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Preface 

This book is intended for beginners who must utilize finite element analysis 
(FEA) methods, but have not yet had a course in finite element theory.  The 
emphasis is on the engineering reasons for conducting the sequence of stages 
necessary to complete a valid finite element analysis.  For completeness, it has 
been necessary to select specific software to illustrate the various stages.  Most 
commercial solid modeling and finite element analysis systems are very similar, 
and the overlap in their capabilities is probably 90 % or more.  Systems with 
more advanced or specialized abilities are usually more difficult to utilize, and 
have a significantly longer learning curve.  In this case, the SolidWorks system 
(release 2010) has been selected due to its short learning curve and ability to 
execute the most commonly needed finite element analyses.  The author wishes 
to thank the SolidWorks Corporation for permission to reproduce some of their 
online help file or demonstration figures for use in this text. 

This book is based on my forty years of teaching finite element analysis, 
applying it in consulting applications and programming FEA. Historically, the 
typical initial users of FEA were often graduate level engineers well educated in 
the prerequisite knowledge.  Most had completed courses covering statics, 
dynamics, free body diagrams, material properties, stress analysis, heat transfer, 
vibrations, etc.  The slow computers of the time also required that they 
understand numerical analysis methods, and that they often programmed their 
own finite element systems.  The good news is that, as implied by Moore’s Law, 
today’s computers have grown so powerful that one does not have to have the 
previously prerequisite knowledge to be able to easily build solid models of 
complex geometries and then to apply all sorts of FEA to those models.  That is 
also the bad news.  Users no longer must have degrees in engineering (or 
applied mathematics) or even be exposed to the basic knowledge about materials 
and their stress or thermal responses.  Indeed, systems like the SolidWorks 
software are currently being utilized by high school students in several regions. 

Those realities mean that often what seems like computer aided design has 
become computer aided errors, or computer aided stupidity.  To avoid such 
problems this book will hopefully identify the engineering reasons for selecting 
various capabilities, rather than just the sequence of icon picks that yield the 
pretty pictures that often hide misleading or erroneous results or assumptions.  
To support that educational process, the basic concepts or definitions of 
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desirable prerequisite knowledge will be covered as needed.  Having stated 
those goals, the reader of this text is strongly encouraged to complete a course in 
basic finite element theory.  It can be dangerous to utilize tools when you do not 
understand their fundamental abilities and limitations. 

Modern commercial finite element systems typically include millions of lines of 
source code.  They are continuously being modified.  Therefore, they are likely 
to contain some errors that could, on rare occasions, affect your analysis results.  
A good engineer always tries to check any analysis results. Thus, as space 
permits, I have also included typical examples of attempts to validate sample 
finite element analysis results. 

 
        
 J. Ed Akin, PhD, PE 
 Professor 
 Rice University 
 akin@rice.edu 
 December 2009 
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1 

1 Finite Element Analysis Methods 

1.1  Introduction 
The finite element method (FEM) rapidly grew as the most useful numerical 
analysis tool for engineers and applied mathematicians because of it natural 
benefits over prior approaches.  The main advantages are that it can be applied 
to arbitrary shapes in any number of dimensions.  The shape can be made of any 
number of materials.  The material properties can be non-homogeneous (depend 
on location) and/or anisotropic (depend on direction).  The way that the shape is 
supported (also called fixtures or restraints) can be quite general, as can the 
applied sources (forces, pressures, heat flux, etc.).  The FEM provides a standard 
process for converting governing energy principles or governing differential 
equations in to a system of matrix equations to be solved for an approximate 
solution.  For linear problems, such solutions can be very accurate and quickly 
obtained.  Having obtained an approximate solution, the FEM provides 
additional standard procedures for follow up calculations (post-processing), such 
as determining the integral of the solution, or its derivatives at various points in 
the shape. The post-processing also yields impressive color displays, or graphs, 
of the solution and its related information. Today, a second post-processing of 
the recovered derivatives can yield error estimates that show where the study 
needs improvement.  Indeed, adaptive procedures allow automatic corrections 
and re-solutions to reach a user specified level of accuracy.  However, very 
accurate and pretty solutions of models that are based on errors or incorrect 
assumptions are still wrong. 

When the FEM is applied to a specific field of analysis (like stress analysis, 
thermal analysis, or vibration analysis) it is often referred to as finite element 
analysis (FEA).  An FEA is the most common tool for stress and structural 
analysis.  Various fields of study are often related.  For example, distributions of 
non-uniform temperatures induce non-obvious loading conditions on solid 
structural members. Thus, it is common to conduct a thermal FEA to obtain 
temperature results that in turn become input data for a stress FEA.  FEA can 
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also receive input data from other tools like motion (kinetics) analysis systems 
and computation fluid dynamics systems. 

1.2  Basic Integral Formulations 
The basic concept behind the FEM is to replace any complex shape with the 
union (or summation) of a large number of very simple shapes (like triangles) 
that are combined to correctly model the original part.  The smaller simpler 
shapes are called finite elements because each one occupies a small but finite 
sub-domain of the original part.  They contrast to the infinitesimally small or 
differential elements used for centuries to derive differential equations.  To give 
a very simple example of this dividing and summing process, consider 
calculating the area of the arbitrary shape shown in Figure 1-1 (left).   

        
Figure 1-1 An area crudely meshed with linear and quadratic triangles 

If you knew the equations of the bounding curves you, in theory, could integrate 
them to obtain the enclosed area.  Alternatively, you could split the area into an 
enclosed set of triangles (cover the shape with a mesh) and sum the areas of the 
individual triangles: 

ܣ ൌ  ∑ ௘௡ܣ
௘ୀଵ ൌ ∑ ׬  ܣ݀

஺೐
௡
௘ୀଵ . 

Now, you have some choices for the type of triangles.  You could pick straight 
sided (linear) triangles, or quadratic triangles (with edges that are parabolas), or 
cubic triangles, etc.  The area of a straight-sided triangle is a simple algebraic 
expression.  Number the three vertices in a counter-clockwise order, then the 
area is ܣ௘ ൌ ሾݔଵሺݕଶ െ ଷሻݕ ൅ ଷݕଶሺݔ െ ଵሻݕ ൅ ଵݕଷሺݔ െ  ଶሻሿ/2  and its centroid isݕ
located at 

௖௚௘ݔ ൌ ௫భା௫మା௫య
ଷ

, ௖௚௘ݕ ൌ ௬భା௬మା௬య
ଷ

. 
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Similar expressions give the moment of inertia components.  Thus, you just have 
to extract (gather) the element vertices coordinates from the mesh data in order 
to compute the area of a straight sided triangle.  The area of a curved triangle is 
also relatively easy to calculate by numerical integration, but is computationally 
more expensive to obtain than that for the linear triangle. The first two triangle 
mesh choices are shown in Figure 1-1 for a large element size.  Clearly, the 
simple straight-sided triangular mesh (on the left) approximates the area very 
closely, but at the same time introduces geometric errors along a curved 
boundary.  The boundary geometric error in a linear triangle mesh results from 
replacing a boundary curve by a series of straight line segments.  That geometric 
boundary error can be reduced to any desired level by increasing the number of 
linear triangles.  But that decision increases the number of calculations and 
makes you trade off geometric accuracy versus the total number of required area 
calculations and summations. 

Area is a scalar, so it makes sense to be able to simply sum its parts to determine 
the total value, as shown above.  Other physical quantities, like kinetic energy, 
strain energy and mechanical work, can be summed in the same fashion.  
Indeed, the very first applications of FEA to structures was based on minimizing 
the energy stored is a linear elastic material.  The FEM always involves some 
type of governing integral statement which is converted to a matrix system by 
assuming how items vary within a typical element.  That integration is also 
converted to the sum of the integrals over each element in the mesh.  Even if 
you start with a governing differential equation, it gets converted to an 
equivalent integral formulation by one of the methods of weighted residuals 
(MWR).  The two most common weighted residual methods, for FEA, are the 
Galerkin method and the Method of Least Squares. 

The development of the necessary matrix relations will be covered in more 
detail later.  For now the matrix representation of the kinetic energy of a part is 
presented, for the straight sided triangle element, as an example.  Recall that the 
kinetic energy of a mass particle is ܧܭ ൌ  ଶ/2, where m is the mass and v isݒ ݉
its velocity.  The kinetic energy of the planar body, of thickness t, in Figure 1-1 
is obtained by integrating over the differential masses 

ܧܭ ൌ  
1
2නݒଶ݀݉ ൌ

1
2නݒଶܸ݀ߩ ൌ 

ݐ
2නݒଶܣ݀ߩ 

and it can be obtained by summing the element integrals 
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ܧܭ ൌ ∑ ௘௡ܧܭ
௘ୀଵ ൌ ௧

ଶ
∑ ׬  ܣ݀ߩଶݒ

஺೐
௡
௘ୀଵ . 

Assume that the velocity of all mesh points is known.  Then you can extract the 
velocity of the three vertices of each linear triangle element.  In FEA you define 
the velocity of any point inside the element by interpolating between the 
element’s vertex values. Denote the interpolation function of node j by ܰሺݔ,   .ሻ௝ݕ
Then the velocity is 

,ݔሺݒ ሻݕ ൌ ܰሺݔ, .ሻଵݕ ଵݒ  ൅ ܰሺݔ, .ሻଶݕ ଶݒ  ൅  ܰሺݔ, .ሻଷݕ ଷݒ ൌ ∑ ܰሺݔ, .ሻ௝ݕ ୨ଷݒ
௝ୀଵ . 

This linear spatial interpolation is usually written in a matrix notation 

,ݔሺݒ ሻݕ ൌ   ሾܰሺݔ, ௘ሽݒሻሿሼݕ ൌ ሼݒ௘ሽ்ሾܰሺݔ,  ሻሿ்ݕ

so the element kinetic energy is a matrix integral 

௘ܧܭ ൌ
1
2න ሼݒ௘ሽ்ሾܰሺݔ, ߩሻሿ்ݕ

 

஺೐
ሾܰሺݔ,  ܣ݀ ݐ௘ሽݒሻሿሼݕ

but the nodal velocities are known constants (or functions of time alone) that 
move outside the integral 

௘ܧܭ ൌ
1
2 ሼݒ

௘ሽ் න ሾܰሺݔ, ߩሻሿ்ݕ
 

஺೐
ሾܰሺݔ,  ௘ሽݒሼܣ݀ ݐሻሿݕ

so that the remaining square matrix integral is called the mass matrix, ሾ݉௘ሿ: 

௘ܧܭ ൌ ଵ
ଶ
ሼݒ௘ሽ்ሾ݉௘ሿሼݒ௘ሽ, ሾ݉௘ሿ ൌ ׬ ሾܰሺݔ,  ߩሻሿ்ݕ

஺೐ ሾܰሺݔ,  .ܣ݀ ݐሻሿݕ

This result shows the similarity to a particle in that the body’s kinetic energy is 
half the product of a mass matrix and the square (pre- and post-multiplication) 
of the nodal velocities.  For the straight two-node bar element of length Lୣ and 
cross-sectional area ܣ௘, the mass matrix is 

ሾ݉௘ሿ ൌ ఘ௅೐஺೐

଺
ቂ2 1
1 2ቃ. 

The total element mass, ݉ ൌ  ௘, is present but somehow distributedܣ݁ܮߩ
(coupled) between its two nodes, and their velocities, ሼݒ௘ሽ் ൌ ሾݒଵ௘    ݒଶ௘ሿ.  If the 
two end velocities are the same (it is moving as a rigid body such that ݒଵ௘ ൌ
ଶ௘ݒ ൌ ௘ܧܭ ,then the matrix products yield the expected scalar answer (ݒ ൌ
 ଶ/2.  The point of this illustration is to show that any FEA converts scalarݒ݉
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integrals to matrix expressions by assuming a spatial interpolation between the 
nodes of a typical element for items of interest, such as positions, displacements, 
velocities, or temperatures.  Those spatial interpolations also define the spatial 
gradients that occur in most finite element integral forms.  

1.3  Gather and Scatter Operators 
An integral evaluation for an FEA requires a mesh.  Typically it is a triangular 
mesh for surfaces and a tetrahedral mesh for solids.  The result of a finite 
element mesh generation creates at least two data sets.  The first (nodal set) is 
the numbered list of all the generated vertices along with their spatial 
coordinates.   The second (element set) is the numbered set of elements along 
with the list of element vertex numbers to which it is connected.  This is called 
the element connectivity list.  Figure 1-2 illustrates such data for linear elements.  

 
Figure 1-2 Matrix gather and scatter operations 

The connectivity list is the critical data that allows the FEA calculations to be 
automated.  Any FEA uses operations that involve the specific node (vertex) 
numbers of a single element.  The two operations are usually called gather and 



6 Finite Element Analysis Concepts via SolidWorks 

 

 

scatter (or assembly) operations.  The gather operation is used to simply bring 
known nodal data in the full mesh back to a single element. 

The coordinates and velocities used in the above element integrals were 
assumed to be stored with the mesh nodal data.  While the mesh may have a 
huge number of nodes, each linear triangle element only had three nodes.  The 
gather operator utilized the element connection list to extract the data for the 
current element in the summation to extract its three nodal velocities. 

The reverse of a gather operation is the scatter or assembly operation.  It is a 
partial summation of element data to the matrices associated with the mesh data.  
A scatter takes something associated with the local nodes of an element and 
adds them to the corresponding matrix item at the full mesh level.  Scatter, or 
assembly, operations fill the entries in the matrix equations that must be solved 
for the problem unknowns.  These two common operations are sketched 
graphically in Figure 1-2. The required element connectivity data (the two nodes 
on each linear line element) are displayed in the third line of that figure.  Gather 
and scatter will be illustrated in detail in the section on compound elastic bars.   

1.4   Geometric Boundary Errors 
You may think that the geometric boundary error cited for the linear triangles is 
eliminated by choosing to use the mesh of curved quadratic triangles (on the 
right of Figure 1-1).   The parabola segments pass through three points lying 
exactly on the boundary curve, but can degenerate to straight lines in the 
interior.  (To speed plotting of small elements, most systems draw all the 
parabolas as two straight line segments, as on the right in Figure 1-1.)  Thus, the 
boundary shape error is indeed reduced, at the expense of more complicated area 
calculations, but it is not eliminated.  Some geometric error remains because   
most engineering curves are circular arcs, splines, or nurbs (non-uniform 
rational B-splines) and thus are not matched by a parabola.  The most common 
way to reduce mesh geometric error is to simply use many smaller elements.  
The default element choice in SolidWorks (SW) Simulation is the quadratic 
element.  Other systems offer a wider range of edge polynomial degree (e.g. 
cubic), as well as other shapes like quadrilaterals or rectangles.  In three-
dimensional solid applications some systems offer dozens of choices for the 
edge degree polynomial order, and shapes including hexahedral, wedges, and 
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tetrahedral elements.  Hexahedral elements are generally more accurate, but can 
be more challenging to mesh automatically.  Tetrahedral elements can match 
hexahedral element performance by using more (smaller) elements, and 
tetrahedral elements are much easier to mesh automatically.  SW Simulation 
uses only tetrahedral elements for solid studies.  An example of the small two-
dimensional geometric boundary error due to different curved shapes is seen in 
Figure 1-3 where a arc and a parabola pass through the same three points.  

 
Figure 1-3 Linear or parabolic elements never match circular shapes 

1.5 Stages of Analysis and Their Uncertainties 
An FEA always involves a number of uncertainties that impact the accuracy or 
reliability of each stage of an FEA and its results.  The book, Building Better 
Products with Finite Element Analysis by Adams and Askenazi [1] gives an 
outstanding detailed description of most of the real-world uncertainties 
associated with solid mechanics FEA.  All engineers conducting stress studies 
should read it.  That book also points out how poor solid modeling skills can 
adversely affect the ability to construct meshes for any type of FEA. Here, the 
most important FEA uncertainties are highlighted. 

The typical stages of an FEA study are listed below: 

1. Construct the part(s) in a solid modeler.  It is surprisingly easy to 
accidentally build flawed models with tiny lines, tiny surfaces or tiny 
interior voids.  The part will look fine, except with extreme zooms, but it 
may fail to mesh.  Most systems have checking routines that can find and 
repair such problems before you move on to an FEA study.  Sometimes you 
may have to export a part, and then import it back with a new name because 
imported parts are usually subjected to more time consuming checks than 
“native” parts.  When multiple parts form an assembly, always mesh and 
study the individual parts before studying the assembly.  Try to plan ahead 
and introduce split lines into the part to aid in mating assemblies and to 
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locate load regions and restraint (or fixture or support) regions.  Today, 
construction of a part is probably the most reliable stage of any study. 

2. Defeature the solid part model for meshing.  The solid part may contain 
features, like a raised logo, that are not necessary to manufacture the part, or 
required for an accurate analysis study.  They can be omitted from the solid 
used in the analysis study.  That is a relative easy operation supported by 
most solid modelers (such as the “suppress” option in SW) to help make 
smaller and faster meshes.  However, it has the potential for introducing 
serious, if not fatal, errors in a following engineering study.  This is a 
reliable modeling process, but its application requires engineering 
judgment.  For example, removing small radius interior fillets can greatly 
reduces the number of elements and simplifies the mesh generation.  But, 
that creates sharp reentrant corners that can yield false infinite stresses. 
Those false high stress regions may cause you to overlook other areas of 
true high stress levels.  Small holes lead to many small elements (and long 
run times).  They also cause stress concentrations that raise the local stress 
levels by a factor of three or more.  The decision to defeature them depends 
on where they are located in the part.  If they lie in a high stress region you 
must keep them.  But defeaturing them is allowed if you know they occur in 
a low stress region.  Such decisions are complicated because most parts 
have multiple possible loading conditions and a low stress region for one 
load case may become a high stress region for another load case. 

3. Combine multiple parts into an assembly.  Again, this is well automated and 
reliable from the geometric point of view and assemblies “look” as 
expected.  However, geometric mating of part interfaces is very different for 
defining their physical (displacement, or temperature) mating.  The physical 
mating choices are often unclear and the engineer may have to make a range 
of assumptions, study each, and determine the worst case result.  Having to 
use physical contacts makes the linear problem require iterative solutions 
that take a long time to run and might fail to converge. 

4. Select the element type.  Some FEA systems have a huge number of 
available element types (with underlying theoretical restrictions).  The 
SolidWorks system has only the fundamental types of elements.  Namely, 
truss elements (bars), frame elements (beams), thin shells (or flat plates), 
thick shells, and solids.  The SW simulation system selects the element type 
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(beginning in 2009) based on the shape of the part.  The user is allowed to 
covert a non-solid element region to a solid element region, and visa versa.  
Knowing which class of element will give a more accurate or faster solution 
requires training in finite element theory.  At times a second element type 
study is used to help validate a study based on a different element type. 

5. Mesh the part(s) or assembly, remembering that the mesh solid may not be 
the same as the part solid.  A general rule in an FEA is that your computer 
never has enough speed or memory.  Sooner or later you will find a study 
that you cannot execute.  Often that means you must utilize a crude mesh 
(or at least crude in some region) and/or invoke the use of symmetry or anti-
symmetry conditions.  Local solution errors in a study are proportional to 
the product of the local element size and the gradient of the secondary 
variables (i.e., gradient of stress or heat flux).  Therefore, you exercise mesh 
control to place small elements where your engineering judgment estimates 
high stress (or flux) regions, as well as large elements in low stress regions.  
The local solution error also depends on the relative sizes of adjacent 
elements.  You do not want skinny elements adjacent to big ones.  Thus, 
automatic mesh generators have options to gradually vary adjacent element 
sizes from smallest to biggest.   

The solid model sent to the mesh generator frequently should have load or 
restraint (fixture) regions formed by split lines, even if such splits are not 
needed for manufacturing the parts.  The mesh typically should have 
refinements at source or load regions and support regions. 

A mesh must look like the part, but that is not sufficient for a correct study.  
A single layer of elements filling a part region is almost never enough.  If 
the region is curved, or subjected to bending, you want at least three layers 
of quadratic elements, but five is a desirable lower limit.  For linear 
elements you at least double those numbers. 

Most engineers do not have access to the source code of their automatic 
mesh generator.  When the mesher fails you frequently do not know why it 
failed or what to do about it.  Often you have to re-try the mesh generation 
with very large element sizes in hopes of getting some mesh results that can 
give hints as to why other attempts failed.   The meshing of assemblies 
often fails.  Usually the mesher runs out of memory because one or more 
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parts had a very small, often unseen, feature that causes a huge number of 
tiny elements to be created (see the end of this chapter).  You should always 
attempt to mesh each individual part to spot such problems before you 
attempt to mesh them as a member of an assembly. 

Automatic meshing, with mesh controls, is usually simple and fast today.  
However, it is only as reliable as the modified part or assembly supplied to 
it.  Distorted elements usually do not develop in automatic mesh generators, 
due to empirical rules for avoiding them.  However, distorted elements 
locations can usually be plotted.  If they are in regions of low gradients you 
can usually accept them. 

You should also note that studies involving natural frequencies are 
influenced most by the distribution of the mass of the part.  Thus, they can 
still give accurate results with meshes that are much cruder than those that 
would be acceptable for stress or thermal studies. 

6. Assign a linear material to each part.  Modern FEA systems have a material 
library containing the “linear” mechanical, thermal, and/or fluid properties 
of most standardized materials.  They also allow the user to define custom 
properties.  The property values in such tables are often misinterpreted to be 
more accurate and reliable than they actually are.  The reported property 
values are accepted average values taken from many tests.  Rarely are there 
any data about the distribution of test results, or what standard deviation 
was associated with the tests.  Most tests yield results that follow a “bell 
shaped” curve distribution, or a similar skewed curve.  The tests for 
stainless steel tend to have narrow distributions, like that on the left in 
Figure 1-4, while the results for cast iron have wider distributions.   

                       
Figure 1-4 Typical distributions of properties of steel (left) and cast iron 
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When you accept a tabulated property value as a single number to be used 
in the FEA calculation remember it actually has a probability distribution 
associated with it.  You need to assign a contribution to the total factor of 
safety to allow for variations from the tabulated property value.        

The values of properties found in a material table can appear more or less 
accurate depending on the units selected.  That is an illusion often caused 
by converting one set of units to another, but not truncating the result to the 
same number of significant figures available in the actual test units.  For 
example, the elastic modulus of one steel is tabulated from the original test 
as 210 MPa, but when displayed in other units it shows as 30,457,924.92 
psi.  Which one do you believe to be the experimental accurate value; the 3 
digit value or the 10 digit one?  The answer affects how you should view 
and report stress results.  The axial stress in a bar is equal to the elastic 
modulus times the strain,  ߪ ൌ  Thus, if E is only known to three or  .ߝ ܧ
four significant figures then the reported stress result should have no more 
significant figures. 

Material data are usually more reliable than the loading values (considered 
next), but less accurate that the model or mesh geometries.   

7. Select regions of the part(s) to be loaded and assign load levels and load 
types to each region.  In mathematical terminology, load or flux conditions 
on a boundary region are called Neumann boundary conditions, or non-
essential conditions.  The geometric regions can be points (in theory), lines, 
surfaces, or volumes.  If they are not existing features of the part, then you 
should apply split lines to the part to create them before activating the mesh 
generator.  Point forces, or heat sources, are common in undergraduate 
studies, but in an FEA they cause false infinite stresses, or heat flux.  If you 
include them do not be mislead by the high local values.  Refining the mesh 
does not help since the smallest element still reports near infinite values.  

