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Introduction 
 
There are two major categories leading to the failure of a mechanical component: material 
failure and structural instability, which is often called buckling.  For material failures you need 
to consider the yield stress for ductile materials and the ultimate stress for brittle materials. 
Those material properties are determined by axial tension tests and axial compression tests 
of short columns of the material (see Figure 1).  The geometry of such test specimens has 
been standardized.  Thus, geometry is not specifically addressed in defining material 
properties, such as yield stress.  Geometry enters the problem of determining material failure 
only indirectly as the stresses are calculated by analytic or numerical methods. 
 

 
 

Figure 1 
 

Predicting material failure may be accomplished using linear finite element analysis. That is, 
by solving a linear algebraic system for the unknown displacements, K δ = F.  The strains 
and corresponding stresses obtained from this analysis are compared to design stress (or 
strain) allowables everywhere within the component. If the finite element solution indicates 
regions where these allowables are exceeded, it is assumed that material failure has 
occurred. 

The load at which buckling occurs depends on the stiffness of a component, not upon the 
strength of its materials.  Buckling refers to the loss of stability of a component and is usually 
independent of material strength. This loss of stability usually occurs within the elastic range 
of the material.  The two phenomenon are governed by different differential equations.  
Buckling failure is primarily characterized by a loss of structural stiffness and is not modeled 
by the usual linear finite element analysis, but by a finite element eigenvalue-eigenvector 
solution, |K + λm KF| δm = 0, where λm is the buckling load factor (BLF) for the m-th mode, KF 
is the additional “geometric stiffness” due to the stresses caused by the loading, F, and δm is 
the associated buckling displacement shape for the m-th mode.  The spatial distribution of the 
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load is important, but its relative magnitude is not.  The buckling calculation gives a multiplier 
that scales the magnitude to that required to cause buckling. 

Slender or thin-walled components under compressive stress are susceptible to buckling. 
Most people have observed what is called “Euler buckling” where a long slender member 
subject to a compressive force moves lateral to the direction of that force, as illustrated in 
Figure 2.  The force, F, necessary to cause such a buckling motion will vary by a factor of 
four depending only on how the two ends are restrained.  Therefore, buckling studies are 
much more sensitive to the component restraints that in a normal stress analysis.  The 
theoretical Euler solution will lead to infinite forces in very short columns, and that clearly 
exceeds the allowed material stress.  Thus in practice, Euler column buckling can only be 
applied in certain regions and empirical transition equations are required for intermediate 
length columns.  For very long columns the loss of stiffness occurs at stresses far below the 
material failure. 
 

 
 

Figure 2 
 
There are many analytic solutions for idealized components having elastic instability.  About 
75 of the most common cases are tabulated in the classic reference “Roark’s Formulas for 
Stress and Strain” [1, 2, 3]. 

Buckling terminology 
 
The topic of buckling is still unclear because the keywords of “stiffness”, “long” and “slender” 
have not been quantified.  Most of those concepts were developed historically from 1D 
studies.  You need to understand those terms even though finite element analysis lets you 
conduct buckling studies in 1D, 2D, and 3D.  For a material, stiffness refers to either its 
elastic modulus, E, or to its shear modulus, G = E / (2 + 2 v) where v is Poisson’s ratio.   
 
Slender is a geometric concept of a two-dimensional area that is quantified by the radius of 
gyration.  The radius of gyration, r, has the units of length and describes the way in which the 
area of a cross-section is distributed around its centroidal axis.  If the area is concentrated far 
from the centroidal axis it will have a greater value of r and a greater resistance to buckling.  
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A non-circular cross-section will have two values for its radius of gyration.  The section tends 
to buckle around the axis with the smallest value. The radius of gyration is defined as: 
 

r = √(I / A), 
 

where r = radius of gyration, I = area moment of inertia, and A = area of the cross-section. 
For a circle of radius R, r = R / 2.  For a rectangle of large length R and small length b you 
obtain r max = R / 2√3 = 0.29 R and r min = 0.29 b.  Solids can have regions that are slender, 
and if they carry compressive stresses a buckling study is justified.   
 
Long is also a geometric concept that is quantified by the non-dimensional “slenderness ratio” 
L / r, where L denotes the length of the component.  From experiments, the slenderness ratio 
of 120 is generally considered as the dividing point between long (Euler) columns (> 120) and 
intermediate (empirical) columns.  The critical compressive stress that will cause buckling 
always decreases as the slenderness ratio increases. 
 
Other 1D concepts that relate to stiffness are: axial stiffness, E A / L, flexural (bending) 
stiffness, E I / L, and torsional stiffness, G J / L, where J is the polar moment of inertia of the 
cross-sectional area (J = Iz = Ix + Iy).  Today, stiffness usually refers to the finite element 
stiffness matrix, which can include all of the above stiffness terms plus general solid or shell 
stiffness contributions.  Analytic buckling studies identify additional classes of instability 
besides Euler buckling.  They include lateral buckling, torsional buckling, and other buckling 
modes (see Figure 3).  A finite element buckling study determines the lowest buckling factors 
and their corresponding displacement modes.  The amplitude of a buckling displacement 
mode, |δm|, is arbitrary and not useful, but the shape of the mode can suggest whether 
lateral, torsional, or other behavior is governing the buckling response of design.   
 

 
 

Figure 3 
 

Buckling Load Factor 

The buckling load factor (BLF) is an indicator of the factor of safety against buckling or the 
ratio of the buckling loads to the currently applied loads. Table 1 illustrates the interpretation 
of possible BLF values returned by CosmosWorks.  Since buckling often leads to bad or even 
catastrophic results, you should utilize a high factor of safety (FOS) for buckling loads.  That 
is, the value of unity in Table 1 should be replaced with the FOS value.  

The BLF can be quite sensitive to geometrical imperfections in the part.  If buckling is a 
concern you should try introducing slight changes, like a dent in a thin section, to see what 
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effect it would have.  If you are using symmetry in your stress analysis model you may miss 
an important buckling load if you just use symmetry in the buckling study.  Thus, after 
completing the symmetry buckling load factor calculation you should repeat the study by 
replacing the symmetry restraint with an anti-symmetry restraint. 

Table 1  Interpretation of the Buckling Load Factor (BLF) 
 

BLF Value Buckling Status Remarks 
0 < BLF < 1 Buckling predicted The applied loads exceed the estimated 

critical loads.  Buckling will occur. 
BLF = 1 Buckling predicted The applied loads are exactly equal to the 

critical loads.  Buckling is expected. 
-1 < BLF < 0 Buckling possible Buckling is predicted if you reverse the 

load directions. 
BLF = -1 Buckling possible Buckling is expected if you reverse the 

load directions. 
1 < BLF Buckling not predicted The applied loads are less than the 

estimated critical loads. 
BLF < -1 Buckling not predicted The applied loads are less than the 

estimated critical loads, even if you 
reverse their directions. 
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