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Beginning Simulation Studies 

In this course the simulation (finite element analysis) capabilities of SolidWorks for stress analysis, dynamic response, 

and vibrations will be utilized as ‘black box’ tools without first mastering the theory of finite element analysis.  However, 

there are a few important topics that you should know.  For stress or displacement analysis they include: 

1. Knowing the differences between brittle and ductile materials, and the failure criterion that should be 

checked for either material type.  Brittle materials, like some cast iron, fail suddenly at small strains while 

ductile materials, like some steels, fail gradually often with large strains and visible distortions.  Brittle 

materials will not absorb much energy before failing.  By contrast, ductile materials absorb large amounts of 

energy before failure, mainly through plastic strains that caused permanent distortions of the part. 

 

 
Figure 1 Typical stress-strain curves for brittle and ductile materials 

 

2. Which of the available 17 stress components should you select for plotting and discussion in your report?  

The selected stress must be clearly named.  There are 6 Cartesian stress components at a point which can 

alternately be expressed as 6 cylindrical coordinates stress components.  Either set of those 6 stresses yields 

the same additional 3 Principal Stresses.  Those 3 Principal Stresses then yield definitions of the Stress 

Intensity, Maximum Shear Stress, Maximum Normal Stress, Mohr-Coulomb Stress, and the von Mises Stress 

(distortional energy measure), and others.   

 

The default system template always supplies a plot of the scalar von Mises Stress, which is commonly 

checked for ductile materials.  However, that does not mean that the distortional energy failure criterion 

should be checked for your material or that it is the only value to display in any given application.  That 

criterion is often called a stress since it has the units of stress, but it is actually a measure of how much 

energy is stored while distorting the material.  The von Mises ductile failure criteria is a positive scalar (with 

the units of stress) obtained from the square root of the sum of the squares of the differences in the three 

principal stresses.   
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𝜎𝑣𝑀 = √(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2 

 

𝜎𝑣𝑀 = √(𝑆𝑋 − 𝑆𝑌)2 + (𝑆𝑌 − 𝑆𝑍)2 + (𝑆𝑋 − 𝑆𝑍)2 + 6(𝑇𝑋𝑌2 + 𝑇𝑋𝑍2 + 𝑇𝑌𝑍2) 

 

When the von Mises value equals the yield stress in tension then a ductile material is deemed to fail. 

 

When you ‘Define a Stress Plot’, from the list below, you should know why that stress is important (at least 

in some region) and explain in your report why it was evaluated and what you concluded from it.  In 

undergraduate courses we tend to consider the classes of axial stress, bending stress, torsional stress, shear  

stress and bearing stress.  A FEA computes the three-dimensional stress at a point.  If you believe that the 

magnitude is due to one of the above classes then that may govern your choice of stress components. 

 

For example, if a region is long and skinny like a beam then normal stress at the surface in the direction of 

the length may govern.  Likewise, the maximum shear stress is at the centerline of such a member and it can 

govern for some materials.  Thus, you should check both stress components in that region. 

 

                   
 

 
Figure 2 Options for selecting stress components or material failure laws 
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3. How do you amplify your static loads to account for impact loads or cyclic (fatigue) loads in a static stress 

analysis?  The posted impact analysis help file shows that a vertical Impact Factor ranging typically from 2 to 

1,500 must multiply an applied load to define the equivalent static force.  Otherwise, it is necessary to run a 

time-history dynamic study to obtain the maximum displacements and the maximum stresses in a part.  For 

horizontal impacts of a mass the horizontal Impact Factor can be less that unity and define an equivalent 

static horizontal force less than the full weight of the impacting mass.  There is also a TK Solver formulation 

that can solve many common body stiffnesses and is easily extended to others. 

 

 

4. How to control your mesh?  Generally the local error in a solution at a point is proportional to the product of 

the size of the element and the gradient of the governing stress component.  Therefore, where you see 

rapidly changing stress values use Mesh Control to produce smaller elements there.  That may require that 

in the solid model you add ‘split lines’ to create regions to receive smaller elements.  In addition to the 

element size, that feature also lets you control how fast the neighboring element grow in size (the default is 

a factor of 1.5).  To make the element sizes grow slowly the use a 1.1 or 1.2 factor instead. 

 

Any sudden change in shape will locally increase the stresses and heat flow in that region.  That is called 

Stress Concentration in stress analysis.  Analytical solutions have been developed to define the “stress 

concentration factor, k” that multiplies a uniform local stress, 𝜎𝐿, to define the maximum stress at the 

change in geometry: 

𝜎𝑚𝑎𝑥 = 𝑘𝜎𝐿 

 

 
Figure 3 Sudden geometry changes concentrate (increase) local stress components 

 

For example, a small circular hole in a wide plate increases the normal stress at the edge of the hole by a 

factor of 3.  Some of the analytic values of stress concentration for common geometries are given in Figure 

4. 

 



Prof. J.E. Akin, Rice University 
 

Page 4 of 10 
 

 
Figure 4 Typical analytic stress concentration values 
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Also, regions subject to bending should have at least three solid elements through the local thickness.  The 

program does have automatic h-adaptive solvers which can iteratively change the mesh to reach a specified 

level of accuracy in the energy norm. 

 

5. How much should you reduce the allowable governing stress to account for knowing that your loadings will 

be applied tens of thousands of cycles to tens of millions of cycles?  To do that you need specific material 

testing data in the form of a governing stress vs number of cycles plot.  That plot is called a “S-N Curve”.  