In reality, point loads are better modeled as a total force, or pressure, acting 
over a small area formed by prior split lines.  Saint Venant’s Principle states 
that two different, but statically equivalent, force systems acting on a small 
portion of the surface of a body produce the same stress distributions at 
distance large in comparison with the linear dimensions of the portion 
where the forces act. That also implies that concentrated sources quickly 
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become re-distributed, as seen in Figure 1-5.  There a single axial forced on 
the right end has been replaced by a small region of constant pressure.  The 
other end stresses are essentially zero.  Within the distance of about one 
depth the axial stress has re-distributed to an essentially constant value in 
the remainder of the part. 

 
Figure 1-5 St. Venant's principle: local effects quickly die out 

In undergraduate statics and dynamics courses engineers are taught to think 
in terms of point forces and couples.  Solid elements do not accept pure 
couples as loads, but statically equivalent pressures can be applied to solids 
and yield the correct stresses.  Indeed, a couple at a point is almost 
impossible to create, so the distribution of pressures is probably more like 
the true situation. 

The magnitudes of applied loads are often guesses, or specified by a 
governing design standard.  For example, consider a wind load.  A building 
standard may quote a pressure to be applied for a given wind speed.  But, 
how well do you know the wind speed that might actually be exerted on the 
structure?  Again, there probably is some type of “bell curve” around the 
expected average speed.  You need to assign a contribution to the total 
factor of safety to allow for variations in the uncertainty of the load value or 
actual spatial distribution of applied loads. 

Loading data are usually less accurate than the material data, but much 
more accurate that the restraint or supporting conditions considered next. 

8. Determine (or more likely assume) how the model interacts with the 
surroundings not included in your model.  These are the restraint (support, 
or fixture) regions.  In mathematical terminology, these are called the 
essential boundary conditions, or Dirichlet boundary conditions.  You 
cannot afford to model everything interacting with a part.  For many 
decades engineers have developed simplified concepts to approximate 
surroundings adjacent to a model to simplify hand calculations.  They 
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include roller supports, smooth pins, cantilevered (encastre, or fixed) 
supports, straight cable attachments, etc.  Those concepts are often carried 
over to FEA approaches and can over simplify the true support nature and 
lead to very large errors in the results. 

The choice of restraints (fixations, supports) for a model is surprisingly 
difficult and is often the least reliable decision made by the engineer.  Small 
changes in the supports can cause large changes in the results.  It is wise to 
try to investigate a number of likely or possible support conditions in 
different studies.  When in doubt, try to include more of the surrounding 
support material and apply assumed support conditions to those portions at 
a greater distance from critical part features. 

You need to assign a contribution to the total factor of safety to allow for 
variations in the uncertainty of how or where the actual support conditions 
occur.  That is especially true for buckling studies. 

9. Solve the linear system of equations, or the eigenvalue problem.  With 
today’s numerical algorithms the solution of the algebraic system or eigen-
system is usually quite reliable.  It is possible to cause ill-conditioned 
systems (large condition number) with meshes having bad aspect ratios, or 
large elements adjacent to small ones, but that is unlikely to happen with 
automatic mesh generators.   

10. Check the results.  Are the reactions at the supports equal and opposite to 
the sources you thought that you applied?  Are the results consistent with 
the assumed linear behavior?  The engineering definition of a problem with 
large displacements is one where the maximum displacement is more than 
half the smallest geometric thickness of the part.   The internal definition is 
a displacement field that significantly changes the volume of an element.  
That implies the element geometric shape noticeably changed from the 
starting shape, and that the shape needs to be updated in a series of much 
smaller shape changes.  Are the displacements big enough to require re-
solution with large displacement iterations turned on?  Have you validated 
the results with an analytic approximation, or different type of finite 
element?  Engineering judgments are required. 

11. Post-process the solution for secondary variables.   For structural studies 
you generally wish to document the deflections, reactions and stresses.  For 
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thermal studies you display the temperatures, heat flux vectors and reaction 
heat flows.  With natural frequency models you show (or animate) a few 
mode shapes.  In graphical displays, you can control the number of contours 
employed, as well as their maximum and minimum ranges.  The latter is 
important if you want to compare two designs on a single page.  Limit the 
number of digits shown on the contour scale to be consistent with the 
material modulus (or conductivity, etc.).  Color contour plots often do not 
reproduce well, but graphs do, so learn to use them in you documentation.  

12. Determine (or more likely assume) what failure criterion applies to your 
study.  This stage involves assumptions about how a structural material 
might fail.  There are a number of theories.  Most are based on stress values 
or distortional energy levels, but a few depend on strain values.  If you 
know that one has been accepted for your selected material then use that 
one (as a contribution to the overall factor of safety).  Otherwise, you 
should evaluate more than one theory and see which is the worst case.  Also 
keep in mind that loading or support uncertainties can lead to a range of 
stress levels, and variations in material properties affect the strength and 
unexpected failures can occur if those types of distributions happen to 
intersect, as sketched in Figure 1-6. 

13.  

Figure 1-6 Overlap of stresses and material strengths can cause failure 

14. Optionally, post-process the secondary variables to measure the theoretical 
error in the study, and adaptively correct the solution.  This converges to an 
accurate solution to the problem input, but perhaps not to the problem to be 
solved.  Accurate garbage is still garbage. 

15. Document, report, and file the study.  The part shape, mesh, and results 
should be reported in image form.  Assumptions on which the study was 
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based should be clearly stated, and hopefully confirmed.  The 
documentation should contain an independent validation calculation, or 
two, from an analytical approximation or an FEA based on a totally 
different element type.  Try to address the relative uncertainties of the main 
analysis stages, as summarized in Figure 1-7.  

 
Figure 1-7 Relative uncertainty of major modeling stages 

Technical communication and documentation is always important.  In America, 
engineers are supposed to retain their calculations for at least seven years.  Will 
your report be clear and helpful if you have to defend it years later?  Paper 
hardcopies are the most reliable for long term storage.  (Can you read the 
electronic media you used five years ago?) 

You usually assume that the materials are linear.  If not (creeping, hyperelastic, 
inelastic, plastic, viscoelastic, etc.), define the appropriate material data and the 
nonlinear equations to be solved.  Then the matrix system becomes non-linear.  
Your original results check may lead you to conclude that the problem is 
actually an iterative one due to large displacements, or the need to insert 
physical contact interfaces.   
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1.6  Part Geometric Analysis and Meshing Failures 
Before attempting meshing your part, for a finite element analysis, you should 
check your solid model for potentially fatal geometric flaws that may not be 
noticed except at greatly magnified views.  Within SolidWorks this is called a 
Geometric Analysis.  To utilise that feature, a geometric analysis check the 
Angle_Connector part will be outlined: 
1. Select Tools  Check will open the Check Entity panel. 

 
2. In that panel check the boxes for most entities, select Check. 
3. Highlight each item in the Result List.  As you scroll down the Result list 

the short edge location on the part is illustrated by a yellow arrow.  Either 
the feature needs to be eliminated, or the mesh will need to be finer. 

   
4. To consider a potential mesh refinement you should determine the size of 

the small feature.  Use Tools Measure to open up the Measure panel.  
Select the XYZ option, click on a edge of the feature to see its length. 
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5. Attempt to create a mesh: Mesh Create Mesh. As expected, that 

process fails and a failure diagnostic message appears:  

 
6. Right click on Mesh to open the Failure Diagnostics panel.  Scroll 

down the lists of faces or edges that caused the meshing failure.  In this 
case, there is a highly distorted surface that formed with the fillets.  
Sometimes this type of surface can be removed by suppressing the fillets, or 
by simply building the fillets in a different order.  Sometimes the surface 
can split by inserting split lines to make more manageable regions.  
Repairing the surface is better that having to try to control the mesh. 
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7. First, try to get some type of mesh output by specifying a small element size 
along the edges of the distorted region Mesh Apply Mesh Control.  
Specify a local element size that will assure that one or two elements will fit 
along the smallest edge.  Surprisingly, this worked.  But it yielded a 
distorted mesh in the region of the small edge.  Ideally, the surface triangles 
(one face of the tetrahedron) would be isosceles.  That gives an element 
“aspect ratio” (say the ratio of the long side divided by the short one) of 
unity.  Here the triangles are curved.  A few are also badly distorted and not 
desirable for analysis if they are in an expected high stress region. 
 

         

        

One measure of the quality of an element is its aspect ratio.  Think of that as the 
ratio of the diameter of the enclosing sphere to the diameter of the enclosed 
sphere.  Alternately, use the ratio of the longest element edge length to its 
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shortest.  An ideal aspect ratio should be near unity.   Check the mesh quality by 
looking at a plot of the aspect ratio of the elements.  Select Mesh  Create 
Mesh Plot  Aspect Ratio.                

Try to improve this mesh by removing the bad surface, or subdividing it into 
two regions.  At the narrow region, insert a split line that avoids very small 
intersection angles with both curves. 

                        

The small slender partition will need very small elements, but the larger 
partition can have larger ones.  Especially if you use the transition control ratio 
to give five or more growth layers at an enlargement ratio of about 1.2 instead of 
the default value of 1.5.  Use Mesh  Apply Mesh Control to specify 
element sides of 0.02 and 0.05 inches, respectively in the Mesh Control 
panel.  They give a much better mesh in this region. 

     

Another part, the Five_Hole_Link, shows a tangency that gives very bad 
element aspect ratios.  A common cause of failure in mesh generation is to have 
two solid regions or two joining surfaces meet at a near zero angle.  That often 
happens in practice and requires intervention to be able to create a mesh for 
analysis.  If a tangency condition is really required in the part, then you must 
force smaller element sizes there via the Mesh Control option. 
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If the part can be modified to avoid the tangency, then meshing becomes much 
easier.  That is illustrated below where it was feasible to avoid a tangency 
requirement in this application. 
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2 SolidWorks Simulation Overview 

2.1  Simulation Study Capabilities 
The SW Simulation software offers several types of linear studies including: 

Buckling:  A buckling study calculates a load factor multiplier for axial loads to 
predict when the actual loads will cause sudden, large catastrophic 
transverse displacements. Slender structures subject to mainly axial 
loads can fail due to buckling at load levels far lower than those 
required to cause material failure. 

Drop Test:  Drop test studies evaluate the impact effect of dropping the design 
on a rigid floor.  You can specify the dropping distance or the velocity 
at the time of impact in addition to gravity.  The model supplies the 
mass, ࡹ, damping, ࡯, and stiffness matrices, ࡷ, in terms of the 
displacements, ࢛ሺݐሻ, and forces, ࡲ.  The program solves a dynamic 
problem ࢛ࡹሷ ൅ ሶ࢛࡯ ൅ ሻݐሺ࢛ࡷ ൌ  ሻ as a function of time using explicitݐሺࡲ
time integration methods.  After the analysis is completed, you can plot 
and graph the time history of the displacements, velocities, 
accelerations, strains, and stresses. 

Dynamic Analysis:  These types of study assume that the materials are linear 
and that the loadings are either time dependent, frequency dependent or 
defined by limiting spectra. Mass and inertia effects are included and 
damping is available.   The options in SW Simulation are Drop Test 
(also known as Direct Time History Analysis), Modal Time History 
Analysis (Mode Superposition Analysis), Harmonic Analysis 
(Harmonic Response Analysis, and Random Vibration Analysis 
(Response Spectra Analysis).  The last three analysis types require a 
Frequency Analysis to be completed to supply the eigenvalues (natural 
frequencies) and eigenvectors (mode shapes) needed as inputs. 
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Fatigue:  Fatigue studies evaluate the consumed life of an object based on a 
very large number of fatigue events (cycles). Repeated loading 
weakens materials over time even when the induced stresses are low.  
The number of cycles required for failure depends on the material and 
the stress fluctuations.  Those data are provided by the material S-N 
curve, which depicts the number of cycles that cause failure for 
different stress levels. 

Frequency:  A body tends to vibrate at natural, or resonant, frequencies.  For 
each natural frequency, the body takes a certain shape called the mode 
shape.  Frequency analysis calculates the natural frequencies and their 
associated mode shapes.   The mode shapes can be animated for each 
selected frequency. 

Harmonic Analysis:  Harmonic response analysis is a steady state solution due 
to harmonic loads of known amplitude and frequency.  That is ࡲሺݐሻ ൌ
ሻݐሺ࢛ ଴݁௝ఠ௧, andࡲ  ൌ ൅ࡹ଴݁௝ఠ௧ and the linear system becomes ሺെ߱ଶ࢛ 
࡯݆߱ ൅ ଴࢛ሻࡷ ൌ  ଴ and its associated strains and࢛ ଴ which is solved forࡲ
stresses. 

 
Optimization:  Optimization studies automate the search for a local optimum 

design based on an initial geometric design and analysis state.  
Optimization studies require the definition of an objective, design 
variables, and behavior constraints. 

Modal Time History:  This solves the matrix equations of motion, ࢛ࡹሷ ൅ ሶ࢛࡯ ൅
ሻݐሺ࢛ࡷ ൌ  ሻ, are functions ofݐሺࡲ ,ሻ, where the assembled loadingsݐሺࡲ
time.  The displacement unknowns, ࢛ሺݐሻ, are converted through a 
modal transformation, ࢛ ൌ  ሻ.  This gives aݐሺࢗ ,to generalized DOF ,࣒ࢗ
diagonal matrix system ࢗሷ ൅ ඃ2 ௝߱ߦ௝ඏࢗሶ ൅ ௞߱ ڿ

ଶࢗۂሺݐሻ ൌ  ሻ which isݐሺࡲࢀ࣒
integrated analytically for a typical time step.  When the time history is 
completed, the physical displacements, ࢛ሺݐሻ, are recovered.  The 
strains and stresses are obtained from the displacements at each time. 

Pressure Vessel Design:  The results of multiple static studies are combined 
with the desired load factors. This study combines the results 
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algebraically using a linear combination or the square root of the sum 
of the squares. 

Random Vibration:  The loads are described statistically by power spectral 
density (PSD) functions.  After running the study, you can plot root-
mean-square (RMS) values, or PSD results of stresses, displacements, 
velocities, etc. at a specific frequency or graph results at specific 
locations versus frequency values. 

Static:  Static (or Stress) studies calculate displacements, reaction forces, 
strains, stresses, failure criterion, factor of safety, and error estimates.  
Available loading conditions include point, line, surface, acceleration 
(volume) and thermal loads are available.  Elastic orthotropic materials 
are available. 

Thermal:  Thermal studies calculate temperatures, temperature gradients, heat 
flux, and total heat flow based on internal heat generation, conduction, 
convection, contact resistance and radiation conditions.  Thermal 
orthotropic materials are available. 

Transient Thermal:  The time dependent thermal study is defined by ࢀࡹሶ ൅
ሻݐሺࢀࡷ ൌ  ሻ where M is the specific heat matrix (also called theݐሺࡽ
thermal mass matrix), K is the conduction and convection matrix, and 
Q is the combined nodal heat flow vector due to internal sources, 
convection, radiation, and given heat flux.  Given the initial conditions, 
and boundary conditions the system is time integrated for the model 
temperatures, ࢀሺݐሻ. 

The SW Simulation software also offers several types of nonlinear studies.  Like 
most commercial finite element systems SW Simulation has many capabilities 
and the average user only utilizes a few of them.  Table 2-1 lists those abilities 
that the author thinks are most useful.  Those with an asterisk are illustrated in 
this book.  SW Simulation comes with a very good set of tutorials that serve to 
illustrate all of the above analysis capabilities.   

Here SW Simulation will be introduced by examples intended to show basic 
capabilities generally not covered in the tutorials.  Also some tutorials focus on  
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Table 2-1: Selected SW Simulation capabilities 

* Angular acceleration  Nonlinear analysis 
* Angular velocity  Optimization analysis  
* Assembly analysis * Orthotropic materials 
* Body loads: gravity & 

centrifugal 
 p-adaptive analyses 

* Buckling load factors & 
modes 

* Plot customization 

 Connectors (Pin, bolt, etc.) * Prescribed nonzero restraints 
 Contact analysis with friction * Principal stresses 
* Deformation plot * Probe and list-by-entity tools 
* Directional pressure and force  Publish eDrawings of results 
* Directional restraints * Reaction force result plot 
* Displacement plots   Remote mass 
* Dynamic section and iso-plots * Restrain edges, faces & 

vertices 
* Edit material library  * Result graphs and listings  
 Element result plots  S-N Fatigue curves 
* Factor of safety calculation & 

plot 
* Strain and displacement 

analyses 
 Fatigue analysis and plots * Stress analysis 
* Fixed restraints on faces * Stress contour plots 
* Force on edges, faces & 

vertices 
 Stress error estimate 

* Frequency analyses * Symmetry restraints 
 h-adaptive analyses * Temperature distribution 
* Heat flux result plots * Temperature gradient plots 
* Heat sources  Temperature-dependent 

properties 
* Heat transfer analysis  Thermal contact resistance 
 Import  SW Flow loads  * Thermal stress analysis 
 Import SW Motion loads   Thermostat controlled heat 

generation 
 Interference or shrink fit * Thin parts, sheet metal using 

shells 
* Large displacement analysis  * Von Mises equivalent stress 
* Multibody part analysis * Weldment analysis using 

beam elements 
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which icons to pick, and do not have the space to discuss good engineering 
practice.  Here, one goal is to introduce such concepts based on the author’s 
decades of experience in applying finite element (FE) methods.  For example, 
you should always try to validate a FE calculation with approximate analytic 
solutions and/or a different type of finite element model.  This is true for even 
experienced persons using a program with which they have not had extensive 
experience.  Sometimes you might just misunderstand the supporting 
documentation and make a simple input error.  In the author’s opinion, the book 
by Adams and Askenazi [1] is one of the best practical overviews of the 
interaction of modern solid modeling (SM) software and general finite element 
software (such as SW Simulation), and the many pitfalls that will plague many 
beginners.  It points out that almost all FE studies involve assumptions and 
approximations and the user of such tools should be conscious of them and 
address them in any analysis or design report. You are encouraged to read it. 

2.2  Element Types and Shapes 
SW Simulation currently includes solid continuum elements, curved surface 
shell elements (thin and thick) and truss and frame line elements.  Solid 
elements have only displacement degrees of freedom.  General shells have both 
displacement and rotational degrees of freedom at each node.  However, 
membrane shells (like plane stress elements) have only displacement DOF.  The 
shells are triangular with three vertex nodes or three vertex and three mid-edge 
nodes (Figure 2-1).  The solids are tetrahedra with four vertex nodes or four 
vertex and six mid-edge nodes.  Solid and membrane shell elements use linear 
and quadratic interpolation for the solution based on whether they have two or 
three nodes on an edge.  The linear elements are also called simplex elements 
because their number of vertices is one more than the dimension of the space. 

       

Figure 2-1 SW Simulation shell (left) and solid element types 

Solid elements have their stresses and strains recovered at a number of tabulated 
locations inside the elements.  Stress or strain results from adjacent solids are 
averaged at their common nodes.  Shells are approximate solids represented by 
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their mathematical surface geometry and their thickness.  Shells have their 
stresses and strains reported on their “top” (half-thickness above the mid-
surface), mid-surface, and “bottom” (half-thickness below the mid-surface) 
locations, as sketched in Figure 2-2.  Generally, the combination of transverse 
bending stresses and in-plane (membrane) stresses cause the top and bottom of 
the shell to have stresses of opposite signs. 

 
Figure 2-2 Shells superimpose transverse bending and in-plane stresses 

You should always examine the mesh before starting an analysis run.  The size 
of each element indicates a region where the solution is approximated 
(piecewise) by a spatial polynomial.  Most finite element systems, including SW 
Simulation, use linear or quadratic polynomials in each element.  You can tell 
by inspection which is being used by looking at an element edge.  If that line has 
two nodes the polynomial is linear.  If three nodes, the polynomial is quadratic. 

2.3  Element Interpolations 
Let T(x, y, z) denote an entity to be interpolated within an element and let x, y, 
and z be the local element coordinates.  You can relate the number of nodes on 
an element to the number of polynomial coefficients (ܿ௞) in the local element 
spatial approximation, as outlined below: 

Linear element type:  Straight edge line, or straight bar – 2 nodes,   
Tሺxሻ ൌ   cଵ ൅ cଶx;                                        
Straight edged triangle membrane shell, or tetrahedron face – 3 nodes,  
Tሺx, yሻ ൌ   cଵ ൅ cଶx ൅ cଷy;                       
Straight edged, flat faced, tetrahedron – 4 nodes,    
Tሺx, y, zሻ ൌ   cଵ ൅ cଶx ൅ cଷy ൅ cସz.  Therefore, the solution gradient (first 
derivatives) in this type of element is constant and many elements are required 



SolidWorks Simulation Overview 27 

 

to get good results.  In SW Simulation a mesh of linear elements is called a 
"Draft Mesh".   

Quadratic element type:  Edge line – 3 nodes, Tሺxሻ ൌ   cଵ ൅ cଶx ൅ cଷxଶ     
Curved triangular membrane shell, or tetrahedron face – 6 nodes  
Tሺx, yሻ ൌ   cଵ ൅ cଶx ൅ cଷy ൅ cସxଶ ൅ cହxy ൅ c଺yଶ        
General curved tetrahedron – 10 nodes,                
Tሺx, y, zሻ ൌ   cଵ ൅ cଶx ൅ cଷy ൅ cସz ൅ cହxଶ ൅ c଺xy ൅ c଻yଶ ൅ c଼xz ൅ cଽyz ൅ cଵ଴zଶ      
These are called complete quadratic elements because there are no terms 
missing in the quadratic polynomial.  Their gradients are complete linear 
polynomials in three-dimensional space.  Therefore, the solution gradient, and 
strains and heat fluxes, in these elements vary piecewise linearly in space and 
fewer quadratic elements are required for a good solution.  SW Simulation refers 
to quadratic elements as a "Quality Mesh".  The above comments refer to flat 
shells loaded only in their plane.  When flat or curved shells are loaded normal 
to their surface a more complicated set of interpolations are used to include their 
transverse bending behavior. 

Note that if you set z = 0 in the quadratic (10 DOF) solid, to restrict the 
interpolation to a particular face triangular of the element, you obtain the 
previous (6 DOF) quadratic triangle.  Likewise, if you set both z and y to zero, 
to restrict the interpolation to a particular edge of the element, you obtain the 
previous quadratic (3 DOF) line element.  Clearly, all of the elements can 
interpolate data that happen to be constant (like a RBM) with c୩ ൌ 0, k  ൒ 2.  It 
is less clear, but easy to prove, that all of the quadratic interpolations can reduce 
to the corresponding (line, surface, volume) linear interpolation if that is the 
exact solution. 

