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Concepts of Stress Analysis 
Part 1, draft 2, 09/30/06 

Introduction 
 
In the previous review of heat transfer it was pointed out that the time independent equations for one-
dimensional heat transfer and one-dimensional stress analysis are the same.  A useful analogy between 
the two phenomena was also pointed out at that time.  Here the concepts of stress analysis will be 
stated in a finite element context.  That means that the primary unknown will be the (generalized) 
displacements.  All other items of interest will mainly depend on the gradient of the displacements and 
therefore will be less accurate than the displacements.  Stress analysis covers several common special 
cases to be mentioned later.  Here only two formulations will be considered initially.  They are the 
solid continuum form and the thin shell form.  Both are offered in CosmosWorks.  They differ in that 
the continuum form utilizes only displacement vectors, while the shell form utilizes displacement 
vectors and infinitesimal rotation vectors.  
 
Stress transfer takes place within, and on, the boundaries of a solid body.  The displacement vector, 
u, at any point in the continuum body has the units of meters [m], and its components are the primary 
unknowns.   The components of displacement are usually called u, v, and w in the x, y, and z-
directions, respectively.  Therefore, they imply the existence of each other, u ↔ (u, v, w).  All the 
displacement components vary over space.  As in the heat transfer case, the gradients of those 
components are needed but only as an intermediate quantity.  The displacement gradients have the 
units of [m/m], or are considered dimensionless.   Unlike the heat transfer case where the gradient was 
used directly, in stress analysis the multiple components of the displacement gradients are combined 
into alternate forms called strains. 
 
The strains have geometrical interpretations that are summarized in Figure 1 for 1D and 2D geometry.  
In 1D the normal strain is just the ratio of the change in length over the original length, εx = ∂u / ∂x.  In  
 

 
Figure 1 Geometry of normal strain (a) 1D, (b) 2D, and (c) 2D shear strain 
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2D and 3D both normal strains and shear strains exist.  The normal strains involve only the part of the 
gradient terms parallel to the displacement component.  In 2D they are εx = ∂u / ∂x and εy = ∂v / ∂y.  
As seen in Figure 1 (b), they would cause a change in volume, but not a change in shape of the 
rectangular differential element.  A shear strain causes a change in shape. The total angle change (from 
90 degrees) is used as the engineering definition of the shear strain.  The shear strains involve a 
combination of the component of the gradient that is perpendicular to the displacement component.  In 
2D it is γ = (∂u / ∂y + ∂v / ∂x), as seen in Figure 1(c).  Strain has one component in 1D, three 
components in 2D, and six components in 3D.  They are commonly written as a column vector in finite 
element analysis, ε = (εx      εy     γ)T. 
 
Like the heat transfer case, the above geometrical data (the strains) will be multiplied by material 
properties to define a new physical quantity, the stress, which is directly proportional to the strains. 
This is known as Hooke’s Law:  σ = E ε, (see Figure 2 ) where the square material matrix, E, 
contains the elastic modulus, and Poisson’s ratio of the material.  The stresses are written as a 
corresponding column vector, σ = (σx    σy    τ)T.  The potential energy stored in the differential 
element is half the scalar product of the stresses and the strains.  The 2D and 3D stress components are 
shown in Figure 3.  The normal and shear stresses represent the normal force per unit area and the 
tangential forces per unit area, respectively.  Therefore they have the units of [N/m^2], or [Pa]. 

 

 
Figure 2  Hooke's Law for stress-strain 

 

   
Figure 3  Stress components in 2D (left) and 3D 
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Example 
 
The simplest available example is an axial bar, shown in Figure 4, restrained at one end and subjected 
to an axial load, P, at the other end.   Let the length and area of the bar be denoted by L, and A, 
respectively.  Its material has an elastic modulus of E.  The axial displacement, u (x), varies linearly 
from zero at the support to a maximum of δ at the load point.  That is, u (x) = x δ / L, so the axial 
strain is εx = ∂u / ∂x = δ / L, which is a constant.  Likewise, the axial stress is everywhere constant, σ = 
E ε = E δ / L which in the case simply reduces to σ = P / A. 
 

                             σ = P / A,   δ = P L / E A 
 

Figure 4 A linearly elastic bar with an axial load 
 
Like many other more complicated problems, the stress here does not depend on the material 
properties, but the displacement always does.  Therefore you should always carefully check both the 
deflections and stresses when validating a finite element solution. 
 
Since the displacement is linear here any finite element model would give exact deflection and stress 
results.  However, if the load had been the distributed weight of the bar the displacement would have 
been quadratic in x and the stress would be linear in x.  Then a quadratic element mesh would give 
exact stresses and displacements everywhere, but a linear element mesh would not. 
 

Component Failure 
 
Structural components can be determined to fail by various modes determined by buckling, deflection, 
natural frequency, strain, or stress.  Strain or stress failure criteria are different depending on whether 
they are considered as brittle or ductile materials.  The difference between the two material behaviors 
is determined by their response to a uniaxial stress-strain test as illustrated in Figure 5.  You need to 
know what class of material is being used.  CosmosWorks, and most finite element systems, default to 
assuming a ductile material and display the distortional energy failure theory which is usually called 
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the Von Mise’s  stress, or effective stress, even though it is actually a scalar.  A brittle material requires 
the use of a higher factor of safety. 
 

 
 

Figure 5  Axial stress-strain experimental results 


