends of R0 and RL, 
respectively.  The load per unit length is  

[EI v’’]’’ = q(x) = R0<x>-1 – Pa<x-a>-1 - Cb<x-b>-2 – w<x-c>0 + RL<x-L>-1. 

The transverse shear force is 

[EI v’’]’ = V(x) = R0<x>0 – Pa<x-a>0 - Cb<x-b>-1 – w<x-c>1 + RL<x-L>0, 

so the shear equilibrium closure gives 

V(L+) = 0 = R0 – Pa - 0 – w(x-c) + RL .    EQ 1 

Integrating again for the bending moment 

EI v’’ = M(x) = R0<x>1 – Pa<x-a>1 - Cb<x-b>0 – w<x-c>2 / 2 + RL<x-L>1, 

and moment equilibrium closure (sum of the moments about x=L) gives 

M(L+) = 0 = R0 L – Pa(L-a) - Cb– w(L-c)2 / 2   EQ 2 

In this case, the two closure equations allow for the solution of the two reactions, R0 and RL. 
The slope becomes: 

v’(x) = θ(x) = [R0<x>2 /2 – Pa<x-a>2 /2- Cb<x-b>1 – w<x-c>3 / 2 / 3 + RL<x-L>2 /2 + c1] / EI 

and finally the deflection is 

v(x) = [R0<x>3 /6 – Pa<x-a>3 /6 - Cb<x-b>2 /2 – w<x-c>4 / 24 + RL<x-L>2 /6 + c1 x] / EI + c2. 

The displacement boundary condition v(0) = 0  gives c2 = 0.  Likewise the displacement 
boundary condition v(L) = 0 yields the remaining constant, c1, from 

0 = R0L3 /6 – Pa(L-a)3 /6 - Cb(L-b)2 /2 – w(L-c)4 / 24 + 0 + c1 L . 

- c1  = R0L2 /6 – Pa(L-a)3 /6 L - Cb(L-b)2 /2 L – w(L-c)4 / 24 L. 

6.2 Statically indeterminate example 

 
As an indeterminate example, to be implemented in TK Solver, consider a beam on three 
roller supports, one at each end and one at x = b < L. The beam is loaded by a downward 
uniform load over part of the span from x = a to the end, x = L.  The reactions, R1, R2, and 
R3 are assumed to be upward in the FBD.  A sketch of the problem and the TK rules are 
given in Figure 12, while a sample Variable Sheet is given in Figure 13. 

 The loading per unit length is 

q(x) = R1 <x>-1 – w <x – a>0 + R2 <x-b>-1 + R3 <x-L>-1 
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Figure 12  Rules for three point supported beam with partial uniform load 

The transverse shear force is 

V(x) = R1 <x>0 – w <x – a>1 + R2 <x-b>0 + R3 <x-L>0 

The force equilibrium closure is 

V(L+) = 0 = R1– w (L – a) + R2 + R3 .    EQ 1 

The bending moment becomes 

M(x) = R1 <x>1 – w <x – a>2 / 2 + R2 <x-b>1 + R3 <x-L>1 

so that the moment equilibrium closure requires 

M(L+) = 0 = R1 L– w (L – a)2 / 2 + R2 (L-b) + 0   EQ 2 

You could write other moment equilibrium equations, such as at x = 0 and x = b.  That would 
add redundant equations, which is often useful in TK Solver, but is not necessary here.  The 
slope is 

v’(x) = [R1 <x>2 / 2 - w <x – a>3 / 2 / 3 + R2 <x-b>2 / 2 + R3 <x-L>2 /2 + c1] / EI 

and the deflection becomes 
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v(x) = [R1 <x>3 / 6 - w <x – a>4 / 24 + R2 <x-b>3 / 6 + R3 <x-L>3 / 6 + c1 x] / EI + c2 

There are three displacement boundary conditions to be combined with the above two 
closure conditions to allow you to find the five unknowns (R1, R2, R3, c1, and c2). 
 

 
 

Figure 13  Variables for three point supported beam with partial uniform load 
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The three support points could have non-zero settlements, as allowed for in the TK 
implementation.  For the input choices in the Variable Sheet the shear, moment, slope and 
deflection are graphed in Figure 14.  Likewise, one can compute the flexural stress, M c / I, 
the shear stress, 1.5 V / A, an approximate transverse (y) normal stress, q(x)/width, and a 
failure criteria by Von Mises.  These are graphed in Figure 15.  The y-normal stress is 
ignored in beam theory, but is quite high due to the assumed point reaction forces. 
 

 

 

 
 

Figure 14  Example shear, moment, slope and deflection of three point beam 
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Figure 15  Corresponding stresses for example three point beam 
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