These polynomial interpolations within an element mean that the primary 
unknown (displacement or temperature) is continuous within the element (has an 
infinite number of derivatives, C∞) and across the element interfaces (but only 
the value is shared with its neighbor, C0).  But, the gradient of the primary 
unknown is discontinuous across elements, whereas the exact gradient value is 
continuous in a homogeneous material.  The amount of discontinuity between 
element gradients is reduced as the element size is reduced.   For example, the 
two colored quadratic surfaces in Figure 2-3 could represent the temperature 
distribution through the two lower adjacent (white) elements.  Tangent to the  
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Figure 2-3 Exploded view of two quadratic faces   

common edge, the temperature and its tangential slope would both be 
continuous, but the slope normal to that interface is not continuous.  Thus, the 
temperature gradient is discontinuous across each interface, but continuous 
everywhere inside any single element.  Actually, the element interpolations are 
also used to determine the shape of each element by interpolating between the 
global position vectors of their nodes. 

or a quadratic shell, the SolidWorks sends the physical x, y, z coordinates of 
each the six nodes to SW Simulation for building the shell geometry, as seen on 
the left of Figure 2-4.  Similarly, the element nodes on all surfaces of a solid are 
defined by SolidWorks and then the SW Simulation mesh generator builds the 
interior tetrahedrons by working in from the bounding surfaces.  While the 
edges seen in Figure 2-4 would be defined exactly in SolidWorks as circles, and 
they “look like” circles in the finite element mesh they are actually piecewise 
approximations of a circle.  In other words, the quadratic edge of an element is a 
segment of a parabola passing through the three edge nodes that is used to 
approximate a segment of a circular arc through the same three nodes.   

 
Figure 2-4 Piecewise quadratic surface and solid elements 

2.4 Common Modeling Errors 
As noted above, FE models often have small geometric errors.  They can be 
reduced by mesh refinement and are usually much less important than other 
sources of error.  Probably the most common source of error is in selecting the 
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restraint approximations to be applied to a model.  Usually a restraint is applied 
to a region where surrounding material has been removed and it is necessary to 
replace the missing material with a restraint.  Keep in mind that the removed 
material must be capable of supplying the assumed restraint or you may 
introduce a very large error.  Sometimes you should move the restraints further 
away from the part of main interest by including a small region of the supporting 
material to which you apply the restraints. 

Many tutorials and examples assume fixed supports for simplicity.  True fixed 
supports are extremely rare.  They require zero movement of the support region.  
That in turn means that the removed supporting material (represented by the 
restraint) must be able to develop large reaction forces (and/or moments).  A 
fixed support assumes the material can convey both tension and compression 
reaction forces locally as needed.  Yet some supports can only convey tension 
while others can only resist compression.  Fixed support assumptions tend to 
under estimate the stresses in the part of interest, but over estimate the resisting 
stresses (reactions) in the removed material replaced by our simplified 
engineering assumptions (the restraint type). 

Loadings are also not as clear elementary examples suggest.  Is a force applied 
as a point load, a line load, a surface load, etc.?  That is, where and how a load is 
applied is usually an assumption.  Likewise, the magnitude of a force or other 
load may be a reasonable guess or it may be given by established design codes.  
In thermal studies the convection coefficients vary over a wide range and you 
may have to run different studies with the high and low values.   

The nature of the equations being solved is such that the computed reactions are 
essentially always equal and opposite to the resultant actual applied loads, not 
necessarily the loads you though that you applied.  Reaction data are available in 
SW Simulation and you should always check them. 

Common “standardized” materials have mechanical and thermal properties that 
are relatively well known and are built into the SW Simulation materials library.  
However, even those materials have some range in their values that are not 
represented in a single number stored in a table.  Many important properties, like 
the modulus of elasticity, are experimentally measured to only two or three 
significant figures.  Yet a materials table frequently gives average values or 
values converted from other units to a misleading six or seven significant 
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figures.  So usually the computed displacements are only accurate to three or 
four digits and the stresses to two or three digits.  

2.5  Infinite Corner Gradients  
It has already been mentioned that while point forces (or heat sources) are 
commonly used in an FEA, they cause theoretically infinite gradients (stresses 
or heat flux) at such points.  A related consideration is the treatment of reentrant 
corners or edges in the part.  All elliptical differential equations (stress analysis, 
heat transfer, potential flow, electrostatics, etc) will have a local singularity 
(infinite radial derivative) where the boundary of the domain contains a 
reentrant corner and/or a reentrant edge.  If you fillet any such corner or edge 
then the singularity does not occur.  However, if you defeature the fillet and 
return to sharp corners then you introduce these singular derivatives.  The 
interior angle, A, between the corner faces is the governing feature.  For values 
less than or equal to 180 degrees there is no reentrant geometry or local 
singularity.  Otherwise, a singularity occurs as the radius, r, goes to zero in the 
corner.  

For a scalar unknown like potential flow, or heat transfer, the local solution 
around the corner varies with the local angle, ܽ, as:  ߮ሺݎ, ܽሻ ൌ గݎ ܭ  ஺⁄  ݂ሺܽሻ.  
Here K is the intensity (importance) of the singularity and ߚ ൌ  is the ܣ/ߨ 
strength of the singularity.   A right angle corner (ܣ ൌ  is relatively weak (2/ߨ3
ߚ) ൌ  2/3ሻ while a slit or crack (ܣ ൌ ߚ is the strongest with (ߨ2 ൌ  1/2.  The 
radial gradient, in polar coordinates, will go to infinite any time the angle is 

more than 180 degrees (ߚ ൏ 1):  డఝ
డ௥
ൌ ௄గ

஺
 ሺఉିଵሻ݂ሺܽሻ.  For a crack the radialݎ

gradient is proportional to one over the square root of the radius:  డఝ
డ௥
ן ଵ

௥భ మ⁄ . 

Therefore, the radial gradient goes to infinite as the radius r goes to zero at the 
corner.  Since the local error in a FE solution is proportional to the product of 
the gradient and the element size, in theory you need to have very small element 
sizes (almost zero) at such reentrant geometries.  In practice, most corners are 
not mathematically sharp and some small radius develops during manufacture.  
Still, the gradients can be very large.  When the solid part has a mathematically 
sharp corner, the false infinite stresses (or strains, or heat flux) develops at the 
corner point.  When you contour singular results the false high values may lead 
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you to overlook true high gradient values at other locations.  At times you will 
need to reduce the automatically selected maximum contour level in your plots. 

The actual intensity (importance), K, of the corner singularity depends on how 
the far field solution is distributed relative to the centerline of the corner.  
Corners with the same angle will have different importance depending on 
whether the far field solution is changing parallel-to or perpendicular-to the 
corner centerline.  This is illustrated graphically in Figure 2-5 where there are 
six 90 degree corners and two with larger interior angles.  In this case, the 
default plot refers to heat flux vectors, but the same Poisson equation would 
apply to ideal fluid flow where the primary unknown is the velocity potential 
and the gradient vectors would be the actual fluid velocity vectors (listed as the 
heat flux vectors in the last chapter).  As can be seen from Figure 2-5, reentrant 
corner singularities usually affect the solution gradients, but their importance 
depends on their location in the part.  Apply reasonable mesh refinements near 
all such corner regions. 

 
Figure 2-5 Gradient vectors must change as they pass around corners 
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3 Concepts of Stress Analysis 

3.1  Introduction 
Here the concepts of stress analysis will be stated in a finite element context.  
That means that the primary unknown will be the (generalized) displacements.  
All other items of interest will mainly depend on the displacement gradient and 
therefore will be less accurate than the displacements.  Stress analysis covers 
several common special cases to be mentioned later.  Here only two 
formulations will be considered initially.  They are the solid continuum form 
and the shell form.  Both are offered in SW Simulation.  They differ in that the 
continuum form utilizes only displacement vectors, while the shell form utilizes 
displacement vectors and infinitesimal rotation vectors at the element nodes. 

As illustrated in Figure 3-1, the solid elements have three translational degrees 
of freedom (DOF) as nodal unknowns, for a total of 12 or 30 DOF for the linear 
and quadratic solids, respectively.  The shell elements have three translational 
degrees of freedom as well as three rotational degrees of freedom, for a total of 
18 or 36 DOF.  The difference in DOF types means that moments or couples can 
only be applied directly to shell models.  Solid elements require that couples be 
indirectly applied by specifying a pair of equivalent pressure distributions, or an 
equivalent pair of equal and opposite forces at two nodes on the body. 

                              
Figure 3-1 Degrees of freedom for frames and shells; solids and trusses 

Stress transfer takes place within, and on, the boundaries of a solid body.  
The displacement vector, u, at any point in the continuum body has the units 
of meters [m], and its components are the primary unknowns.   The components 
of displacement are usually called u, v, and w in the x, y, and z-directions, 
respectively.  Therefore, they imply the existence of each other, u ↔ (u, v, w).  
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All the displacement components vary over space.  As in the heat transfer case 
(covered later), the gradients of those components are needed but only as an 
intermediate quantity.  The displacement gradients have the units of [m/m], or 
are considered dimensionless.   Unlike the heat transfer case where the gradient 
is used directly, in stress analysis the multiple components of the displacement 
gradients are combined into alternate forms called strains.   

In 1D, the normal strain is just the ratio of the change in length over the original 
length, εx = ∂u / ∂x.  In 2D and 3D, both normal strains and shear strains exist.  
The normal strains involve only the part of the gradient terms parallel to the 
displacement component.  In 2D they are εx = ∂u / ∂x and εy = ∂v / ∂y.  They 
would cause a change in volume, but not a change in shape of the rectangular 
differential element.  A shear strain causes a change in shape. The total angle 
change (from 90 degrees) is used as the engineering definition of the shear 
strain.  The shear strains involve a combination of the components of the 
gradient that are perpendicular to the displacement component.  In 2D, the 
engineering shear strain is γ = (∂u/∂y + ∂v/∂x.  Strain has one component in 1D, 
three components in 2D, and six components in 3D.  The 2D strains are 
commonly written as a column vector: ε = (εx      εy     γ)T. 

Stress is a measure of the force per unit area acting on a plane passing through 
the point of interest in a body.  The above geometrical data (the strains) will be 
multiplied by material properties to define a new physical quantity, the stress, 
which is in initially directly proportional to the strains.  This is known as 
Hooke’s Law:  σ = E ε, (see Figure 3-2 ) where the square material matrix, E, 
contains the elastic modulus, and Poisson’s ratio of the material.  The 2D 
stresses are written as a corresponding column vector, σ = (σx    σy    τ)T.  Unless 
stated otherwise, the applications illustrated here are assume to be in the linear 
range of a material property. 

The 2D and 3D stress components are shown in Figure 3-3.  The normal and 
shear stresses represent the normal force per unit area and the tangential forces 
per unit area, respectively.  They have the units of [N/m2], or [Pa], but are 
usually given in [MPa].  The strain energy (or potential energy) stored in the 
differential material element is half the scalar product of the stresses and the 
strains.  Error estimates from stress studies are based on primarily on the strain 
energy density. 
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Figure 3-2 Hooke's Law for initial linear stress-strain, σ = E ε 

                      
Figure 3-3 Stress components in 2D (left, plane stress) and 3D solids 

3.2 Axial Bar Example 
The simplest available stress example is an axial bar, restrained at one end and 
subjected to an axial load, P, at the other end and the weight is neglected.   Let 
the length and area of the bar be denoted by L, and A, respectively.  Its material 
has an elastic modulus of E.  The axial displacement, u (x), varies linearly from 
zero at the support to a maximum of δ at the load point.  That is, u (x) = x δ / L, 
so the axial strain is εx = ∂u / ∂x = δ / L, which is a constant.  Likewise, the axial 
stress is everywhere constant, σ = E ε = E δ / L which in the case simply reduces 
to σ = P / A.  Like many other more complicated problems, the stress here does 
not depend on the material properties, but the displacement always does, 
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ߜ ൌ ܮܲ ⁄ܣܧ .  You should always carefully check both the deflections and 
stresses when validating a finite element solution. 

Since the assumed displacement is linear here, any finite element model would 
give exact deflection and the constant stress results.  However, if the load had 
been the distributed bar weight the exact displacement would be quadratic in x 
and the stress would be linear in x.  A quadratic element mesh would give exact 
stresses and displacements everywhere. 

The elastic bar is often modeled as a linear spring.  In introductory mechanics of 
materials the axial stiffness of a bar is defined as k = E A / L, where the bar has a 
length of L, an area A, and is constructed of a material elastic modulus of E. 
Then the above bar displacement can be written as ߜ ൌ ܲ ݇⁄ , like a linear spring. 

3.3 Structural Mechanics 
Modern structural analysis relies extensively on the finite element method.  The 
most popular integral formulation, based on the variational calculus of Euler, is 
the Principle of Minimum Total Potential Energy.   Basically, it states that the 
displacement field that satisfies the essential displacement boundary conditions 
and minimizes the total potential energy is the one that corresponds to the state 
of static equilibrium.  This implies that displacements are our primary 
unknowns.  They will be interpolated in space as will their derivatives, and the 
strains.  The total potential energy, Π, is the strain energy, U, of the structure 
minus the mechanical work, W, done by the external forces.  From introductory 
mechanics, the mechanical work, W, done by a force is the scalar dot product of 
the force vector, F, and the displacement vector, u, at its point of application. 

The well-known linear elastic spring will be reviewed to illustrate the concept of 
obtaining equilibrium equations from an energy formulation.  Consider a linear 
spring, of stiffness k, that has an applied force, F, at the free (right) end, and is 
restrained from displacement at the other (left) end, as in Figure 3-4.  The free 
end undergoes a displacement of Δ.  The work done by the single force is  
ܹ ൌ ∆ሬሬԦ ° ܨԦ  ൌ  ∆௫  ܨ௫ ൌ  The spring stores potential energy due to its  .ܨ ݑ
deformation (change in length).  Here we call that strain energy.  That stored 
energy is given by  ܷ ൌ  ଵ

ଶ
 ݇ ∆௫ଶ.  Therefore, the total potential energy for the 

loaded spring is 



36 Finite Element Analysis Concepts via SolidWorks 

 

 

ߎ ൌ  ଵ
ଶ
 ݇ ∆௫ଶ െ ∆௫  ܨ௫  

The equation of equilibrium is obtained by minimizing this total potential 
energy with respect to the unknown displacement, ∆௫.  That is,  

డ௽
డ∆ೣ

ൌ 0 ൌ   ଶ
ଶ
 ݇ ∆௫  െ  . ௫ܨ

 
Figure 3-4 Classic (top) and general linear spring element 

This simplifies to the common single scalar equation k ∆௫ = F, which is the 
well-known equilibrium equation for a linear spring.  This example was slightly 
simplified, since we started with the condition that the left end of the spring had 
no displacement (an essential or Dirichlet boundary condition).  Next we will 
consider a spring where either end can be fixed or free to move.  This will 
require that you both minimize the total potential energy and impose the given 
displacement restraint. 

Now the spring model has two end displacements, u1 and u2, and two associated 
axial forces, F1 and F2.  The net deformation of the bar is δ = u2 - u1.  Denote 

the total vector of displacement components as  ∆ሬሬԦൌ   ሼݑሽ ൌ   ቄ 
ଵݑ
 ଶ ቅ  and theݑ

associated vector of forces as  ܨԦ ൌ   ሼܨሽ ൌ   ൜ ܨଵܨଶ
 ൠ.  The mechanical work done on 

the spring is  ܹ ൌ  ሼݑሽ் ሼܨሽ ൌ u1 F1 + u2 F2. Then the spring's strain energy is 

ܷ ൌ   ଵ
ଶ
 ሼݑሽ் ሾ݇ሿ ሼݑሽ ൌ   ଵ

ଶ
 ,૛ࢾ ࢑

where the “spring stiffness matrix” is found to be 

ሾ݇ሿ ൌ ݇  ቂ    1 െ1
െ1    1 ቃ. 
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The total potential energy, Π, becomes     ߎ ൌ  ଵ
ଶ
 ሼݑሽ் ሾ݇ሿ ሼݑሽ െ   ሼݑሽ்ሼܨሽ    

ߎ  ݎ݋     ൌ   ௞
ଶ
ቄ 
ଵݑ
ଶ ቅݑ

்
 ቂ    1 െ1
െ1    1 ቃ ቄ 

ଵݑ
ଶ ቅݑ െ  ቄ 

ଵݑ
ଶ ቅݑ

்
 ൜ ܨଵܨଶ

 ൠ . 

Note that each term has the units of energy, i.e. force times length.  The matrix 
equations of equilibrium come from satisfying the displacement restraint and the 
minimization of the total potential energy with respect to each and every 
displacement component. The minimization requires that the partial derivative 

of all the displacements vanish:  డ௽
డሼ௨ሽ

ൌ   ሼ0ሽ , or  డ௽
డ௨ೕ

ൌ  0௝. That represents the 

first stage system of algebraic equations of equilibrium for the elastic system: 

݇  ቂ    1 െ1
 െ1    1 ቃ ቄ 

 ଵݑ
ଶݑ ቅ ൌ   ൜ 

ଵܨ
ଶܨ
 ൠ . 

These two symmetric equations do not yet reflect the presence of any essential 
boundary condition on the displacements.  Therefore, no unique solution exists 
for the two displacements due to applied forces (the axial RBM has not been 
eliminated).  Mathematically, this is clear because the square matrix has a zero 
determinant and cannot be inverted.  If all of the displacements are known, you 
can find the applied forces.  For example, if you had a rigid body translation of 
u1= u2 = C where C is an arbitrary constant you clearly get F1= F2= 0.  If you 
stretch the spring by two equal and opposite displacements; u1= -C, u2 = C and 
the first row of the matrix equations gives F1= -2 k C. The second row gives F2 
= 2 k C, which is equal and opposite to F1, as expected.  Usually, you know 
some of the displacements and some of the forces.  Then you have to manipulate 
the matrix equilibrium system to put it in the form of a standard linear algebraic 
system where a known square matrix multiplied by a vector of unknowns is 
equal to a known vector:  ሾܣሿሼݔሽ ൌ ሼܾሽ. 

3.4  Equilibrium of a Single Restrained Element 
In basic physics, we learn to utilize springs connected in series and/or in 
parallel.  Elastic bodies behave as springs.  For 1-D bars, shafts, and beams we 
can utilize their analytic stiffness relations to derive approximate (and 
sometimes exact) analytic solutions at discrete points on the body.  That allows 
us to treat axial forces, axial torsion, and transverse forces in simple models. 
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As noted above, the equilibrium relation for a simple spring between its 
stiffness, k, displacement, u, and axial force, f, is usually seen as: ݇ ݑ ൌ ݂, or 
ݑ ൌ ݂/݇.  This simple form arises only because we initially assumed that one 
end of the spring was restrained from displacement (immovable), and the 
opposite end was subjected to a constant force.  If the spring model is 
generalized to allow either end to be restrained or loaded then the equilibrium 
equation takes a matrix form: 

݇ ቂ    1 െ1
െ1    1 ቃ ቄ 

ଵݑ
ଶ ቅݑ ൌ ൜  ଵ݂

ଶ݂
 ൠ, 

where the subscripts 1 and 2 refer to the left and right ends of the spring, 
respectively.  Note that the determinant of the matrix is zero.  That is because 
were must later add restraint information about at least one end to obtain a 
unique physical solution.  For example, assume that the left node has a known 
displacement (which is usually zero) and the right end has a known force, ଶ݂ ൌ
 ଶ, and the left end reactionݑ ,The unknowns are the right displacement  .ܨ

force, say ଵ݂ ൌ ܴ.  The revised analytic equilibrium relation is 

݇ ቂ    1 െ1
െ1    1 ቃ ቄ 

௚௜௩௘௡ݑ
ଶݑ  ቅ ൌ ቄ ܴܨ ቅ, 

and the independent displacement is found from the second row: 

݇ሾ െݑ௚௜௩௘௡ ଶ ሿݑ ൌ  ܨ

ଶݑ ൌ ௚௜௩௘௡ݑ  ൅  .݇/ܨ

This is the same as the common form when ݑ௚௜௩௘௡ is zero, namely ݑଶ ൌ   .݇/ܨ 
Now the reaction force necessary to maintain u୥୧୴ୣ୬ is obtained from the first 

row of the matrix system: 

݇ሾ ݑ௚௜௩௘௡ െሺݑ௚௜௩௘௡ ൅ ܨ ݇⁄ ሻ ሿ ൌ ܴ 

or simply R ൌ െF, as expected. 

An elastic bar acts like a simple spring.  However, in addition to end point loads 
it can have distributed mechanical loads per unit length, and/or thermal loading 
due to a temperature change, say ∆T, over its length.  The resultants of such 
effects are lumped at the ends as additional point loads.  For a linear bar with a 
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cross-sectional area, A, length, L, a distributed load per unit length of ݓଵ on the 
left and ݓଶ on the right, and material with an elastic modulus of E and a 
coefficient of thermal expansion of α, the corresponding matrices are 

ܣܧ
ܮ ቂ    1 െ1

െ1   1  ቃ ቄ 
ଵݑ
ଶ ቅݑ ൌ ൜  ଵ݂

ଶ݂
 ൠ ൅

ܮ
6 ቂ 

2 1
1 2 ቃ ቄ 

ଵݓ
ଶ ቅݓ ൅ ܣܧܶ∆ߙ ቄ െ1   1 ቅ 

where, again, the ௞݂ terms represent external point loads or reactions.  The ratio 
k = EA/L is called the axial stiffness of a bar.  If the line load is constant then the 
second load vector (transposed) reduces to ܨ௪் ൌ ሾ 1ܮݓ 1 ሿ/2 which places 
half the total applied line load at each end of the bar.  The displacement between 
the two ends was assumed to be linear.  That causes the strain to be constant, 
߳ ൌ ܮ∆ ܮ ൌ ሺ⁄ ଶݑ െ  .which is not  correct for a non-zero line load, w(x) ,ܮ/ଵሻݑ

A minor change in interpretation yields a similar relation for the torsion of a 
straight shaft.  The displacements convert to the angle of twist about the axis, the 
distributed load becomes a torque per unit length t(x), and point forces convert 
to torque couples, T, and temperature effects do not appear.  The elastic modulus 
is replaced by the shear modulus, G, and the area is replaced by the polar 
moment of inertia of the section, J, to define the torsional stiffness of a shaft, 
݇ ൌ ܬܩ ⁄ܮ .  The torsional equilibrium relations are: 

ீ௃
௅
ቂ    1 െ1
െ1   1  ቃ ൜ 

ଵߠ
ଶߠ
 ൠ ൌ ൜  ଵܶ

ଶܶ
 ൠ ൅ ௅

଺
ቂ 2 1
1 2 ቃ ቄ 

ଵݐ
ଶݐ
 ቅ. 