SolidWorks includes such plot data for a very few of its tabulated material properties.  See the help file on 

cyclic loading for empirical relations for setting an allowable stress level from the number of loading cycles 

expected over the life of a design.  Once a valid static analysis has been obtained, SolidWorks has a module 

that will accept that analysis along with a definition of the periodic nature of the forces and compute the 

estimated number of loading cycles that will cause failure.  Typical S-N data for common materials are 

shown below. 

 
Figure 5 Typical limit stress versus cycles of loading 

 

 

For a single material, the S-N data tend to be grouped as a band as seen below for a typical steel (and 

normalized with respect to the tensile strength: 
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Figure 6 A non-dimensional steel bending stress versus loading cycles 

 

If you do not have the S-N data for a material you can approximate the allowed stress by picking the 

expected number of cycles and using a conservative estimate of the S-N curve as shown below by assuming 

50% allowed stress at a million cycles connecting to 90% at a thousand cycles: 

 

 
Figure 7 Estimating the allowed stress when no data are available 

 

There are S-N curves for reversed bending loads, reversed torsion loads, and reversed axial loads.  The 

torsion endurance limit is generally about 50% of the bending endurance as seen below: 



Prof. J.E. Akin, Rice University 
 

Page 7 of 10 
 

 
Figure 8 Torsional stress endurance is lower than bending stress endurance 

 

6. How to interpret natural frequency or buckling eigen-solutions?  The magnitudes of the scalar eigenvalues 
are meaningful important numbers.  (Zero values correspond to rigid body motion.)  The eigenvector 
displacement magnitudes are essentially meaningless (and should not occur in the color bar)!  However, 
their scaled values (from 0 to 1) give the important relative shape of the vibration or buckling mode.  Most 
codes display only the scaled magnitudes. 

Buckling should always be checked for long skinny regions because it tends to give a sudden catastrophic 
failure.  It is also easy to do with modern FEA.  Buckling out of the plane of the loading is not unusual, so do 
not over restrain a buckling model.  Of course, you must have enough restraints to prevent rigid body 
motion. 

7. If a body contains a sharp re-entrant corner, then a singularity occurs in the stresses and/or heat flux at such 
a location.  In theory, they go to infinity at such a point and a FEA code can never reach that value.  That is 
the main reason why most mechanical parts have fillets at re-entrant corners.  In practice, the corner either 
has some small radius or inelastic behavior so the stress or heat flux does not go to infinity. 
 

8. The calculated Factor of Safety relates only to the state of the material.  The overall Factor of Safety is 
obtained by multiplying that value by a group of values that are each greater than one.  
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9. The results of a simulation are greatly influenced by the quality of your input data: 

 
 

10. Use the proper number of significant figures.  For example, if the modulus of elasticity is given to three 

significant figures, then the stress cannot be known to higher accuracy.  Data are often miss-represented 

due to substitution into a units conversion equation. 
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11. Review the basic concept of structural mechanics.  Any structure or part can be thought of as a linear elastic 

spring.  The spring can have applied loads and/or imposed displacements.  In a simulation the spring 

stiffness(es) are obtained by integrating (numerically) quantities over the volume of the part or structure.  

Requiring the system to be in equilibrium yields a matrix relation between the displacements and the forces. 

Specifying known displacement values (fixtures) reduces the matrix system to a size that can be solved for 

all remaining displacements.  After all of the displacements are known the original matrix equilibrium 

equation can be solved for the reaction forces at the specified displacements.  From the spatial gradient of 

the displacements we obtain the strains.  From a material law the stresses are obtained from the strains.  

Once the stresses are known they are used to compute material failure laws. 

The equilibrium relation for a simple spring between its stiffness, k, displacement, u, and axial force, f, is 

usually seen as: k u = f, or u = f/k.  This simple form arises only because we initially assumed that one end 

of the spring was restrained from displacement (immovable), and the opposite end was subjected to a 

constant force.  If the spring model is generalized to allow either end to be restrained or loaded then the 

equilibrium equation takes a matrix form: 

𝑘 [
  1 −1
−1    1

] {
𝑢1

𝑢2
} = {

𝑓1

𝑓2
},     (1)  

where the subscripts 1 and 2 refer to the left and right ends of the spring, respectively.  Note that the 

determinant of the matrix is zero.  That is because were must later add restraint information about at least one 

end to obtain a unique physical solution. 

For example, assume that the left node has a known displacement, u1 = ugiven, (which is usually zero) and the 

right end has a known force, f2 = F.  Then, the unknowns are the right displacement, u2, and the left end 

reaction force, say f1 = R.  The revised analytic equilibrium relation is 

𝑘 [
  1 −1
−1    1

] {
𝑢𝑔𝑖𝑣𝑒𝑛

𝑢2
} = {

𝑅
𝐹

}, 
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and the independent displacement is found from the second row: 

𝑘[−𝑢𝑔𝑖𝑣𝑒𝑛 𝑢2] = 𝐹 

or  

𝑢2 =  𝑢𝑔𝑖𝑣𝑒𝑛 + 𝐹/𝑘. 

This is the same as the common form when ugiven is zero, namely u2 =  F/k.  Now the reaction force necessary 

to maintain ugiven is obtained from the first row of the matrix system: 

𝑘[𝑢𝑔𝑖𝑣𝑒𝑛 −(𝑢𝑔𝑖𝑣𝑒𝑛 + 𝐹 𝑘⁄ )] = 𝑅 

or simply R = −F, as expected.  Any elastic structure behaves in a similar way.  However, the stiffness matrix is 

obtained by numerically integrating its strain energy over the entire volume. 

  