The accuracy and complexity of a bar model (or a shaft model) is increased by 
basing it on quadratic interpolation, based on three nodes per element.  For the 
usual case where the second node is at the midpoint, the matrix equilibrium 
equations for a single bar element becomes: 

ா஺
ଷ௅
൥ 
   7 െ8    1
െ8 16 െ8
   1 െ8    7

 ൩ ൝ 
ଵݑ
ଶݑ
ଷݑ
 ൡ ൌ ቐ 

ଵ݂

ଶ݂

ଷ݂

 ቑ ൅ ௅
ଷ଴
൥
4 2 െ1
2 16 2
െ1 2 4

൩ ൝ 
ଵݓ
ଶݓ
ଷݓ
 ൡ ൅ ܣܧܶ∆ߙ ൝

െ1
   0
   1

ൡ  

for a quadratic (three point) line load.  A constant line load resultant vector is 

௪்ࡲ ൌ ௪௅
଺
ሾ 1 4 1ሿ ,  ( ݂ݓ ݎ݋ଵ ൌ ଶݓ ൌ ଷݓ ൌ  ( ݓ

while an increasing triangular load yields 

௪்ࡲ ൌ ௪௅
ଷ
ሾ 0 2 1 ሿ,  ሺ ݂ݓ ݎ݋ଵ ൌ 0, ଶݓ ൌ ݓ 2,⁄ ଷݓ ൌ  .ሻݓ
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Generally, you want to substitute the three nodal line load values, ݓ௞, to obtain 
the resultant vector, ࡲ௪, before assembling with other elements.  If you want to 
interpolate the approximate displacement solution or gradient between the 
nodes, the interpolation functions are (for non-dimensional position  ݎ ൌ ݔ ⁄ܮ  ): 

ሻݔሺݑ ൌ ଵሺ1ݑ െ ݎ3 ൅ ଶሻݎ2 ൅ ݎଶሺ4ݑ െ ଶሻݎ4 ൅ ݎଷሺെݑ ൅  ଶሻݎ2

ሻݔሺߝ ൌ ݑ݀ ⁄ݔ݀ = ሾ ݑଵሺെ3 ൅ ሻݎ4 ൅ ଶሺ4ݑ െ ሻݎ8 ൅ ଷሺെ1ݑ ൅  .ܮ/ሻሿݎ4

At node 1 where r = 0 the displacement and strain become: ݑሺ0ሻ ൌ  ଵ, andݑ
ሺ0ሻߝ ൌ ሺ4ݑଶ െ ଷݑ െ ଵݑ ,ଵሻ.  For a rigid body translationݑ3 ൌ ଶݑ ൌ ଷݑ ൌ ܿ, by 
definition.  Then ߝሺ0ሻ ൌ 0 and there is no strain or stress at that point.  Actually, 
the strain everywhere, ߝሺݔሻ, vanishes for that special case. 

3.5 General Equilibrium Matrix Partitions 
The above small example gives insight to the most general form of the algebraic 
system resulting from only minimizing the total potential energy: a singular 
matrix system with more unknowns than equations. That is because there is not 
a unique equilibrium solution to the problem until you also apply the essential 
(Dirichlet) boundary conditions on the displacements. The algebraic system can 
be written in a general partitioned matrix form that more clearly defines what 
must be done to reduce the system by utilizing essential boundary conditions. 

For an elastic system of any size, the full, symmetric matrix equations obtained 
by minimizing the energy can always be rearranged into the following 
partitioned matrix form: 

൤ 
࢛࢛ࡷ ࢍ࢛ࡷ
࢛ࢍࡷ ࢍࢍࡷ

 ൨ ൜ 
࢛∆
ࢍ∆
 ൠ ൌ   ൜ 

ࢍࡲ
࢛ࡲ
 ൠ 

where ∆u represents the unknown nodal displacements, and ∆g represents the 
given essential boundary values (restraints, or fixtures) of the other 
displacements. The stiffness sub-matrices Kuu and Kgg are square, whereas Kug 
and Kgu are rectangular matrices.  In a finite element formulation all of the 
coefficients in the K matrices are known. The resultant applied nodal loads are 
in sub-vector Fg and the Fu terms represent the unknown generalized reactions 
forces associated with essential boundary conditions. This means that after the 
enforcement of the essential boundary conditions the actual remaining 
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unknowns are ∆u and Fu.  Only then does the net number of unknowns 
correspond to the number of equations. But, they must be re-arranged before all 
the remaining unknowns can be computed. 

Here, for simplicity, it has been assumed that the equations have been numbered 
in a manner that places rows associated with the given displacements (essential 
boundary conditions) at the end of the system equations. The above matrix 
relations can be rewritten as two sets of matrix identities: 

࢛∆ ࢛࢛ࡷ ൅ ࢍ∆ࢍ࢛ࡷൌ   ࢍࡲ 

࢛∆ ࢛ࢍࡷ ൅ ࢍ∆ࢍࢍࡷൌ  .࢛ࡲ 

The first identity can be solved for the unknown displacements, ∆࢛, by putting 
it in the standard linear equation form by moving the known product ࢍ∆ࢍ࢛ࡷ to 
the right side.  Most books on numerical analysis assume that you have reduced 
the system to this smaller, nonsingular form (࢛࢛ࡷ) before trying to solve the 
system.  Inverting the smaller non-singular square matrix yields the unique 
equilibrium displacement field: 

ൌ࢛∆ ࢛࢛ࡷ 
ି૚ ൫ࢍࡲ െ ࢍ∆ࢍ࢛ࡷ൯. 

The reaction forces can then be recovered, if desired, from the second identity: 

࢛ࡲ ൌ ࢛∆ ࢛ࢍࡷ  ൅ ࢍ∆ࢍࢍࡷ. 
In most applications, these reaction data have physical meanings that are 
important in their own right, or useful in validating the solution. However, this 
part of the calculation is optional.  

3.6  Assembly of Multiply Element Connections 
When a system of springs is combined in series or parallel, they share (scatter or 
sum) square matrix diagonal terms and source vector row terms at any 
connecting points (or rows and columns) in the system matrix equilibrium 
equation, see Figure 3-5.  The size of the overlapping summed (scattered) 
regions depends on how many degrees of freedom are at a shared connection 
point.  Often it is only a single shared term, but for a beam there is usually a 
deflection and slope at the connection and two rows are summed.  The sum 
(assembly) of the nodal forces from the individual spring internal forces (or 
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sources) at a node connection equals the resultant external point force there.  
Often the resultant is zero (the external force is absent).  If the node point DOF 
is restrained then the external resultant is an unknown point reaction. 

 
Figure 3-5 Overlapping matrix sums (scatters) at  shared connections 

The finite element analytical forms of the element stiffness relations and the 
assembled (scattered) equations of equilibrium can prove, at times, to be useful 
in obtaining closed form approximations of a particular physical problem.  Often 
that problem is a simplified model of a real problem that will be used to validate 
or check the large numerical calculation. 

Consider two springs, say a and b, connected in series.  Restrain let the first 
(left) point while the third (right) point has a known force, F.  The second 
(middle) has no resultant external force applied.  Then the assembled 3 by 3 
system equilibrium matrix form become: 

൥ 
   ݇௔ െ݇௔  0
െ݇௔ ሺ݇௔ ൅ ݇௕ሻ െ݇௕

0 െ݇௕    ݇௕
 ൩ ൝ 

ଵݑ ൌ ௚௜௩௘௡ݑ
ଶݑ
ଷݑ

 ൡ ൌ ቐ
ଵ݂
௔

  ଶ݂௔ ൅ ଵ݂
௕

ଶ݂
௕

 ቑ ൌ ൝ 
ܴ
0 
ܨ
 ൡ. 

This is a set of three equations for three unknowns: ݑଶ,  ଷ and ܴ.  But, they areݑ
singular and cannot be solved until it is modified for all known displacements. 
Likewise, the reaction, R, cannot be found before the displacements are known, 
so we use the last two rows to do that.  Enforce the essential boundary condition 
by multiplying the first column of the system by the known value of ݑଵ, and 
move that column to the right hand side (with ݑ௚௜௩௘௡ zero): 

൤ ሺ݇
௔ ൅ ݇௕ሻ െ݇௕

െ݇௕   ݇௕
 ൨ ቄ 

ଶݑ
ଷ ቅݑ ൌ ቄ 0 ܨ ቅ െ ௚௜௩௘௡ݑ ቄ 

െ݇௔
0  ቅ ൌ ቄ 0ܨ ቅ 
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so inverting the reduced 2 by 2 square equilibrium matrix (which is now non-
singular) gives the unknown displacement values: 

ቄ 
ଶݑ
ଷ ቅݑ ൌ

1
݀ ൤ 

݇௕ ݇௕
݇௕ ሺ݇௔ ൅ ݇௕ሻ ൨ ቄ 

0
ቅ ܨ ൌ

ܨ
݀ ൜ 

݇௕
݇௔ ൅ ݇௕

 ൠ 

where the determinant of the reduced square matrix is ݀ ൌ  ݇௔݇௕.  Returning to 
the first row in the original system of three equations gives the reaction 
necessary to keep ݑଵat zero: 

ܨ
݇௔݇௕

ሾ 0 െ݇௔݇௕ 0 ሿ ൌ െܨ ൌ ܴ 

That reaction is equal and opposite to the applied force, as expected.  This 
concludes the first analytic matrix solution example. 

As a second analytic example, let the above springs represent a linear 
displacement bar with the first half having an area of 2A while the last half has 
an area of A.  The two axial stiffness’s k = EA / L are ݇௔ ൌ ሻܣሺ2ܧ ሺܮ 2ሻ⁄⁄ ൌ
ܣܧ4 ⁄ܮ  and ݇௕ ൌ ܣܧ ሺܮ 2ሻ ൌ ܣܧ2 ⁄⁄⁄ܮ . Then the deflections are  

ቄ 
ଶݑ
ଷ ቅݑ ൌ

ܮܨ
ܣܧ4 ቄ 

2
3 ቅ 

So you can see that the smaller right end element’s relative deflection, (ݑଷ െ
 .ଶ), is only half as much as the displacement of the larger element on the leftݑ

3.7  Solution Phases for Compound Elastic Bars 
Because there was no distributed load in the above example, it is simple enough 
to see that the force in each segment of the bar is clearly just F.  However, there 
is a standard process for finding the end reactions on each spring from the 
known displacements of the system.  Simply gather the known displacements for 
each individual bar and substitute them into an element’s individual matrix 
equilibrium equation (including it’s line load vector). To illustrate all these 
features, and to explain the stress recovery, a numerical example will be given 
for a compound axial bar.  A large compound hanging bar made of an upper 
steel section and lower brass section carries its distributed weight (gravity load) 
and a point end load of 10,000 lb (see Figure 3-6).  There is no thermal loading.  
The tabulated properties of the system are: 
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El Length Area Modulus Specific Weight Connections 

1 420 “ 10 sq.in. 30e6 psi 0.283 lb/cubic in. 1             2 

2 240 “  8 sq.in. 13e6 psi 0.300 lb/cubic in. 2             3 

Those data show that the axial stiffness of the steel bar is ݇௔ ൌ 7.143݁5 ݈ܾ/݅݊ , 
its total weight is ܹ௔ ൌ 1,188.6 ݈ܾ  corresponding to a distributed load of 
௔ݓ ൌ 2.83 ݈ܾ/݅݊.  For the lower brass section ݇௕ ൌ 4.333݁5 ݈ܾ ݅݊⁄ ,ܹ௕ ൌ
576 ݈ܾ, ௕ݓ ൌ 2.4 ݈ܾ/݅݊.  Scattering the two axial members gives the assembled 
system equilibrium equation of: 

10ହ ൥
    7.143 െ7.143                    0
െ7.143 ሺ7.143 ൅ 4.333ሻ െ4.333

0              െ4.333    4.333
 ൩ ൝ 

ଵݑ ൌ 0
ଶݑ
ଷݑ

 ൡ

ൌ ൝ 
ܴ
0

10,000
 ൡ ൅

1
2 ൝ 

1,188.6             
1,188.6 ൅ 576
                     576

 ൡ 

where R is the unknown top reaction force.  After modifying the system 
equations for the essential boundary condition, the bottom two rows become 

10ହ ቂ 11.476 െ4.333
െ4.333    4.333 ቃ ቄ 

ଶݑ
ଷ ቅݑ ൌ ቄ  882.310,288 ቅ 

And the displacements are determined to be 

ቄ 
ଶݑ
ଷ ቅݑ ൌ 10ିଶ ቄ 1.56383.9381 ቅ  .ݏ݄݁ܿ݊݅

From the first row of the assembled three equations, the reaction is recovered as  

10ହሾ 0 െ 7.143ሺ0.015638ሻ ൅ 0 ሿ ൌ ሼ ܴ ሽ ൅ ሼ 594.3 ሽ, 

or ܴ ൌ െ11,764.6 ݈ܾ which is equal and opposite to the combined weights and 
the bottom point load, as expected.  As discussed above, the two end reactions, 
of an individual element, are found by gathering the system displacements and 
inserting them into each bar’s individual equation of equilibrium.  For the top 
steel bar: 

ா஺
௅
ቂ    1 െ1
െ1   1  ቃ ൜ 

ଵ௔ݑ
ଶ௔ݑ
 ൠ ൌ ൜  ଵ݂

௔

ଶ݂
௔ ൠ ൅

௪௅
ଶ
ቄ 1 1ቅ ൅ ܣܧܶ∆ߙ ቄ െ1    1 ቅ, or 
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10ହݔ7.143        ቂ    1 െ1 
െ1   1 ቃ 10

ିଶ ቄ  0
1.5638 ቅ ൌ ൜  ଵ݂

௔

ଶ݂
௔ ൠ ൅

ଵ,ଵ଼଼.଺
ଶ

ቄ 11 ቅ ൅ ቄ 00 ቅ 

൜  ଵ݂
௔

ଶ݂
௔ ൠ ൌ ቄ െ11,764.410,576  ቅ ݈ܾ. 

Likewise, for the lower bar the two end reaction forces are 

ቊ  ଵ݂
௕

ଶ݂
௕ ቋ ൌ ൜ െ10,576   10,000 ൠ ݈ܾ. 

These member and system reactions are sketched in Figure 3-7 to illustrate that 
they are in equilibrium with each other, and with the externally applied loads. 

There are consistent finite element methods for estimating stresses in two node 
analytic springs.  However, they are not generally accurate when line loads are 
present.  Instead, the use of basic mechanics of materials and the above member 
reactions will yield exact stresses at both ends of the member.  In the above axial 
bar example remember that the axial stress, ߪ, is simply ߪ ൌ ܨ ⁄ܣ  where F is the 
axial force acting over area A.  For the bars the two end stresses are simply 

൜ ߪଵ
௔

ଶ௔ߪ
 ൠ ൌ ቄ 11,764.410,576  ቅ ݈ܾ ሺ10 ݍݏ. ݅݊ሻൗ ൌ ቄ 1.181.06 ቅ ,݅ݏ݇ tension. 

ቊ ߪଵ
௕

ଶ௕ߪ
 ቋ ൌ ൜ 10,57610,000 ൠ ݈ܾ ሺ8 ݍݏ. ݅݊ሻൗ ൌ ቄ 1.321.25 ቅ ,݅ݏ݇ tension. 

Based on mechanics of materials (not FEA), assume a linear axial stress 
distribution between the two ends results in the sketch of stresses shown in 
Figure 3-8.  Note that the system stress is discontinuous due to the change in the 
two cross-sectional areas (even though the axial force and the displacement are 
continuous).  In this example, the linear stress change in both bars is exact. The 
consistent finite element theory for the stress in such a bar is only accurate at the 
mid-point of the bar.  It is given by the product of the gradient of the 
approximate displacements and Hooke’s law: 

ߪ ൌ ா
௅
ሾ െ1 1 ሿ ቄ 

ଵݑ
ଶ ቅݑ ൌ

ா
௅
ሺݑଶ െ ଵሻݑ ൌ

ா∆௅
௅
ൌ  .ߝܧ

Here, ߝ is the strain and its value (change in length over original length) is exact 
only for a bar with a constant point load at one end.  Thus, in this example a 
combination of basis solid mechanics and the element stiffness matrix and load  
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Figure 3-6 Steel-Brass compound bar with gravity and end forces 

 

 
Figure 3-7 Exploded members, and combined system reaction forces  

 
Figure 3-8 Axial stress distribution in the steel (left) and brass bars 
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vector gives more accurate stress results than the complete finite element theory.  
That is only because we are employing only one or two analytic elements, to 
obtain an analytic answer, whereas full numerical solutions can use hundreds of 
small elements to give accurate numerical results everywhere in the system.  
Single bars with more than two nodes each are available for more accurate 
element displacements and stresses.  For example, if you used the quadratic 
(three-node) elastic bar element given earlier the displacements and stresses 
would be exact everywhere (for one-dimensional theory).  However, the 
assembled equilibrium equations would be 5 by 5 in size.  After enforcing the 
essential boundary condition you would be left with four simultaneous equations 
to solve.  That is unpleasant to do by hand.  Similar analytic matrix solutions 
will be given later in the chapter on space frames. 

3.8  Structural Component Failure 
Structural components can be determined to fail by various modes determined 
by buckling, deflection, natural frequency, strain, or stress.  Strain or stress 
failure criteria are different depending on whether they are considered as brittle 
or ductile materials.  The difference between brittle and ductile material 
behaviors is determined by their response to a uniaxial stress-strain test, as in 
Figure 3-2.  You need to know what class of material is being used.  SW 
Simulation, and most finite element systems, default to assuming a ductile 
material and display the distortional energy failure theory which is usually 
called the Von Mises stress, or effective stress, even though it is actually a 
scalar.  A brittle material requires the use of a higher factor of safety. 

3.9  Overall Factor of Safety 
All aspects of a design have some degree of uncertainty, as does how the design 
will actually be utilized.  For all the reasons cited above, you must always 
employ a Factor of Safety (FOS).  Some designers refer to it as the factor of 
ignorance.   Remember that a FOS of unity means that failure is eminent; it does 
not mean that a part or assembly is safe.  In practice you should try to justify 1 < 
FOS < 8.  Several consistent approaches for computing a FOS are given in 
mechanical design books [9].  They should be supplemented with the additional 
uncertainties that come from an FEA.  Many authors suggest that the factor of 
safety should be computed as the product of terms that are all ൒ 1.  There is a 
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factor for the certainty of the restraint location and type; the certainty of the load 
region, type, and value; a material factor; a cyclic load factor; and an additional 
factor if failure is likely to result in human injury.  Various professional groups 
and standards organizations set minimum values for the factor of safety.  For 
example, the standard for lifting hoists and elevators require a minimum FOS of 
4, because their failure would involve the clear risk of injuring or killing people.  
As a guide, consider the FOS as a product of factors:  ܱܵܨ ൌ  ∏ ௞௡ܨ

௞ୀଵ ൌ
ଷܨଶܨଵܨ  .௡.  Table 3-1 gives a set of typical factors to be consideredܨ…

Table 3-1 Factors to consider when evaluating a design (each ൒ ૚) 

k  Type  Comments 
1  Consequences Will loss be okay, critical or fatal 
2  Environment Room-ambient or harsh chemicals present 
3  Failure theory Is a part clearly brittle, ductile, or unknown 
4  Fatigue Does the design experience more than ten cycles of 

use 
5  Geometry of Part Not uncertain, if from a CAD system 
6  Geometry of 

Mesh 
Defeaturing can introduce errors.  Element sizes and 
location are important.  Looking like the part is not 
enough. 

7  Loading Are loads precise or do they come from wave 
action, etc. 

8  Material data Is the material well known, or validated by tests 
9  Reliability Must the reliability of the design be high 
10  Restraints Designs are greatly influenced by assumed supports 
11  Stresses Was stress concentration considered, or shock loads 

3.10  Element Type Selection 
Even with today’s advances in computing power you seem never to have enough 
computational resources to solve all the problems that present themselves.  
Frequently solid elements are not the best choice for computational efficiency.  
The analysts should learn when other element types can be valid or when they 
can be utilized to validate a study carried out with a different element type.  SW 
Simulation offers a small element library that includes bars, trusses, beams, 
frames, thin plates and shells, thick plates and shells, and solid elements.  There 
are also special connector elements called rigid links or multipoint constraints.  
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They are mathematical simplifications used to connect different points, curves, 
surfaces, or bodies together. 

The shells and solid elements are considered to be continuum elements.  The 
plate element is a special case of a flat shell element with no initial curvature.  
Solid element formulations include the stresses in all directions.  Shells are a 
mathematical simplification of solids of special shape.  Thin shells (like thin 
beams) do not consider the stress in the direction perpendicular to the shell 
surface.  Thick shells (like deep beams) can consider the stresses through the 
thickness on the shell, in the direction normal to the middle surface, and account 
for transverse shear deformations. 

Let h denote the typical thickness of a component while its typical length is 
denoted by L.  The thickness to length ratio, h/L, gives some guidance as to 
when a particular element type is valid for an analysis.  When h/L is large shear 
deformation is at its maximum importance and you should be using solid 
elements.  Conversely, when h/L is very small transverse shear deformation is 
not important and thin shell elements are probably the most cost effective 
element choice.  In the intermediate range of h/L the thick shell elements will be 
most cost effective.  The thick shells are extensions of thin shell elements that 
contain additional strain energy terms. 

The overlapping h/L ranges for the three continuum element types are suggested 
in Figure 3-9.  The thickness of the lines suggests those regions where a 
particular element type is generally considered to be the preferred element of 
choice.  The overlapping ranges suggest where one type of element calculation 
can be used to validate a calculated result obtained with a different element type.  
Validation calculations include the different approaches to boundary conditions 
and loads required by different element formulations.  They also can indirectly 
check that a user actually understands how to utilize a finite element code. 

 
Figure 3-9 Overlapping valid ranges of element types 
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3.11 Simulation Fixture and Load Symbols 
 
The symbols used in SW Simulation to represent a single translational and 
rotational DOF at a node are shown green in Figure 3-10.  The symbols for the 
corresponding forces and moment loadings are shown pink in that figure.  Since 
finite element solutions are based on work-energy relations, the above word 
“corresponding” means that their dot product represents the mechanical work 
done at the point.  When a model can involve either translations or rotations as 
DOF they are often referred to as generalized displacements.  The SW 
Simulation nodal symbols for the unknown generalized displacement DOF’s for 
the solid nodes (top) and shell nodes are seen in Figure 3-11.  You almost 
always must supply enough restraints to prevent any model from undergoing a 
rigid body translation or rigid body rotation.  

  

Node of solid or truss element:  
All three displacements are zero. 

Node of frame or shell element:  
Zero displacements and rotations. 

Figure 3-10 Fixed restraint symbols for solids (left) and shell nodes 

 
     

Displacement Force Rotation Couple 
Figure 3-11 Single component symbols for restraints (fixtures) and loads 

For simplicity many finite element examples incorrectly apply complete 
restraints at a face, edge or node.  That is, they enforce an Immovable condition 
for solids or a Fixed condition for shells.  Actually determining the type of 
restraint, as well as where the part is restrained is often the most difficult part of 
an analysis.  You frequently encounter the conditions of symmetry or anti-
symmetry restraints.  You should under understand symmetry plane restraints 
for solids and shells. 
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A plane of symmetry is flat and has mirror image geometry, material properties, 
loading, and restraints.  Symmetry restraints are very common for solids and for 
shells.  Figure 3-12 shows that for both solids and shells, the displacement 
perpendicular to the symmetry plane is zero.  Shells have the additional 
condition that the in-plane component of its rotation vector is zero.  Of course, 
the flat symmetry plane conditions can be stated in a different way.  For a solid 
element translational displacements parallel to the symmetry plane are allowed.  
For a shell element rotation is allowed about an axis perpendicular to the 
symmetry plane and its translational displacements parallel to the symmetry 
plane are also allowed. 

  

Node of a solid or truss element: 
Displacement normal to the symmetry 

plane is zero. 

Node of a frame or shell element: 
Displacement normal to the symmetry 
plane and parallel rotations are zero. 

Figure 3-12 Symmetry: zero normal displacement, and in-plane rotation 

3.12  Structural Restraint Options in SolidWorks 
Solids and shells must be restrained and loaded in different ways since shells 
also have rotational degrees of freedom and solids do not.   Table 3-2 lists the 
current restraint or fixture options for solids within SW Simulation.  Note that 
they only involve components of the displacement vectors.  The loading options 
for solid parts are given in Table 3-2.  No pure couples (moments) can be 
specified at a node. 

Table 3-2 Fixtures for solid stress analysis 

Fixture Type  Description
Circular 
Symmetry 

Periodically repeated segments have the same 
unknown displacements. 

Fixed  All three translations and rotations are zero on face, 
edge, or vertex. 

Fixed Hinge On a cylindrical face, only the circumferential 
displacement is allowed.  

Immovable All three translations are zero on face, edge, or vertex 
On Cylindrical 
Faces 

The cylindrical coordinate displacements normal to 
and/or on the cylindrical surface are given. 
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Fixture Type  Description
On Flat Faces Displacements normal to and/or tangent to a flat face. 
On Spherical 
Faces 

The spherical coordinate displacements normal to 
and/or on the spherical surface are given. 

Roller/Sliding 
or Symmetry 

Two displacements tangent to a flat face are allowed. 

Use Reference 
Geometry 

A face, edge, or vertex can translate a specified 
amount relative to a reference plane and axis. 

3.13 Structural Connectors 
In an FEA it is common to add linear constraint equations to the matrix system.  
They are often called multipoint constraints (MPC) or connectors.   They can be 
converted to symmetric matrix identities that resemble finite element matrices, 
and therefore can be assembled into the system of equations to be solved.  
Alternatively, they can be enforced as Lagrange multipliers that increase the size 
of the matrix equations.  For example, assume to points displace such that there 
is a constant gap size between them.  You can write ݑଵ െ ଶݑ ൌ  That is just  .݌ܽ݃
a special case of a general linear constraint such as ݑ௠ ൅ ܿ௡ݑ௡ ൌ ܿ௠.  Since the 
equation involves multiple DOF (usually at different points) it developed the 
name of a multipoint constraint.  When you understand the mechanics of a 
particular type of physical connection you can approximate it as a set of MPC 
equations and name it as if it were the physical part.  That lets you avoid 
modeling the physical parts of such a connection, at least in the preliminary 
stages of a study.  Table 3-3 gives the available list of time independent 
connectors.  For time dependent problems a spring-damper connector is 
available between two vertices. 

The elastic support connector is also referred to as an elastic foundation, a 
virtual wall, or a Winkler foundation.  It is a common type of structural support 
approximation.  It assumes that the omitted support applies an opposing 
pressure, from linear springs, that is directly proportional to the displacement 
component normal (and/or tangential) to the assumed contact surface.  In the 
mathematical sense, it is called a mixed boundary condition.  The other end of 
the foundation spring system is taken to be fixed to a rigid base.  As a result, an 
elastic support prevents rigid body translation in the direction of the support.  It 
also prevents rigid body rotation about an axis lying is a support plane.  As 
sketched in Figure 3-13, a Winkler foundation only deforms the support material 
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directly in contact with the part, but not the adjacent support material.  The 
opposing pressure is usually compressive, but it can become tensile. 

Table 3-3 Time independent structural connectors 

Connector  Description 
Bearing Simulates interaction between a cylindrical shaft surface and 

a support bearing. 
Bolt Simulates a connection between multiple components, or a 

component and ground. 
Elastic 
support 

Defines an elastic (Winkler) foundation between a face and 
the ground. 

Link Ties the translation of two vertices rigidly together (but not 
any rotations). 

Pin Connects cylindrical faces or circular edges together (rigidly 
or with stiffness’s). 

Rigid Rigidly connects two faces together so the distance between 
them is held constant. 

Spot weld Rigidly connects two small shell faces together (same 
displacement and rotation). 

Spring Linear spring between center of two faces (general, tension 
only, compression only) 

 
Figure 3-13 Winkler foundations deflect only under the contact surface 

The foundation constant of proportionality, k0, is called the support stiffness or 
foundation stiffness.  It is defined as the force per unit area (pressure) required 
to produce a unit deflection of the elastic support.  Thus, its units can be thought 
of as (N/m2)/m or N/m3 or (N/m)/m2, or similar English units.  The first choice 
follows directly from its definition.  The last choice follows from a related 
approximation where the foundation is assumed to be sitting on a large number 
of discrete springs, of stiffness units (N/m), that each supports a small sub-area 
(m2) of the foundation.  Often the support stiffness is determined by 
experimentation, especially for soils.  Some typical values are listed in Table 
3-4. Large values of k0 make the support act as if it is completely fixed in the 
stiffness direction.  If the supporting foundation is a single layer of known 
elastic material then the normal stiffness can be taken as ݇଴ ൌ ܧ ⁄ݐ , where E is 
its elastic modulus and t is the thickness.  Replace E with G, the shear modulus 
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of the material, to specify a tangential foundation support.  If the foundation is 
made up of multiple layers of elastic materials then the normal foundation 
stiffness is  ݇଴ ൌ ሾ∑ ௝ܧ ௝⁄௝ݐ ሿିଵ. 

Table 3-4 Typical elastic foundation modulus ranges 
Material Foundation modulus, k0, [N/m3] 
Concrete 270e6 
Hard rubber 200-350e6 
Railroad ballast 200e6 
Soil, compacted 108-120e6 
Soil, loose 29-40e6 
Wood 100e6 

3.14 Available Structural Loading Options 
Most finite element systems have a wide range of mechanical loads (or sources) 
that can be applied to points, curves, surfaces, and volumes.  The mechanical 
loading terminology used in SW Simulation is in Table 3-5. Most of those 
loading options are utilized in later example applications.   

Table 3-5 Structural loads that apply to the active structural study 

Load Type Description 

Bearing Load Non-uniform bearing load on a cylindrical face 

Centrifugal 
Force 

Radial centrifugal body forces for the angular velocity 
and/or tangential body forces from the angular 
acceleration about an axis 

Force Resultant force, or moment,  at a vertex, curve, or surface 

Gravity Gravity, or linear acceleration , body force loading 

Pressure A normal and/or tangential pressure acting on a selected 
surface 

Remote Load 
/ Mass 

Allows loads or masses remote from  the part to be 
applied by treating the omitted material as rigid 

Temperature Temperature at selected curves, surfaces, or bodies (see 
thermal studies) 
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3.15 Available Material Inputs for Stress Studies 
Most applications involve the use of isotropic (direction independent) materials.  
The available mechanical properties for them in SW Simulation are listed in 
Table 3-6.  It is becoming more common to have designs utilizing anisotropic 
(direction dependent) materials.  Their input options are listed in Table 3-7.   

Table 3-6 Isotropic mechanical properties 
Symbol Label Item 
E EX Elastic modulus (Young’s modulus) 
ૄ NUXY Poisson’s ratio 

G GXY Shear modulus 
ρ DENS Mass density 
σt SIGXT Tensile strength (Ultimate stress)  
σc SIGXC Compression stress limit 
σy SIGYLD Yield stress (yield strength) 
α ALPX Coefficient of thermal expansion 

Table 3-7 Anisotropic mechanical properties in principal material direction 
Symbol Label Item 
Ex EX Elastic modulus in material X direction 
Ey EY Elastic modulus in material Y direction 
Ez EZ Elastic modulus in material Z-direction 
µxy NUXY Poisson’s  ratio in material XY directions 
µyz NUYZ Poisson’s  ratio in material YZ directions 
µxz NUXZ Poisson’s  ratio in material XZ directions 
Gxy GXY Shear modulus in material XY directions 
Gyz GYZ Shear modulus in material YZ directions 
Gxz GXZ Shear modulus in material XZ directions 
ρ DENS Mass density 
σt SIGXT Tensile strength (Ultimate stress)  
σc SIGXC Compression stress limit 
σy SIGYLD Yield stress (Yield strength) 
αx ALPX Thermal expansion coefficient in material X 
αy ALPY Thermal expansion coefficient in material Y 
αz ALPZ Thermal expansion coefficient in material Z 

The most common special case of anisotropic materials is the orthotropic 
material.  Any anisotropic material has its properties input relative to the 
principal directions of the material.   That means you must construct the 
principal material directions reference plane or coordinate axes before entering 
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orthotropic data.  Mechanical orthotropic properties are subject to some 
theoretical relationships that physically possible materials must satisfy (such as 
positive strain energy).  Thus, experimental material properties data may require 
adjustment before being accepted by SW Simulation. 

3.16 Stress Study Outputs 
A successful run of a study will create a large amount of additional output 
results that can be displayed and/or listed in the post-processing phase.  
Displacements are the primary unknown in a SW Simulation stress study. The 
available displacement vector components are cited in Table 3-8 and Table 3-9, 
along with the reactions they create if the displacement is used as a restraint.  

Table 3-8 Output results for solids, shells, and trusses 
Symbol Label Item Symbol Label Item 
Ux UX Displacement 

(X direction) 
Rx RFX Reaction force 

(X direction) 
Uy UY Displacement 

(Y direction) 
Ry RFY Reaction force 

(Y direction) 
Uz UZ Displacement 

(Z direction) 
Rz RFZ Reaction force 

(Z direction) 
Ur URES Resultant 

displacement 
magnitude 

Rr RFRES Resultant 
reaction force 
magnitude 

Table 3-9 Additional primary results for beams, plates, and shells 
Symbol Label Item Symbol Label Item 
θx RX Rotation (X 

direction) 
Mx RMX Reaction moment 

(X direction) 
θy RY Rotation (Y 

direction) 
My RMY Reaction moment 

(Y direction) 
θz RZ Rotation (Z 

direction) 
Mz RMZ Reaction moment 

(Z direction) 
   Mr MRESR Resultant reaction 

moment magnitude 

The displacements can be plotted as vector displays, or contour values.  They 
can also be transformed to cylindrical or spherical components. The strains and 
stresses are computed from the displacements.  The stress components available 
at an element centroid or averaged at a node are given in Table 3-10.  The six 
components listed on the left in that table give the general stress at a point (i.e., a  
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Table 3-10 Nodal and element stress results 
Sym Label Item Sym Label Item 
σx  SX Normal stress 

parallel to x-axis 
σ1 P1 1st principal normal 

stress 
σy  SY Normal stress 

parallel to y-axis 
σ2 P2 2nd principal 

normal stress 
σz  SZ Normal stress 

parallel to z-axis 
σ3 P3 3rd principal 

normal stress 
τxy  TXY Shear in Y 

direction on plane 
normal to x-axis 

τI INT Stress intensity 
twice the maximum 
shear stress 

τxz  TXZ Shear in Z 
direction on plane 
normal to x-axis 

  

τyz  TYZ Shear in Z 
direction on plane 
normal to z-axis 

σvm VON von Mises stress 
(distortional energy 
failure criterion) 

node or an element centroid).  Those six values are illustrated on the left of 
Figure 3-14.  The corresponding strains available for output at the element 
centroids are listed in Table 3-11. Stresses can be used to compute the scalar von 
Mises failure criterion.  They can also be used to solve an eigenvalue problem 
for the principal normal stresses and their directions, which are shown on the 
right of Figure 3-14.  The maximum shear stress occurs on a plane whose 
normal is 45 degrees from the direction of P1.  The principal normal stresses can 
also be used to compute the von Mises failure criterion.  It is a positive scalar 
having the units of stress, but is a measure of the distortional strain energy. 

                
Figure 3-14 Stress tensor (left) and its principal normal values 

The von Mises effective stress is compared to the material yield stress for 
ductile materials. Failure is predicted to occur (based on the distortional energy 
stored in the material) when the von Mises value reaches the yield stress.  The  
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Table 3-11 Element centroidal strain component results 
Sym Label Item Sym Label Item 
εx  EPSX Normal strain 

parallel to x-axis 
ε1 E1 Normal principal 

strain (1st principal 
direction) 

εy  EPSY Normal strain 
parallel to y-axis 

ε2 E2 Normal principal 
strain (2nd 
principal direction) 

εz  EPSZ Normal strain 
parallel to z-axis 

ε3 E3 Normal principal 
strain (3rd principal 
direction) 

γxy  GMXY Shear strain in Y 
direction on 
plane normal to 
x-axis 

εr ESTRN Equivalent strain 

γxz  GMXZ Shear strain in Z 
direction on 
plane normal to 
x-axis 

SED SEDENS Strain energy 
density (per unit 
volume) 

γyz  GMYZ Shear strain in Z 
direction on 
plane normal to 
y-axis 

SE ENERGY Total strain energy 

maximum shear stress is predicted to cause failure when it reaches half the yield 
stress.  SW Simulation uses the shear stress intensity which is also compared to 
the yield stress to determine failure (because it is twice the maximum shear 
stress).  The first four values on the right side of Table 3-10 are often 
represented graphically in mechanics as a 3D Mohr’s circle. 

If desired, you can plot all three principal components at once.  The three 
principal normal stresses at a node or element center can be represented by an 
ellipsoid. The three radii of the ellipsoid represent the magnitudes of the three 
principal normal stress components, P1, P2, and P3.  The sign of the stresses 
(tension or compression) are represented by arrows.  The color code of the 
surface is based on the von Mises value at the point, a scalar quantity.  If one of 
the principal stresses is zero, the ellipsoid becomes a planar ellipse.  If the three 
principal stresses have the same magnitude, the ellipsoid becomes a sphere.  In 
the case of simple uniaxial tensile stress, the ellipsoid becomes a line.  
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The available nodal output results in Table 3-10 are obtained by averaging the 
element values that surround the node.  You can also view them as constant 
values at the element centroids.  That can give you insight to the smoothness of 
the approximation.  For brittle materials you can also be interested in the 
element strain results, listed in Table 3-11. 

3.17 Stress Concentration and Defeaturing 
An important concept in stress analysis is stress concentration.  Small local 
geometric feature changes in a part, such as a fillet, hole or notch, can 
significantly change the stress magnitudes at the boundary of the small 
geometric feature.  A useful visualization is to imagine an ideal fluid flowing 
through the interior of the part: initially without the feature, and again with the 
feature.  The disturbance of the streamlines is analogous to the local disruption 
in the local (nominal) stress field.  Such stress flow lines are shown in Figure 
3-15 where the local constant (or linear) nominal stress field changes its spatial 
distribution and develops a local maximum value.  Generally, the maximum 
local stress increases logarithmically as the size of the feature decreases.  That 
is, the concentration factor versus a geometric size ratio is a straight line on a 
log-log plot. For most common features, the scaling “Stress Concentration 
Factor”, K, has been determined from elasticity theory, FEA studies, and 
experimental studies.  Having access to tabulated stress concentration graphs 
can aid in validating FEA study results. 

It is common for the magnitude of the maximum local stress to increase by a 
factor of three, or more.  For example, if a small hole is in the center of a large 
plate with a one-dimensional stress, then the stress concentration factor is 
exactly 3.0.  However, if the same hole is moved near on edge of the plate the 
concentration factor rapidly increases above five (see Figure 3-15).  How the 
local stress distribution changes is less important than the new local maximum 
magnitude defined as  ߪ௠௔௫ ൌ  ௡௢௠  where K is the stress concentrationߪ ܭ
factor, and ߪ௡௢௠ is the nominal local stress.  The nominal stress is the local 
stress calculated on the assumption that the feature does not increase the stress.  
The nominal stress was typically taken as a constant or linear variation as found 
from an analytic approximation, but today might be obtained by an FEA. 
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Figure 3-15 An edge hole significantly increases the  maximum stress 

At times you will be tempted to defeature a small region in a part because it 
creates so many small elements that it greatly slows the execution time and/or 
causes the study to run out of memory.  Before accepting a defeature operation 
you should consider the estimated local nominal stress field and the stress 
concentration factor for a similar geometry.  

3.18 Classic 1D Analytic Stress Solutions 
In a typical study, you execute a complex FEA study and then seek simplified 
solutions (or a simplified FEA model) in an attempt to validate your study.  
When you start working with new software it is wise to reverse the usual process 
and run a problem for which the results are known.  That lets you be sure you 
understand the proper utilization of the software.  There are a few well know 1D 
stress analysis problems that have simple solutions that give you insight into 
structural solutions and are easily verified with a SW Simulation analysis.  An 
axial bar subject to a constant end load has a deflection that is linear and the 
stress is constant.  Thus, any FEA gives the exact result everywhere for both 
quantities.  Consider a bar with two types of distributed loads that test different 
options in an FEA system: gravity and acceleration due to an angular velocity. 

Let the bar be supported at one end.  In the first case, it simply hangs from that 
end loaded with its own weight.  In the second case, the bar rotates about that 
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end at a constant 1,000 rpm.  The bar has a cross-section of 0.1 m squared and a 
length of a half meter (A = 0.01 m2, L = 0.5 m).  The material is a high lead 
content bronze (E = 1.1e11 Pa, ν = 0.33, ρ = 8700 kg/m3). The one-dimensional 
model does not consider the effect of Poisson’s ratio.  For the gravity load, the 
1D approximate axial displacement (UX) and stress (SX) are 
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A single quadratic element would yield the exact solution everywhere (for no 
Poisson effect). This part is constructed and a static simulation study is opened.   

1. The end plane is supported on rollers and the centerline of that plane is 
fixed against translation to eliminate RBM via Fixtures Roller/Slider 
and then Fixed Geometry. 

2. The gravity load is activated by selecting a horizontal plane (Figure 3-16) to 
be normal to the gravity vector with External Loads  Gravity.  The end 
(right) plane is selected and the gravitational acceleration is set to 9.81 
m/sec2.   

  
Figure 3-16 Apply a gravitation acceleration to the part volume 

3. A crude default mesh is generated and the problem is executed to create the 
results via: Mesh Create Mesh, OK and Study Name Run. 

4. The displacement results are checked first: Results Define 
Displacement Plot UX.  The contour and graph of the displacement 
matches the 1D approximation very closely (except at support centerline).  
The graph is produced by a right click on the plot name, List 
Selected Edge Line Update Graph. The mesh and displacement 
graphics are given in Figure 3-17. 
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Figure 3-17 Gravity loading displacements match the 1D approximation 

5. The axial stress results (Figure 3-18) are checked first: Results Define 
Stress Plot SX.  The contour and graph of the stress matches the 1D 
approximation very closely (except at support centerline). 

  
Figure 3-18 Gravity loading stress matches the 1D approximation 

The 1D approximation matches very well, except along the fixed centerline of 
the end plane.  There false Poisson ratio effects are introduced into the solid part 
since points on that line are prevented from contracting as they would in a 
physical part.  That restraint was picked as a fast way to eliminate in-plane rigid 
body translations.  Those RBMs could have been eliminated with a few more 
steps that would not introduce false Poisson effects (how would you do that?).   
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A second study was opened to illustrate the centrifugal loading condition that 
occurs when any part rotates.  Again, a 1D approximation is known.  The 
loading, per unit mass, is caused by the normal acceleration component 
associated with circular motion: ܽ௡ ൌ  ଶ, where ω is the angular velocity.  In߱ݎ
this case it is ω ൌ /݀ܽݎ 104.7 ܿ݁ݏ ൌ  Of course, you must also  .݉݌ݎ 1,000
identify the axis of revolution.  That axis is taken as the centerline of the support 
end in this example.  The one-dimensional analytic solutions for the 
displacement and stress are: 
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A cubic response like this can not be modeled by a single quadratic bar element, 
so the results are now mesh dependent.  A mesh of quadratic elements will 
approximate the parabolic stress vs. position curve as a series of straight line 
segments. In other words, the element stresses are piecewise linear from element 
to the next, and discontinuous at the element interfaces.  Surprisingly, the 
quadratic element nodal displacements will be exact at the nodes, but 
approximate interior to the element. 

The restraint procedure and result recovery procedure are the same as the prior 
study.  The centrifugal loading is applied via External Loads Centrifugal 
to open the Centrifugal Panel.  There select the axis of revolution and specify 
the angular velocity value, as seen in Figure 3-19.  The angular acceleration 
option was not used because a constant rotational speed was given. 

 
Figure 3-19 Applying the centrifugal loading about a fixed axis 

The axial displacement (Figure 3-20) and axial stress results (Figure 3-21) 
match the cubic approximation very closely.  The lateral displacements in the 
solid (not shown) are due to Poisson ratio effects only, and the lateral stresses 
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(not shown) are almost zero except near the axis of revolution.  The restrained 
lateral displacements there create false stresses due to the modeling approach 
discussed above. 

   
Figure 3-20 Displacement matches cubic 1D approximation very closely 

   
Figure 3-21 Axial stress matches 1D quadratic approximation very closely 

Comparing the two load cases, you see that even a relatively low rotation speed 
can cause stress levels that exceed those due to gravity by a factor of 1,000 or 
more.  That is one reason weight is sometimes initially neglected in machine 
design.  However, it is so easy to include gravity loads in you model that you 
should always do so since in many cases weight is very important (like medium 
to long span structures). 

This last problem was mesh dependent, as are most problems.  You need to learn 
to plan ahead when building the solid model to insert split lines where you 
expect mesh refinements to be needed (or mesh de-refinements to be 
economical).  The next section explores some of those concepts. 
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4 Mesh Control in SolidWorks 
Simulation 

4.1  Introduction 
You must plan ahead when building a solid model so that it can be used for 
realistic finite element load and/or restraint analysis cases.  You often do that in 
the solid modeling phase by using lines or arcs to partition lines, curves, or 
surfaces.  This is called using a “split line” in SolidWorks and SW Simulation.  
There is also a “split part” feature that is similar except that it cuts a part into 
multiple sub-parts.  You sometimes need to do that for symmetry or anti-
symmetry finite element analysis so that we can analyze the part more 
efficiently.  Here, the concept of splitting surfaces for mesh control will be 
illustrated via stress analysis.  

4.2  Example Initial Analysis 
The split line concepts for mesh control will be illustrated via the first tutorial 
“Static Analysis of a Part”, using the SW Simulation example file Tutor1.sldprt 
which is shown in Figure 4-1.  (Remember to save it with a new name by 
putting your initials at the front.)  Consider that tutorial to be a preliminary 
analysis.  You should recall that there was bending of the base plate near the 
loaded vertical post.  However, the original solid mesh had only one element 
through the thickness in that region and would therefore underestimate the 
bending stresses there.  You need to control the mesh there to form 4 to 5 layers 
to accurately capture the change in bending stress through the thickness. 

The original deformed shape, in Figure 4-2, is shown relative to the undeformed 
part (in gray).  You see bending at the end of the base and deflection of the part 
bottom back edge in the direction of the (unseen) supporting object below it.  
From the original effective stress plot in Figure 4-3 and Figure 4-4 you can see 
that large regions, within the red contours, have exceeded the material yield 
stress.  Actually, the maximum value is over 133,000 psi, or about 1.5 times the 
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yield stress, on the top and bottom of the base.  Clearly, this part must have its 
material or dimensions changed and/or new support options must be utilized. 

   
Figure 4-1 Original part, restraints, load, and mesh 

           
Figure 4-2 Original part vector deflections and bottom right edge graph 

Begin a revision of the first study of this part by reconsidering the restraints 
utilized.  In many problems the restraints are unclear or questionable and you 
need to consider other restraint cases.  You previously restrained all the three 
translations on the two small cylindrical surfaces.  That makes those surfaces 
perfectly rigid.  That would be almost impossible to build.  It is likely that the 
holes were intended to be bolt holes.  Then the applied backward (-z) pressure 
load would probably require the development of tension reaction forces along 
the back (-z) half of the bolt cylinder.  That would not happen because an air gap 
would open up.  Also, a bolt usually applies a restraint to the surface under the 
bolt head (in addition to a bolt bearing load on its cylindrical part), and that is 
not in the original choice of restraints.  Furthermore, the bracket seems to be 
attached to some rigid object under it and therefore you would expect the back 
edge of the bracket to be somehow supported by that object when that region of 
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the part deforms as seen in Figure 4-2.  The original effective stresses are in 
Figure 4-3 and Figure 4-4. 

 
Figure 4-3 Original top surface effectives stresses 

 
Figure 4-4 Original bottom surface effective stresses 

Having reviewed an initial set of assumptions for this part, its mesh and its 
results a second preliminary study will be outlined.  As a new possible restraint 
set, assume that the bolt heads are tight and act on a small surface ring around 
each hold.  That could provide rigid body translation restraints in three 
directions.  Each bolt would prevent three translations and the pair of them 
combines to also prevent three rigid body rotations.  Thus they combine to 
prevent all six possible rigid body motions (RBM).  If the bolts were not tight 
then only a normal displacement (along the bolt axis) would be restrained on the 
base top surface (and two RBM would remain). 

Bearing loads on the bolt shaft can be found by an iterative process in SW 
Simulation, but for early studies you can assume a small cylindrical contact at 
the most positive z (front) location.  The previously computed bending of the 
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part is also assumed to cause contact with the supporting object below, and thus 
a y- translational restraint, along the bottom back edge of the part.  To 
accomplish those types of restraint controls you need to “split” the surfaces and 
transition the mesh in those regions to get better results. Thus, you need to form 
two smaller surface rings for the bolt heads, and split the cylinders into smaller 
bearing areas.  That is done by adding split lines to selected regions of the part. 

4.3   Splitting a Surface or Curve 
To avoid changing the master tutorial file, open the part and then “save as” a 
new file name on the desktop.  To introduce the required split lines: 

1. Select the top surface of the base by moving the cursor over it until its 
boundary turns green and Insert Sketch.  Pick the Sketch icon and pick 
the Circle option to form a bolt head washer area.   

3. Place the cursor on the hole edge to “wake up” the center point. Draw a 
larger circle on the surface.  Set its diameter to 30 mm and click OK.  That 
does not change the surface; it just adds a circle to it. 

 

4. To split the surface, go to the top and select Insert  Curve  Split 
Line.  The Type will be a projection. 

5. Next, pick the surface(s) to be cut by this curve.  Here it will be the top of 
the base plate again so select it and click OK.  Repeat the above two 
processes for the second hole. 
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Now you will see that moving the cursor around shows a new circle and a new 
ring of surface area that could be used to enforce restraints or loads.  The new 
surface areas are shown in Figure 4-5.  Later you will use these newly created 
ring areas as a bolt head (washer) restraint region.  

                  
Figure 4-5 The original surface is now three surfaces 

To form a vertical bearing region on the bolt hole sidewall:  

1. Select the top surface and use Sketch  Line. “Wake up” the center point 
again. Use it to draw a construction line forward from the center, and two 
other radial lines offset by about 25o.  

 

2. Select Insert  Curve  Split Line and pick the cylinder of the first 
bolt hole, click OK.  That creates a new load bearing surface that could be 
used to restrain and/or control the mesh.   
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3. Repeat those operations for the second bolt hole. 

The above surface splits were constructed to give more flexibility in applying 
various displacement restraints.  You will need another surface split to help 
exercise engineering control over the revised mesh.  You want the “L” shaped 
side area to have the leg split off so you can control a bending mesh there: 

1. Right click on the (+x) right side face, Insert Sketch Sketch Line.   

2. “Wake up” the left vertical line to put in a short line that crosses the base.   

 

3. Use Insert Curve  Split Line and select the “L” face, click OK.  
Now it has become two rectangles.   

All of these new surface areas and lines can have different local mesh sizes 
prescribed to control our mesh generation.  That is a standard feature of SW 
Simulation, but you must supply the engineering judgment as to where any part 
needs the extra line or surface divisions for applying loads (or heat sources) and 
restraints in an analysis.  True point loads or point moments are unusual in 
practice.  They should be replaced by reasonable loading areas (that require split 
curves) and pressure distributions.  
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4.4  Beginning SW Simulation Study 
Activate the SW Simulation Manager by clicking on its icon:  

1. Then start a static study.  In this case the element type defaults to a 
quadratic solid.  Part name Apply/Edit Material.  Pick alloy steel as 
the material.   

2. Note that you have a choice of display units for the properties.   The number 
of significant figures in the test data should be independent of the units 
selected.   Any difference is due to using a higher number of digits in the 
units conversion.  Do not be mislead by a long string of digits in materal 
values.  You can usually trust the first three, or maybe four.  Note for later 
use that the yield stress of this material is about 620 MPa or 90 ksi.  

4.5  Mesh Control 
Wherever translational displacement restraints are applied, reaction forces are 
developed and localized stress concentrations are likely.  Therefore, you want to 
assure that small elements are created in such regions.  This process is referred 
to as mesh control.  It is required in almost every study.  Invoke it with: 

1. Right click on Mesh  Apply Control to bring up the Mesh Control 
panel.  The default element size of about 3 mm needs to be changed in the 
new regions created above.  Select the region around the two bolt washers 
by picking those two surfaces, and set the desired size to 1mm.  
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2. Likewise, for the two bearing surfaces within the smaller vertical cylindrical 
holes set the size to about 1.0 mm.  

 

3. In the final corner region you need several elements through the thickness 
of curved front corner to accurately model the local bending seen in the first 
study.  Select the small split rectangle and the adjacent cylindrical corner 
and use an element size of about 1.5 mm. 
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4.6 Mesh Preview 
Use Mesh Create to generate the mesh.  Then examine the mesh and increase 
or decrease the local sizes specified above so that it looks acceptable, as shown 
in Figure 4-6.  Note that the mesh makes a smooth transition from the smaller 
element sizes to the larger default size in the far body regions.  An additional 
refinement near the corner of the base and rectangular shaped leg (below the 
loaded tube) would also be wise.  You should always preview the mesh before 
running the solution.  

 
Figure 4-6 Controlled mesh sizes for the second model 

4.7 Fixtures (Essential Boundary Conditions) 
Various terms are used to describe the essential boundary conditions: fixtures, 
restraints, supports, etc.  In SW Simulation the term is Fixtures. The part fixtures 
will be enforced by beginning with the new surface areas representing the bolt 
washer contact regions:  

1. Select Fixtures  Roller/Slider and restrain the washer areas against y-
translation perpendicular to the base (solid elements do not have rotational 
nodal DOF).  This will also prevent rigid body motion (RBM) rotations 
about the x- and z-axes. 

2. In the Standard panel pick the two concentric ring faces as the Selected 
Entities and chose Roller/Slider as the Type.   
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3. Next select the two cylindrical bolt bearing faces and restrain radial 
translation on the Advanced Fixtures  On Cylindrical Faces 
Type.   That prevents x- and z-translational RBM and the y rotational 
RBM.  At least all RBMs are now safely accounted for. 

  

4. Finally, this study will assume the bottom back edge helps support the part 
due to contact with the strong background material, to which the bolts are 
also assumed to be rigidly attached.  Use Fixtures  Advanced  Use 
Reference Geometry.  Select that back edge line and choose the bottom 
plane as your reference plane Type.  Restrain the edge line 
displacement, relative to the bottom, by picking the vertical direction 
(perpendicular to the bottom plane) and preview the restraint arrow to verify 
the correct choice.  That prevents RBM in y translation and z rotation. 
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4.8 Pressure Loading 
This part has one pressure loading on the large front tube face.  Impose it with: 

1. External Loads Pressure.  Give the Pressure Type as normal to the 
selected face.  

2. Set the units and value (1,000 psi) and preview the arrows to verify the 
direction (sign of the pressure), OK.  At this point, you may wish to take 
advantage of the standard Windows feature and rename this load condition 
from the default Pressure_1 to Front_ring_pressure, by doing a slow 
double click on the default name. 
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Clearly, the resultant applied force will be that pressure times the selected 
surface area (about 2,840 lb.).  Since SolidWorks is a parametric modeler 
remember that if you change either diameter of the tube the area and the 
resultant force will also change.  If you mean to specific the total force then use 
External Loads Force and give the total force on that area.  It would not 
change with a parametric area change.   

 

Remember that when the study results are obtained later, to check the total force 
caused by the above pressure you can check the reaction force since it must be 
equal and opposite.  (You can do that in post-processing by right clicking on the 
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Displacement report Reactions).  The z-reaction force will give the equal 
and opposite force to the total applied here (this is the only z-force applied). 

4.9  Run the Study 
 Right click on the study name and select Run.  Proceed to post-processing the 
results by checking the reactions, reviewing the “load path”, plot the 
displacement vectors and contours, and display selected stress (or strain) 
components, etc.  Upon completion, try to validate the results and plan the next 
revision or “what-if” question about the part and its intended function. 

After any structural or thermal study you should check the reactions from the 
surroundings that were approximated as restraints or fixtures.  They will be 
equal and opposite to the resultants of the applied loads or heat sources.  Right 
click on Results  List Result Force  Reaction force.  Under 
Selection pick the restraint regions in the model, and set the units.  Update 
gives the plot shown (Figure 4-7). 

 
Figure 4-7 Reaction forces from the washers, bolts, and back edge 

The ring of pressure applied in this problem was totally in the z-direction.  
Therefore, there should be no reaction forces in the x- and y-directions.  While 
not zero they are 10ିସ times smaller.  The iterative solver was used to get the 
current results.  It is much faster than the optional direct solver, but a direct 
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solve will be slightly more accurate.  When obtained from a direct solve the 
reaction forces are more correct (below), but the difference is not important. 

Some engineers try to visualize how the major loads are transferred to the 
supports via the “load path”.  SW Simulation has a tool to assist with that 
(Figure 4-8):  Right click on Results  Define Design Insight Plot. 

 
Figure 4-8 Major material "load path" through the part 

Start with the color contour of the part, but with the contours scaled to match 
those of the previous study:  Results  Displacements, then Chart 
Options  Display Options Defined and set the prior maximum value.  
Figure 4-9 (left) shows the new displacement distribution which is less that half 
as large as before, and includes smaller regions of bending.   

   
Figure 4-9 Alternate restraints significantly reduce peak deflections 

To add a more informative displacement vector plot:  

1. Right click in the graphics area.  Pick Edit Definition Advanced 
Options  Show as vector plots.   
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2. When the displacement vector plot appears use Vector Plot Options to 
dynamically control the clarity. Rotate this view (hold down the center 
mouse button and move the mouse) to find the most informative orientation.   

The right side view of the original displacements is shown amplified in Figure 
4-10 (left) and compared on the right to the new displacement values.  Both are 
shown at the same scale, along with the gray undeformed part.  As with the first 
approximation, the main bending region is the rounded front corner of the base 
plate.  The mesh there is now fine enough to describe the flexural stress and 
shear stress as they change through the thickness.  The default contour plot style 
for viewing the displacements is a continuous color variation.  These are pretty 
and should be used at some point in a written stress analysis report, but they can 
hide some useful engineering checks. 

 
Figure 4-10 Original (left) and revised displacements, to the same scale 

The effective stress distribution on the top of the base is shown in Figure 4-11.  
There two different contour options are illustrated.  The line contour form tends 
to be more useful if preliminary reports are being prepared on black and white 
printers. The material yield stress was 90,000 psi, so every region colored in red 
is above yield.  In that figure, the Edit Definition feature was used to manually 
select the discrete color or line contours.  The Chart Options feature was used 
to specify the stress range and the number of discrete colors.  Rotating the part 
shows that there are other regions of the part above the yield stress.  On the 
bottom corner of the base the assumed line support has also caused high local 
stresses.  In that figure you should also note that the bottom edge of one bolt 
bearing surface shows a small region of yielding.  That should be examined in 
more detail and other views. 
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Figure 4-11 Distortional energy failure criterion on the base top surface 

Line or point restraints are not likely to exist in real part components.  You 
could revise that region by putting in a split line to create a narrow triangular 
support area.  That would be more accurate, if the resulting part stresses there 
are compressive.  Otherwise, you would need to use a contact surface.  Using 
contact surfaces where gaps can develop requires a much more time consuming 
iterative solution.  However, the important thing is to attempt an accurate model 
of the part response, not an easy model. 

The extreme values of the stress tensor at any point are known as the principal 
stresses (eigenvalues of the stress tensor). For 3D part, there are three normal 
principal stresses and a maximum shear stress.  The principal normal stress 
components have both a magnitude and direction.  They can be represented as 
directed line segments with two end arrow heads used to indicate tension or 
compression.  Employ Stress Plot Display  P1 Maximum principal 
stress Advanced Options  Show as vector plot.  The maximum 
principal stress vector plot, at the top of Figure 4-12, shows the highest tension 
stress (and is a failure criterion for some materials).  Here, it occurs in the 
yielding region where the base joins the vertical tube support.  Those high stress 
concentrations could (and should) be reduced by adding fillets along the 
associated edges along the reentrant corners.  The display is from Advanced 
Options  Nodal values. 
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Figure 4-12 Maximum principal stress vectors 

The SW Simulation system allows the user to select from a short list of the most 
studied material failure theories.  It can display a plot of a non-dimensional 
number representing the value of the theory at every point on the part.  A value 
less than unity means that the selected theory predicts material failure.  Many 
engineers refer to that value as the factor of safety while others refer to it simply 
as the failure theory factor that is one of many terms, listed in Table 3-1.  To see 
this type of plot: right click on Results  Define Factor Of Safety Plot to 
open the Factor of Safety panel and in this case select the von Mises 
criterion, OK.   All the factors in that table need to be unity or greater.  The 
resulting plot in Figure 4-13 shows a minimum material failure theory value of 
about 0.6.  Thus, this design is currently a failure. 

 
Figure 4-13 Material failure is predicted for the current study 
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4.10 Validate the design revision 
The reaction results, in Figure 4-7, suggest an assumption error in this study.  In 
particular, it is important to check the signs of the reactions to verify that they 
act as you expect.  The negative sign of the left bolt reaction in the z-direction 
was unexpected.  To better illustrate the concern, and to show another post-
processing tool, consider a free body diagram of the regions governing reactions 
in the z-direction:  right click Results  List Force Results  Options  
Free body force.  Under Selection set the units and pick the pressure face 
and the two bolt bearing faces, Figure 4-14. 

 
Figure 4-14 Free body diagram shows error in the support assumption 

The pressure resultant force (about 2,840 lb.) and the left bolt force (about 2,290 
lb.) both act in the negative z-direction.  They are resisted by the positive z-
direction force (about 5,090 lb.).  The forces in the z-direction are in equilibrium 
(within 0.08% round off error).  Consider moment equilibrium about the y-axis, 
at the center of the right bolt.  The x-lever arm to the pressure resultant center is 
53 mm, while the lever arm to the left bolt is 65 mm.  Thus, y-moment 
equilibrium, (2.84e3 * 55 – 2.29e3 * 65 ൎ 0) is also satisfied (to 1% round off).   

The concern with the reaction results is that the left bolt was assumed to be 
pushing on the front bearing area.  Instead, it is pulling on that area, which is not 
possible (a gap would open).  What is likely is that the bolt will simply push on 
the corresponding area at the back of the hole with the same reaction force.  To 
allow for that support mode, the first split line should have been made on the 
back of the bolt hole.  That can be easily fixed.  An alternative would have been 
to build an assembly to include part of the bolts and conduct an iterative 
contact/gap analysis.  That would have take much longer (and sometimes fails to 
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converge), but that is often not needed in a preliminary study.  Another 
alternative is to take advantage of the standard bolt connector application 
available in SW Simulation.  The question is, is that support (fixture) change 
likely to invalidate the above study results?  Looking at the load path sketch of 
Figure 4-8 and the stresses in Figure 4-11 it is unlikely.  However, the next 
study refinement of this part should utilize this new information. 

The main goal of this study was to illustrate the usefulness of split surfaces, the 
need for engineering judgment in making restraint assumptions, and typical 
ways to examine the results of a study.  The locations and type of restraints are 
usually the least well know aspect of a part analysis or design.  Load conditions 
are probably the next least reliable information.  Use friendly software to 
investigate various combinations of loads and restraints to get the safest results.  
Also check independent solutions when possible. 

4.11 Other Aspects of Mesh Generation 
SW Simulation has a very powerful solid mesh generator for tetrahedral 
elements.  Almost every analysis requires the engineer to employ judgment on 
where to apply controls to the mesh.  Usually the mesh needs to be refined 
around restraint regions, load regions, and reentrant regions of the solids.  Figure 
4-15 illustrates that you can control element sizes on faces, edges, and vertices.  
The earlier example showed that you should plan ahead while building your 
solid to allow for expected mesh control needs and insert split lines into your 
solid to allow for additional entities to be selected on your model.  Mesh control 
lets you specify the desired element size, and the rate at which adjacent elements 
increase in size. 

 
Figure 4-15 Options for local mesh control: surface, curve, or vertex 
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Any sharp (no fillet) reentrant corner in theory causes infinite radial derivatives 
at the corner in heat transfer and stress analysis studies.  A fillet removes the 
infinite stresses, but interior fillets usually need a reasonable amount of mesh 
refinement, as illustrated in Figure 4-16.  Exterior fillets are less important in 
getting accurate results and are sometimes suppressed in finite element studies.  
Split lines are optional for some solids but are often mandatory to properly join 
and align shell meshes.  This is also important when connecting shells to solids. 

 
Figure 4-16 Avoid large elements along arcs and through the thickness 

Bad solid modeling practices are probably the most common cause of failure of 
the mesh generation.  The mesh generator begins with the edges of a solid. It 
divides them into segments corresponding to the requested element sizes.  
However, if the mesh generator encounters a line segment that is smaller than 
the requested element size, then it must decrease the minimum element size the 
match the short line.  After processing the boundary lines, the generator 
proceeds to the part surfaces.  Then it fills those faces with triangles of the 
minimum to the requested size.  From the triangles (initial solid element faces) it 
proceeds inward to fill the volume with tetrahedrons.  If the edge lines are much 
smaller that the requested element size, or if they join at very small angles then 
the mesh generator tries to use tiny elements to match the poor local part 
geometry.  If it is possible to do that the mesh is still likely to fail due to 
insufficient computer memory.  Part flaws are often too small to see without 
zooming in on the part.  
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5 General Solid Stress Analysis 

5.1  Introduction 
Every part, at some level, can be thought of as a 3D solid.  That is the default 
analysis mode of SW Simulation.  You usually start every study by building a 
solid, even if you in turn model it as a shell or frame.  Therefore, you need to 
learn the numerous options that are available to support such solid stress studies.  
To validate the results of a 3D solid study you often need to use an analytic 
approximation or an FEA beam, frame or shell model.  For the proper 
assumptions, those lower dimensional studies can be quite accurate and are 
almost always much less demanding of computer resources.  You will find that 
you never have large enough computer resources and you will have to learn how 
to use symmetry, anti-symmetry, beams, frames, shells, and trusses to reduce 
some problems to a size that can be solved with your available resources.  At 
other times you will use those procedures as a way to independently validate a 
more complex study. 

5.2  Flexural Analysis of a Zee-section Beam 
In this study you will validate your understanding of the use of SW Simulation 
by solving a cantilever beam and comparing the FEA results to that predicted by 
mechanics of materials theory.  The constant cross-section is a zee-shape in the 
x-y plane as seen in Figure 5-1.  It extends in the z-direction for a length of L = 
500 mm.  The thickness of the section is t = 5 mm, each flange has a length of a 
= 20 mm, and the web has a depth of h = 2a = 40 mm.  At the free end it is 
loaded by a distributed force parallel to the y-axis (i.e., vertical).   

                   
Figure 5-1 A Zee section straight beam solid 
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Before you start an FEA study you should try to get a reasonable approximation 
of the stresses and deflections to be obtained.  This can be an analytic equation 
for a similar support and loading case, an FEA beam model compared to a 
continuum solid model, or a one or two element model that can be solved 
analytically, etc.   

The cantilever is horizontal and has a vertical load of P = 500 N.  Therefore, it 
causes a bending moment, about the x-axis of M = P (L – z), where z is the 
distance from the support.  Such a loading causes a linear flexural stress (σ z) 
that varies linearly through the depth.  For symmetric sections (only) that stress 
is zero at the neutral axis (here parallel to the x-axis at the section centroid) and 
has a maximum tension along the top edge, and a compression along the bottom 
edge (parallel to x).  The load P causes a varying moment and a shear force.  
The corresponding transverse shear stress (τ) varies parabolically through the 
depth and has its maximum at the neutral axis.  Those (symmetric) stress 
behaviors are sketched with the section in Figure 5-2.  The flexural and shear 
stress equations are σ z = M y / Ix and τ = P Q /t Ix where Ix is the second moment 
of inertia of the section and Q is the first moment of the section at a distance, y, 
from the neutral axis.  For this section Ix = 2t a3/3.  The maximum tension will 
occur at y = a + t/2, while compression occurs at -y.  Likewise, the end 
deflection of the beam in the vertical (y) direction will be Uy = PL3 /3EIx.  With 
that (symmetric) beam review and its predictions you can now proceed with the 

FEA study. 

                      
Figure 5-2 Flexural (left) and shear stresses from thin beam theory 

Select the SW Simulation icon: 

1. Right click on the Simulation New Study.  Select Static and enter 
the new Study Name (Zee_beam). 
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2. Right click on Solids Apply / Edit Material. In the Material panel 
pick From library files, and select SI units.  Select Copper 
Alloys Brass and review the properties (and significant figures). 

3. Right click on Fixtures to open the Fixture panel.  Select Fixed 
Geometry and select the wall end of the beam.  Note that while rotational 
fixture icons appear, they are not present in solid elements. 

 

4. Right click on External Loads  Force.  Select the beam free end 
face, a vertical edge for the direction, and set the value at 500 N. 

   

5. Next create a default mesh, right click on Mesh Create Mesh OK. 
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Since local top or bottom flange bending is not expected to be high, the default 
mesh with only one quadratic solid through the thickness should be acceptable.  
Otherwise you should have at least three elements through the thickness in a 
region of expected local bending stresses.  There are enough elements through 
the height and length of the solid to model the high bending expected near the 
immovable (cantilever) restraint.  Having reviewed and accepted a default 
mesh you execute the problem and recover selected results: 

1. In the SW Simulation manager menu select the Study Name Run. 
When the Results list appears right click on Stress Edit Definition. 

2. In the Stress Plot panel select SZ: Z normal stress as the component 
and Fringe as the display type.  SZ was selected as the first display since it 
is the normal stress component parallel to the beam axis that you would 
validate with beam theory (Figure 5-3). 

3. Optionally control the stress display by right clicking in the graphics area 
Settings  Settings panel Discrete fringe options, and to better see 
the stress differences: Right click in graphics area Chart Options Chart 
Options panel 5 color levels. 

      

 
Figure 5-3 Axial flexural stress levels 

The resulting stress contours have a maximum value of about 152 MPa, in both 
tension and compression.  But, the stress contour spatial distributions are not 



General Solid Stress Analysis 89 

 

what you would expect from symmetric beam theory.  That theory predicts the 
flexural stress contours on the top and bottom to be parallel to the restraint wall 
(perpendicular to the beam axis).  Yet the actual stress contours are almost 
parallel to the beam axis.  In other words, symmetric beam theory predicts a 
neutral axis (NA), at the beam half depth and parallel to the flange.   

That is, the NA would be expected to be parallel to the global x–axis.  Instead of 
zero normal stresses there, they are zero along an inclined line rotated about 55 
degrees w.r.t. the x-axis.   The actual NA is highlighted in Figure 5-4.  Points 
above the NA are in tension here and those below are in compression.  Figure 
5-5 shows a similar distribution for the von Mises stress.  Since the stress 
distribution is quite different from symmetric beam theory you should also look 
at the deflections in detail.  Symmetric beam theory says that the deflection is a 
maximum at the free end and lies in the z-y (side) plane and there is no 
deflection in the z-x (top) plane. 

       
Figure 5-4 Actual bending neutral axis of the cross-section (red) 

 
Figure 5-5 von Mises effective stress distribution 
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However, Figure 5-6 shows that there are significant displacements out of the 
plane of the beam web and resultant loads. The graphs in Figure 5-7 verify that 
the horizontal (top view) deflections are larger than the (side view) vertical 
deflections.  Therefore, there was something wrong with the 1D mechanics of 
materials concept that was selected to predict the results of the solid finite 
element study (or you made an error). 

 
Figure 5-6 Out of plane (lateral) displacements of Zee member 

The simplified predicted deflection of Uy = 0.0078 m is almost twice as large as 
Uy = 0.0042 m found in Figure 5-7.  That figure also shows a value of Ux = 
0.0059 m while the simplified theory predicts zero.  Likewise, the simplified 
normal stress estimate, at a constant axial z position, predicts a constant stress 
along the top and bottom edges of the beam, but that was not observed in the 
solid solution.  Of course the FE results and the validation predictions do not 
agree!  The simplified 1D beam mechanics relations are only valid for straight 
symmetric sections.  Usually those sections have two planes of symmetry.  But 
they must have at least one symmetry plane, so as to make the product of inertia 

vanish (Ixy ≡ 0).  The current section does not have a single symmetry plane. Its 

geometric inertias are Ix = 2/3 t a3, Iy = 3/8 t a3, Ixy = - t a3, and its cross-
sectional area is A = 4 t a.   The 1D unsymmetrical beam theory predicts that the 
NA axis will rotate from the x-axis by an angle of α = tan -1 (-Ixy / Ix) = 56.3 
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degrees, which seems to agree with Figure 5-4.  Any time Ixy ≠ 0, one must 
employ non-symmetric beam theory for bending. 

 
Figure 5-7 True shape displacement data for Zee member 

The general beam theory [10] states that the cross-sectional normal stress varies 
with both x and y positions in the cross-section according to the equation: 
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but since in this case My = 0  so the bending stress is 
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which reduces to the original stress estimate only for a symmetric beam, Ixy = 0.  
On the topmost horizontal line of the flange (y = a + t/2) the above stress is 
estimated to vary from a corner tension of about P L / 7 t a2 to 3/2 of that value 
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in compression.  The more general non-symmetric beam 1D displacement 
predictions are 
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For the given dimensions the above estimates reduce to σ z corner = 17.9e7 MPa at 
the restraint wall and Uy = - 0.0045, Ux = 0.0067, and Umax = 0.0081 meters at 
the free end, respectively.  The new validation estimates agree with the solid 
study results reasonably well.  The results do suggest using a finer mesh in the 
corners near the restraint wall. 

5.3  Ram Block Stress Analysis 
A pressure container is formed from a brick of corrosion resistant steel.  The 
block contains a center large cylindrical hole.  Orthogonal to that is a second 
oval hole coming from the side and also going all the way through the block.  
The block is 24.75 inches square and 42 inches long.  Its central cylindrical hole 
is 18.75 inches in diameter. The oval intersecting passage matches the inner 
diameter, but has two 5 inch radius semi-circular ends on a rectangular center, as 
seen in Figure 5-8. 

      
Figure 5-8 The ram pressure block, half and one-eighth symmetric regions 

 The container is subjected to a (self-equilibrating) constant pressure of 3,000 
psi.  Due to the symmetry in the geometry, materials, and pressure you can 
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utilize a one-eighth symmetry study for the dimensions of the corner component 
given in Figure 5-9.  The main purpose of this example is to show how to do an 
analysis and how to take advantage of the many graphical features that can be 
selected to enhance your understanding of a general 3D component.  They also 
help in documenting your written report. 

      
Figure 5-9 Corner geometry with dimensions, and approximate cylinders 

It is desirable to try to estimate the stresses and deflections to be encountered.  
You will not find a handbook solution for a rectangular block with a pressurized 
cylindrical hole.  However, you can find stresses and deflections for a thick 
walled cylinder with internal pressure (and free or fixed end walls).  The axial 
stress is zero; the maximum radial stress is at the inner radius and is in 
compression. The hoop stress is tension and also maximum at the inner wall.  
Thus, you can find the principal stresses, and von Mises stress, at the inner 
radius.    That wall is cut through by the oval channel.  That cutout will cause a 
“stress concentration” where it cuts the inner wall (and elsewhere).  There are 
handbook solutions for very similar elliptical openings.  Combining such 
solutions may get us close to the stresses and deflections. 

To prepare a validation estimate for the maximum deflection you need to 
consider a range for the effective outer radius of the cylinder, R (right of Figure 
5-9).  For example, you usually want to consider an average value, Rave, that has 
the same cross sectional area.  You could get an upper bound estimate by using 
the minimum wall thickness.  The maximum radial displacement is tabulated as 
δmax = 2 P R r2 / [E (R2 – r2)].  For and average thickness δmax = 3.7e-3 inches. 

The maximum axial, hoop, and radial (principle) stresses of a cylinder from 
mechanics of materials are axial    σ1 = 0, circumferential σ2 = P (R2 + r2) / (R2 – 
r2), and radial σ3 = -P, respectively.  Here, P is the internal pressure, r  is the 
inner radius, and R the outer radius.  Using the minimum wall thickness, the 
estimated stresses give a maximum von Mises value of about 12.8 ksi.   
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The stress concentration factor, K, for an elliptical hole in a plane stress surface 
is known for a few ratios of σ2 and σ3.  It depends on the ratio of the major and 
minor diameters of the ellipse.  Here that diameter ratio is about a/b = 18/9=2.  
The closest tabulated case is for equal magnitude tension and compression in the 
material around the hole.  Then K = 2 (1 + a/b) = 6, but the higher compression 
stress would possibly lower it to as low as 4.  Thus, estimate the maximum 
stress as σmax = 53 ksi, which is above the yield stress of 41 ksi.  Begin the study 
by selecting your preferred units: 
1. Tools Options Document Properties Units.  Check IPS (inch, 

pound, second) as your Units, OK. 
2. Select the Simulation New Study to open the Manager menu. 
3. Enter PV_stress as the Study name, and static as the Analysis type. 

The material is expected to operate at a temperature of about 400 F and contain 
a corrosive fluid.  Either of those two conditions makes it unlikely that the 
standard library of materials will contain the alloy you need, C276 steel.  Define 
the material properties: 
1. Right click on the solid Part name Apply/Edit Material in the 

Manager menu. 
2. When the Material panel opens, check in SolidWorks Materials. 
3. Click on Steel to expand the list of alloys, and check it for C276. 
4. Since that is not found you must create a custom material. 

 
The process for creating custom material changed with the release of 
SolidWorks 2010.  You must first open the material library, copy a standard 
material, edit its properties, and save it with a new name. The steps are: 

Right-click on the Part name and select Edit Material. 

1. In the Material panel, select the material on which to base the custom 
material.  Right-click on that material name.  Its properties appear in the 
Properties tab. Right click and select Copy to copy the material to your 
paste buffer. 

2. In the Material panel, expand the Custom Materials tree.  Paste the 
property there. 
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3. In the Properties Tab, first change the material name in the Name box.  
Next enter new property values.  The required property names for a given 
type of study appear in red. 

4. Pick Save to add the new material to the library. 

5. Click Apply to apply the new material to the current part, and then pick 
Close.  Otherwise, select Close and confirm that you wish to save the new 
property set. 

For the current study, type C276_steel_400F as the name.  Enter all the required 
(red) mechanical material properties (E=29.8 ksi, ν= 0.31) as well as the thermal 
properties (k = 1.74e-4 BTU/in-s-F, α=7.1e-6).  The thermal properties are not 
required here, but will be used to compute a thermal study or a thermal stress 
study later.  To find properties at a specific temperature you may have to search 
the Web or a handbook.  Check for units consistent with the table. 

Define displacement restraints that reflect the chosen symmetry, and eliminate 
the six rigid body motions: 
1. In the Manager menu, select Fixtures Advanced Symmetry to 

open the first fixtures panel.  
2.  Pick Symmetry as the Type and select the two rectangular vertical faces 

as the Selected Entity, along with the horizontal symmetry plane at the 
center of the ram opening.  They prevent all six rigid body motions. 

3. Visually check the prevented motions seen in Figure 5-10.  When satisfied 
pick OK (green check mark). 

          
Figure 5-10 Restrain the three symmetry planes and all the RBM 
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The entire internal surface will be subjected to the pressure: 
1. In the Manager menu, select External Loads Pressure to open the 

Pressure panel.  Set the Pressure Type to be normal to selected 
face (in Figure 5-11). 

2. Select each of the three internal curved surfaces.  Under Pressure Value 
set English Units and type in 3,000 psi as the Value. 

3. Click Preview to visually check the (red) pressure arrows around the 
perimeter of each surface.  (Changing the sign of the value reverses the 
arrows.)  When satisfied pick OK. 

 
Figure 5-11 Specify the internal pressure distribution on curved surfaces 

Note that a symmetric thermal loading could be included in the study, but 
gravity directed along the cylinder axis, for example, would require using a half 
part model and more computer resources.  Since this is the first study, you 
probably will have to edit the part geometry and repeat this study.  Avoid larger 
models until initial refinements are completed. 

Next the mesh needs to be created.  For an initial study you might get by with a 
default mesh size.  However, an accurate mesh almost always requires 
engineering judgment to control the element sizes (or a high quality automatic 
error estimator).  The three symmetry planes contain the smallest wall 
thicknesses, so as a first cut the mesh should be make smaller there: 
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1. In the Manager menu, right click on Mesh Apply Control to open a 
Mesh Control panel. 

2. Pick each of the three symmetry planes to go in Selected Entities. 
3. Note the suggested default element size and reduce it to about 0.5 inches 

(for these 3 inch thick walls).  Accept the default transition rate of 1.5 for 
adjacent element sizes (Figure 5-12). 

4. Pick Preview to verify the controlled entities (not shown), OK. 

 
Figure 5-12 Inital surface mesh size control 

The curved intersection line of the two passages might also be of concern.  If so, 
you could have a second Apply Control, select those curve segments and 
specify the desired element sizes on that edge.  When you are finished using 
your engineering judgment for planning the mesh, via Apply Control, then: 
In the Manager menu, right click on Mesh Create to open a Mesh panel. 
There, move the slider bar to make the average volume elements smaller, OK. 
The initial mesh, looking toward the pressure surfaces, is in Figure 5-13.   

 
Figure 5-13 Initial solid element mesh 
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The mesh has three unknown displacements per node.   To execute the static 
solution for those displacement components and to recovery the stresses, right 
click on Study name Run.  Passing windows will keep you posted on the 
number of equations being solved and the status of the displacement solution 
process and post-processing.  You should get a notice that the analysis was 
completed (not a failed message).  Then you have access to the various 
Simulation report and plot options needed to review the first analysis. 

The default post-processing plot is a smoothly filled (Gouraud) contour display 
of the requested variable.  If you do not have a color printer and/or if you want a 
somewhat finer description you may want to change the default plot styles.  
After a default plot appears: 
1. Right click in the graphics window and select Settings Fringe 

Options.  Change from the default Continuous Gouraud filled image to 
a Discrete or Line contour option. 

2. Select Superimpose model if you wish to also see the undeformed shape 
in the same display. 

To review the deformed shape magnitude: 
1. Double click Plot 1 under Deformation in the Manager menu, Figure 

5-14.  Double click Plot 1 under Displacement in the Manager menu.  
Rotate the view.  Right click in the graphics area and select Color Bar to 
control the contour ranges. 

2. Right click in the graphics area, Edit Definition Settings Include 
undeformed part. 

           
Figure 5-14 Scaled deformed mesh shape 
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Displacements are vector quantities; therefore consider a vector plot first, as in 
Figure 5-15.  Access them with:  
1. Right click in the graphics area, Edit Definitions Displacement Plot.  
2. Double click again and Edit Definitions Vector Plot Options.  

  
Figure 5-15 Two views of ram block resultant displacement vectors  

The predicted validation result was based on a thick walled cylinder.  If the solid 
results were in close agreement then the displacement vectors, as seen from the 
end (Figure 5-15 right) would have mainly been in the radial direction, but they 
are not.  To try to compare the solid results to a cylinder, the radial displacement 
component with respect to the long cylinder axis is displayed in Figure 5-16.  
The average radial displacement is reasonably close (less than a factor of two).   

       
Figure 5-16 Radial displacement (coordinate system 1) at free end arc 

To view the deformed shape in a radial direction use Plot Advanced  
Axis and pick local Coordinate System 1.  The computed outer deflection 
(Figure 5-14) was about 2e-2 inches, which is near the radial estimated range of 
1.6e-2 to 2.6e-2 inches.   
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Next check the stress component levels by double clicking on Stress  Plot 
icon.  There are many types of stress evaluations available.  The default one is 
the scalar Von Mises (or Effective) stress.  It is actually not a stress but a failure 
criterion based on distortional energy, for ductile materials, that has the units of 
stress. Since you picked a ductile material, the von Mises value should be 
examined and compared to the material yield stress.   Figure 5-17 shows the 
effective stress from different points of view.  The maximum effective stress is 
seen to be about 40 ksi which is barely below the material yield stress.  The 
validation estimate of the von Mises stress was 53 ksi, which is within about 
25%.  It is almost always difficult to get reasonable stress validations without a 
second different type of FEA. 

           
Figure 5-17 Peak von Mises stress levels 

The computed von Mises value (Figure 5-17) of 38 ksi is close to that value and 
the hand solution.  The computed σ1 (P1 of Figure 5-18) was about 40 ksi 
(compared to the hand estimate of 53 ksi) is closer than expected.   

To visualize the flow of the stresses you often wish to see the principle stress 
vectors.  The three principle stress vectors are the eigen-vectors of the stress 
tensor at any point.  That is, they are the magnitude and directions of the three 
extreme normal stresses at the point.  The P1 component (Figure 5-18) will 
show the maximum tension, if any is present.  Vector plot views are even more 
informative when seen in dynamic rotation mode that is available with (highly 
recommended) 3D mouse hardware.   
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Figure 5-18 Two views of the maximum tension stress, P1 

Isosurface displays are surfaces of constant values within the solid elements.  
They are similar to contours, but are computationally intensive to generate and 
rotate.  It is best to display them with a small number of surfaces.  To see 
isosurfaces of an item:  
1. Right click in the graphics area and select Edit Definition.  For a stress 

item the Stress Plot Display panel will open (Figure 5-19). 
2. Under Plot type check Iso, use a discrete Fringe type and 4 as the No. 

of surfaces. 
3. Select the desired Component and nodal values Result Type., OK. 

      
Figure 5-19 Two options for selecting isosurfaces for stress components 

The extreme values of a stress component in a solid will occur on a surface of 
the solid.  There are times where you will be interested in the distribution of the 
interior values as well.  For example, you may wish to see the low stressed 
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volume of material as a guide to later removing it from the part by carrying out 
and extrude cut.  Some optimization codes can automatically function that way. 

To potentially identify portions of a ductile material for removal an isosurfaces 
display of the von Mises value is informative.  As seen in Figure 5-19, only four 
surfaces were chosen for display.  The edges of the part are included in a 
wireframe model to help you locate the isosurface locations.  Typical 
orientations of those surfaces are shown in Figure 5-20, using the same contour 
levels.  Even with that small number of surfaces you can see that the relatively 
low stressed volume is large.  Such images are slow to change, in view rotations, 
even with 3D mouse hardware. 

      
Figure 5-20 von Mises isosurfaces at 35, 25, and 15 ksi 

Contours shown on cutting planes can also be useful in seeing the internal 
distribution of an item.  If you utilize only one cutting plane they are basically 
section views with contours added to them.  Then you have the choice of also 
seeing contours on either the surface in front of, or behind the flat cut plane.  
SW Simulation offers the ability to have multiple flat cut planes, with contours 
displayed, at the same time.  Of course, you can control both their orientation 
and location.  To activate such a plot for an item: 
1. Right click in the graphics area and select Edit Definition. 
2. For a stress item the Stress Plot Iso Clipping.  Under Plot type 

check Section.  Use a discrete Fringe type and 1 as the No. of 
sections.  Select the desired Component and Result Type, OK. 

3. Right click in the graphics area, pick Clipping to open a Section 
Clipping panel. 

4. There use the slider bars to set the (X, Y, Z) components of the unit 
vector normal to the cutting plane. 

5. Use the Position slider to dynamically position the plane in the part. 
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Using the standard cutting planes, the von Mises  value was chosen for display 
and the resulting images are in Figure 5-21.  You can also select cutting surfaces 
that are cylindrical or spherical. 

   
Figure 5-21 von Mises contour levels for standard clipping planes 

A useful feature of SW Simulation is to allow the engineer to select a material 
failure criterion and the plot the value of the material factor of safety based on 
that choice.  The FOS should be greater than 1, and typically less than 4.  Such a 
plot is obtained with: 
1. Double click on Design Check Plot 1 in the Manager menu. 
2. Select the proper failure criterion for the material you have used. 
3. Execute the plot for the result in Figure 5-22.  The minimum safety values 

found were 1.02 for maximum shear stress, 1.04 for von Mises, and 1.11 for 
maximum normal stress.   All are too low. 

   
Figure 5-22 Material factor of safety view based on maximum shear stress 

From a series of isosurfaces of various failure modes, like Figure 5-21, you may 
be able to estimate the major load paths. The Results Define Design 
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Insight Plot (pick the wireframe display mode first) provides that information 
via a slider scale. 

The result here shows extremely low (ൎ1) values for the material FOS.  You 
must either drastically reduce the design pressure, which is not likely to occur, 
or significantly increase the wall thickness.  You could easily place a small fillet 
along the high stress hole intersection in hopes of reducing peak stress levels. 

A less easy task is to envision some way to pre-stress the current part so it would 
develop initial compression in the high tension regions seen here.  A completely 
different approach would be to find a near optimal shape using finite element 
topological optimization.  Then you would build a solid geometry that is very 
close to the computed optimal shape (which is usually quite irregular).  The 
thermal analysis of this part and the resulting thermal stresses are conserved in 
later sections. 
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6 Plane Stress Analysis 

6.1  Introduction 
Generally you will be forced to utilize the solid elements in SW Simulation due 
to a complicated solid geometry.  To learn how to utilize local mesh control for 
the elements it is useful to review some two-dimensional (2D) problems 
employing the membrane triangular elements.  Historically, 2D analytic 
applications were developed to represent, or bound, some classic solid objects.  
Those special cases include plane stress analysis, plane strain analysis, 
axisymmetric analysis, flat plate analysis, and general shell analysis.  After 
completing the following 2D approximation you should go back and solve the 
much larger 3D version of the problem and verify that you get essentially the 
same results for both the stresses and deflections. 

Plane stress analysis is the 2D stress state that is usually covered in 
undergraduate courses on mechanics of materials.  It is based on a thin flat 
object that is loaded, and supported in a single flat plane.  The stresses normal to 
the plane are zero (but not the strain).  There are two normal stresses and one 
shear stress component at each point (σx, σy, and τ).  The displacement vector has 
two translational components (u_x, and u_y).  Therefore, any load (point, line, or 
area) has two corresponding components.   

The SW Simulation “shell” elements can be used for plane stress analysis.  
However, only their in-plane, or “membrane”, behavior is utilized.  That means 
that only the elements in-plane displacements are active.  The general shell in-
plane rotation vectors are not used for plane stress studies and should be 
restrained.  To create such a study you need to construct the 2D shape either as a 
sheet metal part, a planar surface (Insert  Surface Planar surface), or 
extrude it as a solid part with a constant thickness that is small compared to the 
other two dimensions of the part.  A solid is later converted to a shell model by 
creating a mid-surface or an offset surface within the solid. 

Before solid elements became easy to generate it was not unusual to model some 
shapes as 2.5D.  That is, they were plane stress in nature but had regions of 
different constant thickness.  This concept can be useful in validating the results 
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of a solid study if you have no analytic approximation to use.  Since the mid-
surface shells extract their thickness automatically from the solid body you 
should use a mid-plane extrude when you are building such a part. 

One use of a plane stress model here is to illustrate the number of elements that 
are needed through the depth of a region, which is mainly in a state of bending, 
in order to capture a good approximation of the flexural stresses.  Elementary 
beam theory and 2D elasticity theory both show that the longitudinal normal 
stress (σx) varies linearly through the depth.  For pure bending it is tension at one 
depth extreme, compression at the other, and zero at the center of its depth (also 
known as the neutral-axis).  When the bending is due, in part, to a transverse 
force then the shear stress (τ) is maximum at the neutral axis and zero at the top 
and bottom fibers.  For a rectangular cross-section the shear stress varies 
parabolically through the depth.  Since the element stresses are discontinuous at 
their interfaces, you will need at least three of the quadratic (6 node) membrane 
triangles, or about five of the linear (3 node) membrane triangles to get a 
reasonable spatial approximation of the parabolic shear stress.  This concept 
should guide you in applying mesh control through the depth of a region you 
expect, or find, to be in a state of bending.   

6.2  Rectangular Beam Segment 
A simple rectangular beam plane stress analysis will be illustrated here. 
Consider a beam of rectangular cross-section with a thickness of t = 2 cm, a 
depth of h = 10 cm, and a length of L = 100 cm.  Let a uniformly distributed 
downward vertical load of w = 100 N/cm be applied at its top surface and let 
both ends be simply supported (i.e., have u_y = 0 at the neutral axis) by a roller 
support.  In addition, both ends are subjected to equal moments that each 
displaces the beam center downwards (Figure 6-1).  The end moment has a 
value of M = 1.25e3 N-m. The material is aluminum 1060.  This is a problem 
where the stresses depend only on the geometry.  However, the deflections 
always depend on the material type.   
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Figure 6-1 A simply supported beam with line load and end moments 

It should be clear that this problem is symmetrical about the vertical centerline 
(why that is true will be explained shortly should it not be clear).  Therefore, no 
more than half the beam needs to be considered (and half the load).  Select the 
right half.  The beam theory results should suggest that an even more simplified 
model would be valid due to anti-symmetry (if we assume half the line load acts 
on both the top and bottom faces).  The 3D flat face symmetry restraint was 
described earlier.  The 2D nature of this example provides insight into how to 
identify lines (or planes in 3D) of symmetry and anti-symmetry, as shown in 
Figure 6-2. 

 
Figure 6-2 One-quarter of the beam 

A process for identifying displacement restraints on planes of symmetry and anti 
symmetry will be outlined here.  Assume that the horizontal center line of the 
beam corresponds to the dashed centerline of the anti-symmetric image at the 
left in Figure 6-3.  The question is, what, if any, restraint should be applied to 
the u or v displacement component on that line.   
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 Anti-symmetric, ub = - ua                                   Symmetric, vb = -va 

Figure 6-3 Anti-symmetric (u=0, v=?), and symmetric (u=?, v=0) displacement 
states 

To resolve that question imagine two mirror image points, a and b, each a 
distance, ε, above and below the dashed line.  Note that both the upper and lower 
half portions are loaded downward in an identical fashion, and they have the 
same horizontal end supports.  Therefore, you expect va and vb to be equal, but 
have an unknown value (say va = vb = ?).  Likewise, the horizontal load 
application is equal in magnitude, but of opposite sign in the upper and lower 
regions.  Therefore, you expect ub = - ua.  Now let the distance between the 
points go to zero (ε  0).  The limit gives v = va = vb = ?, so v is unknown and 
no restraint is applied to it.  The limit on the horizontal displacement gives u = 
ub = - ua  0, so the horizontal displacement can be restrained to zero if you 
with to use a half depth anti-symmetric model.  Another way to say that is: on a 
line or plane of anti-symmetry the tangential displacement component(s) is 
restrained to zero.  For a shell or beam the rotational component normal to an 
anti-symmetry plane is also zero. 

The vertical centerline symmetry can be justified in a similar way.  Imagine that 
the right image in Figure 6-3 is rotated 90 degrees clockwise so the dashed line 
is parallel to the beam vertical symmetry line.  Now u represents the 
displacement component tangent to the beam centerline (i.e., vertical).  The 
vertical loading on both sides is the same, as are the vertical end supports, so the 
vertical motion at a and b will be the same (say ua = ub = ?).  In the limit, as the 
two points approach each other u = ua = ub = ?, so the beam vertical centerline 
has an unknown tangential displacement and is not subject to a restraint.  Now 
consider the displacement normal to the beam vertical centerline (here v).  At 
any specified depth, the loadings and deflections in that direction are equal and 
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opposite.  Therefore, in the limit as the two points approach each other u = ub = 
- ua  0, so the displacement component normal to the beam vertical centerline 
must vanish.  Another way to state that is: on a line or plane of symmetry the 
normal displacement component is restrained to zero. For a shell or beam the 
rotational components parallel to a symmetry plane are also zero. 

From the above arguments, the 2D approximation can be reduced to one-quarter 
of the original domain.  The other material is removed and replaced by the 
restraints that they impose on the portion that remains.  Now your attention can 
focus on the applied load states.  The top (and bottom) line load can be replaced 
either with a total force on the top surface, or an equivalent pressure on the top 
surface, since SW Simulation does not offer a load-per-unit-length option.  
Unfortunately, either requires a hand calculation that might introduce an error.  
The less obvious question is how to apply the end moment(s). 

Since the general shell element has been forced to lie in a flat plane, and have no 
loads normal to the plane, its two in-plane rotational DOF will be identically 
zero.  However, the nodal rotations normal to the plane are still active (in the 
literature they are call drilling freedoms in 2D studies).  That may make you 
think that you could apply a moment, Mz, at a node on the neutral axis of each 
end of the beam.  In theory, that should be possible, but in practice it works 
poorly (try it) and the end moment should be applied in a different fashion.  One 
easy way to apply a moment is to form a couple by applying equal positive and 
negative triangular pressures across the depth of the ends of the beam.  That 
approach works equally well for 3D solids that do not have rotational degrees of 
freedom. 

The maximum required pressure is related to the desired moment by simple 
static equilibrium.  The resultant horizontal force for a linear pressure variation 
from zero to pmax is F = A pmax / 2, where A is the corresponding rectangular 
area, A = t (h/2), so F = t h pmax / 4.  That resultant force occurs at the centroid 
of the pressure loading, so its lever arm with respect to the neutral axis is d = 
2(h/2)/3 = h/3 (for the top and bottom portions).  The pair of equal and opposite 
forces form a combined couple of Mz = F (2d) = t h2 pmax / 6.  Finally, the 
required maximum pressure is  pmax = 6 Mz / t h2. 

To apply this pressure distribution in SW Simulation you must define a local 
coordinate system located at the neutral axis of the beam and use it to define a 



110 Finite Element Analysis Concepts via SolidWorks 

 

 

variable pressure.  However, the SW Simulation nonuniform pressure data 
requires a pressure scale, pscale , times a non-dimensional function of a selected 
local coordinate system.  Here you will assume a pressure load linearly varying 
with local y placed at the neutral axis: p (y) = pscale * y (with y non-dimensional).  
This must match pmax at y = h / 2, so 

 pscale  = 2 pmax / h = 12 Mz / t h3. 
It is often necessary to apply moments to solids in this fashion.  This moment 
loading will be checked against beam theory estimates before applying the line 
load. Here, pmax = 3.75e7 N/m2, pscale  = 7.5e8. 

The beam theory solution for a simply supported beam with a uniform load is 
well known, as is the solution for the loading by two end moments (called pure 
bending).  In both cases the maximum deflection occurs at the beam mid-span.  
The two values are vmax = 5 w L4 / 384 EI, and vmax = M L2 / 8 EI, respectively.  
Here the centerline deflection due only to the end moment is vmax = 1.36e-3 m.  
For a linear analysis and the sum of these two values can be used to validate the 
centerline deflection.  Next, the one-quarter model, shown in Figure 6-2, will be 
built, restrained, and loaded: 

1. Build the rectangle sketch and convert it to a planar surface via 
Insert Surface Planar Surface and select the Current Sketch as the 
Planar Surface.  

 
2.  Start a new study using a shell mesh: Simulation New Study Static. 

Name it Anti-symm-beam. 
3. Use Part Edit Definition to set the element Type to Thin, and the Shell 

Thickness to be 0.02 m.  Also use Part  Apply/Edit Material to select 
the library material of 1060 aluminum. 
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Since the stresses through the depth of the beam are going to be examined here, 
you should plan ahead and insert some split lines on the front surface to be used 
to list and/or graph selected stress and deflection components: 

1. Right click on the front face, Insert Sketch. 
2. Insert a line segment that crosses the face at the interior quarter points. 

Including the end lines, five graphing sections will be available.  Also add a 
right corner arc for the vertical support edge. 

 
3. Insert Curve Split Line select the body faces, click OK. 

 

Remember that shells defined by planar surfaces must have their restraints and 
loads applied directly to the edges of the selected surface.  First the symmetry 
and anti-symmetry restraints will be applied.  Since the shell mesh will be flat it 
is easy to use its edges to define directions for loads, or restraints: 

1. Right clicking on Fixtures opens the Fixture panel. 
2. The zero horizontal (x) deflection is applied as a vertical symmetry 

condition on the edge corresponding to the beam centerline; 
Advanced Use Reference Geometry, select vertical Edge1 to 
restrain and horizontal Edge2 for the direction. 
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1.  Apply the anti-symmetry condition along the edge of the neutral axis. 
Use reference geometry, select the five bottom edges formed by 
the split lines and Edge7 for the direction. 

   
  

At the simply supported end it is necessary to assume how that support will be 
accomplished.  Beam theory treats it as a point support, but in 2D or 3D that 
causes a false infinite stress at the point.  Another split line arc was introduced 
so about one-third of that end could be picked to provide the vertical restraint 
required.  This serves as a reminder that where, and how, parts are restrained is 
an assumption.  So it is wise to investigate more than one such assumption.  
Software tutorials are intended to illustrate specific features of the software, and 
usually do not have the space for, or intention of, presenting the best engineering 
judgment.  Immovable restraints are often used in tutorials, but they are unusual 
in real applications.  Apply the right vertical end support restraint: 

1. Select Fixtures to open the Fixture panel.  Pick Advanced Use 
Reference Geometry. 

2. Select the lower right front vertical edge line to restrain, and the upper 
vertical edge as the direction. 

   

Since a general shell element is being used in a plane stress (membrane shell) 
application it still has the ability to translate normal to its plane and to rotate 
about the in-plane axes (x and y).  Those three rigid body motions should also be 
eliminated in any plane stress analysis on most FEA systems.  If nothing else, 
such a restraint avoids calculating three zero values at each node and makes 
your analysis more efficient.  At worst, during the solve phase you may get a 
fatal error message (due to round-off errors): 
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For good modeling practice apply those restraints via: 

1. Select Fixtures to open the Fixture panel and pick Advanced 
Fixtures. 

2. Pick Symmetry; select the five front face segments of the beam to restrain. 
Change the Symbol Color. That completes the symmetry, anti-symmetry 
and rigid body motion restraints for this model.   

   

Unlike general shells, membrane shells do not have active rotational degrees of 
freedom that allow for the direct application of a couple.  A linear variation of 
equal and opposite pressures, relative to the neutral axis, can be used to apply a 
statically equivalent moment to a continuum body that does not have rotational 
degrees of freedom.  Such a loading also has the side benefit of matching the 
theoretical normal stress distribution in a beam subjected to a state of pure 
bending.  A varying pressure loading usually requires the user to define a local 
coordinate system at the axis about which the moment acts.  In this case, it must 
be located at the neutral axis of the beam: 

1.  Select Insert Reference Geometry Coordinate System to open 
the Coordinate System panel. Right click on the right end of the neutral 
axis to set the origin of Coordinate System 1.   
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2. Accept the default directions for the axes as matching the global axes. 

To apply the external moment use External Loads Pressure.  The 
application of the non-uniform pressure is applied at the front vertical edge at 
the simple support in the Pressure panel of Figure 6-4.  A unit pressure 
value is used to set the units and the magnitude is defined by multiplying that 
value by a non-dimensional polynomial of the spatial coordinates of a point, 
relative to local Coordinate System 1 defined above. 

 

 
Figure 6-4 Applying the required linear pressure 

 

Having completed the restraints and moment loading, the default names in the 
manager menu have been changed (by slow double clicks) to reflect what they 
are intended to accomplish (left of Figure 6-5).  Now you can create a mesh and 
run the moment load case study. 
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Figure 6-5 Beam quarter model membrane shell mesh 

The maximum vertical deflection and the maximum horizontal fiber stress will 
be recovered and compared to a beam theory estimate in order to try to validate 
the FEA study.  For this simple geometry and pure bending moment the beam 
theory results should be much more accurate than is usually true.  As stated 
above, the maximum vertical deflection at the centerline is predicted by thin 
beam theory to be vmax = 1.36e-3 m.  The resultant displacement vectors are seen 
in Figure 6-6.  They are seen to become vertical at the centerline.  A probe 
displacement result at the bottom point of the vertical centerline line gives vFEA 
= 1.36e-3 m, which agrees to three significant figures with the elementary 
theory.  A view of the support region (bottom of Figure 6-6) shows that the 
displacement vectors close to the restraint are basically rotating about that end. 

 
Figure 6-6 Displacement in the quarter anti-symmetry beam, moment load 
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For bending by end couples only, the elementary theory states that the horizontal 
fiber stress is constant along the length of the beam and is equal to the applied 
end pressure.  That is, the top fiber is predicted to be in compression with a 

stress value σx = pmax = 3.75e7 N/m2.  That seems to agree with the contour 
range in Figure 6-7 and indeed, a stress probe there gives a value of σx = -3.77e7 
N/m2.  Beam theory gives a linear variation, through the depth, from that 
maximum to zero at the neutral axis.   

     
Figure 6-7 Horizontal stress at right L/8 span segment and its probe value  

To compare with that, a graph of along the quarter point split line is given in 
Figure 6-8.  It shows that the seven nodes along the edges of the three quadratic 
elements have picked up the predicted linear graph quite well.  For the next load 
case of a full span line load the shear stress (that is zero here) will be parabolic 
and the corresponding graph will be less accurate for such a crude mesh. 

 
Figure 6-8 Graph of horizontal stress at vertical line L/8 from the support 

For this first load case, the only external applied load is the horizontal pressure 
distribution.  It caused a resultant external horizontal force that was shown 
above to be F=18,750 N.  You should expect the finite element reaction to be 
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equal and opposite of that external resultant load.  Check that in the Manager 
menu: 

1. Right click Results  List Result Force Reaction Force to open the 
panel with the reaction forces. 

               
2. Examine the horizontal (x) reaction force above and verify that its sum is 

18,750 N. (The sum of the moments is often confusing because they are 
computed with respect to the origin of the global coordinate system, and 
most programs never mention that fact.) 

To test your experience with SW Simulation, you should now run this special 
case study as a full 3D solid subject to the same end pressures.  You will find 
this model was quite accurate.  While planning 3D meshes you can get useful 
insights by running a 2D study like this.  Also, a 2D approximation can be a 
useful validation tool if no analytic results or experimental values are available.  
They can also be easier to visualize.  Of course, many problems require a full 
3D study but 1D or 2D studies along the way are educational. 

Having validated the moment load case, the line load will be validated and then 
both load cases will be activated to obtain the results of the original problem 
statement.  First, go to the manager menu, right click on the moment pressure 
load and suppress it.  Next you open a new force case to account for the line 
load.  Recall that the line load totaled 10,000 N.  Since the part has been reduced 
to one-fourth, through the use of symmetry and anti-symmetry, you only need to 
distribute 2,500 N over this model.  There are two ways to do that for selected 
surface shell formulation of any plane stress problem.  They are to apply that 
total as either a line load, or to distribute it over the mesh face as a tangential 
shear traction (which is the better way).  Figure 6-9 (left) shows the Apply Force 
approach.  That approach has been made less clear by the way the split lines 
were constructed.  The top of the beam has been split into four segments and this 
method applies a force per entity.  Therefore, a resultant force of 625 N per edge 
segment is specified.  Had the split lines not had equal spacing you would have 
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to measure each of their lengths and go through this procedure four times (the 
pressure approach avoids that potential complication).. 

     
Figure 6-9 Second beam load case of a line load 

With this second load case in place the study is simply run again with the same 
restraints and mesh.  A series of quick spot checks of the results are carried out 
before moving on to the true problem where both load cases are activated.  The 
beam theory validation result, for this line load, predicted a maximum vertical 
centerline deflection of vmax = 1.13e-3 m.  The plane stress maximum deflection 
was extracted: 

1. Double click on Plot1 under displacements.  The contoured magnitude 
shows a rotational motion about the simple support end, and vertical 
translation at the beam centerline, as expected. 
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2. Right click in the manager menu Results List Stress, Displacement, 
Strain to open the List Results panel.  Select Displacements and 
under Advanced Options select Absolute Max, and Sort by value. 

3. When the list appears note that the maximum deflection is 1.16e-3 m at the 
centerline position.  That is very close to the initial validation estimate. 

 

The numerical value of the maximum horizontal fiber stress was listed in a 
similar manner.  The maximum compression value, in Figure 6-10, of σx =-
4.04e7 N/m2 compares well with the simple beam theory value of -3.75e7 N/m2, 
being about a 7% difference.  Since the mesh is so crude the beam stress is 
probably the most accurate and the plane stress value will match it as a 
reasonably fine mesh is introduced.  The purpose of the crude mesh is to 
illustrate the need for mesh control is solids undergoing mainly flexural stresses.  

 
Figure 6-10 Horizontal stresses (SX) for the line load case 

To illustrate that point, Figure 6-11presents the normal stress and shear stress, 
from the neutral axis to the top, at the L / 4 and L / 8 positions.  Beam theory 
says the normal stress is linear while the shear stress is parabolic.  The beam 
theory shear stress should be zero at the top fiber and, for a rectangular cross-
section, has a maximum value at the neutral axis of 1.88e6 N/m2.  The graph 
values in Figure 6-11 shows a plane stress maximum shear stress of 1.84e6 N/m2 
and a minimum of 0.08 e6 N/m2 at the quarter span section.  That is quite good 
agreement with a validation estimate from beam theory. 
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Figure 6-11 Normal and shear stresses at L/4 (left) and L/8 for the line load  

6.3  Combing Load Cases 
Having validated each of the two load cases they are combined by un-
suppressing the end moment condition (Figure 6-12 left) and running the study 
again with the same mesh.  Here, the two sets of peak deflections and stresses 
simply add because it is a linear analysis.  A quick spot check verifies the 
expected results.  The reaction force components were verified (Figure 6-12 
right) before listing the maximum deflection and fiber stress (Figure 6-13). 

    
Figure 6-12 Verifying the model reactions for the combined loadings 
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Figure 6-13 Combined loading displacement and von Mises stress 

What remains to be done is to examine the likely failure criteria that could be 
applied to this material.  They include the Von Mises effective stress, the 
maximum principle shear stress, and the maximum principle normal stress.  The 
Von Mises contour values are shown in Figure 6-14.  Twice the maximum shear 
stress (the stress intensity) is given in the top of Figure 6-15, while the bottom 
portion displays the maximum principle stress. Actually, the principal stress, P3, 
is compressive here but it corresponds to the mirror image tension on the bottom 
fiber of the actual beam.   

 
Figure 6-14 Von Mises stress in the beam with a line load 

All three stress values need to be compared to the yield point stress of 2.8e7 
N/m2.  The arrow in the figure highlights where that falls on the color bar.  All of 
the criteria exceed that value, so the part will have to be revised.  At this point 
failure is determined even before a material Factor of Safety has been assigned.  
For ductile materials, the common values for the material FOS range from 1.3 to 
5, or more [9, 12].  Assume a FOS = 3.  The current design is a factor of about 
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3.3 over the yield stress.  Combining that with the FOS means that the stresses 
need to be reduced by about a factor of 10. 

The cross-sectional moment of inertia, I = t h3 /12, is proportional to the 
thickness, t, so doubling the thickness cuts the deflections and stresses in half.  
Changing the depth, h, is more effective for bending loads.  It reduces the 
deflection by 1/ h3 and the stresses by a factor of 1/(2 h2).  The desired reduction 
of stresses could be obtained by increasing the depth by a factor of 2.25.  The 
above discussion assumed that buckling has been eliminated by a buckling 
analysis.  Since buckling is usually sudden and catastrophic it would require a 
much higher FOS.   

 

 
Figure 6-15 Beam principal stress and maximum shear contours 

There are times when the software will not provide the graphical output you 
desire.  For example, you may wish to graph the plane stress deflection against 
experimentally measured deflections.  The SW Simulation List Selected feature 
for any contoured value allows the data on selected edges, split lines, or surfaces 
to be saved to a file in a comma separated value format (*.csv).  Such a file can 
be opened in an Excel spreadsheet, or Matlab, to be plotted and/or combined 
with other data.  To illustrate the point, when the beam deflection values were 
contoured the bottom edge was selected to place its deflections in a table: 

1.  With a displacement plot showing right click on the Plot name List 
Selected.  Select the four bottom lines of the beam. Update. 
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2. The bottom of the listing window has a Summary of the data. 

 
3. The lower Report Option region does not include the Graph Icon, but 

does show a Save icon.  That is because the path has multiple lines.  Pick 
Save to have the listed data (node number, deflection value, and x-, y-, z-
coordinates) to be output as a comma separated values (csv) file. 

4. Name and save the data for use elsewhere. 

 

SW Simulation did not offer a plot option along all the selected lines since could 
not identify which item to sort.  You know that the multiple line segments 
should be sorted by the x-coordinate value.  Therefore, the data were opened in 
Excel, sorted by x-coordinate, and graphed as deflection versus position (Figure 
6-16).  You could add experimental deflection values to the same file and add a 
second curve to the display for comparison purposes.  Other aspects of plane 
stress analysis are covered in the next section on rotational loadings, and later 
sections on 2.5D studies, and buckling.  

 
Figure 6-16 Excel graph from saved CSV file for combined load
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7 Rotational Loads and 
Accelerations 

7.1  Introduction 
This example will look at essentially planar objects subjected to centrifugal 
loads.  That is, loads due to angular velocity and/or angular acceleration about 
an axis.  The part under consideration is a spinning grid strainer that rotates 
about a center axis perpendicular to its plane.  The part has five symmetrical 
segments, of 72 degrees each, and each segment has a set of slots that have 
mirror symmetry about a plane at 36 degrees.   The questions are: 1. Does a 
cyclic symmetric part, with respect to its spin axis, have a corresponding set of 
cyclic displacements and stresses when subject to an angular velocity, ω, about 
that axis? 2. Does it have the same type of behavior when subjected to an 
angular acceleration? 

To answer these questions you need to recall the acceleration kinematics of a 
point mass, dm = ρ dV, following a circular path of radius r.  In the radial 
direction there are usually two terms, r ω2 that always acts toward the center and 
d2r/dt2 acting in the direction of change of the radial velocity.  The latter term is 
zero when r is constant, as on a rigid body.  In the tangential direction there are 
also two components in general: r α acting in the direction of α and a Coriolis 
term of 2 dr/dt ω, in the direction of ω if dr/dt is positive.  Again the latter term 
is zero for a rigid body.  The remaining radial acceleration (r ω2) always acts 
through the axis of rotation (as a purely radial load), thus, it will have full cyclic 
symmetry.  Angular acceleration always acts in the tangential direction a 
rotating part, as it spins up or spins down.  The worst case is often at a sudden 
stop where a large angular velocity exists and a negative large angular 
acceleration is applied. 
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 A part with angular acceleration is basically subjected to torsional or cantilever 
like loading about its axis of rotation.  To illustrate these concepts consider a 
cantilever beam rotating about an axis outside its left end.  The deformed shapes 
and stress levels for constant angular velocity were seen in Figure 3-19 through 
Figure 3-21. The angular acceleration results for a similar cantilever will be 
considered next.  For a radial spoke, the angular acceleration effect is similar to 
a transverse linearly increasing line load acting on a cantilever beam.  The 
transverse force would equal the mass per unit length of the spoke times the 
tangential acceleration, ݂ ൌ  Simple beam theory would thus predict an  .ߙݎܣߩ 
end deflection of ݒ ൌ ସܮߙ11݉ ⁄ܫܧ120  for a spoke mass of ݉ ൌ  The  .ܮܣߩ 
simple spoke model in Figure 7-1and Figure 7-2 agrees very closely with that 
deflection estimate.  The von Mises stress (Figure 7-2) shows a typical bending 
response about the radial centerline.  An extension of this model will be used to 
estimate the expected angular acceleration loading on the more geometric 
complex part considered in the next section. 

 
Figure 7-1 Radial spoke under angular acceleration 

 
Figure 7-2 Von Mises stress in a spoke with angular acceleration about left end 
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7.2  Building a Segment Geometry 
The desired rotating spin_grid is shown in Figure 7-3.  The part has a inner shaft 
hole diameter, and outermost diameter of 1 inch and 4 inches, respectively.  It 
has six curved slots ¼ inch wide, symmetric about the 36 degree line, and ends 
in a arc that is 1/8 inch from the 0 degree line and is 0.20 inches thick.   

              
Figure 7-3 Full geometry and its one-fifth symmetry 

Prepare a sketch in the top view with several radial and arc construction lines: 

1. Front Insert Sketch, build several construction lines for the center of 
the slots, the symmetry plane, and an off-set horizontal line for the fillet 
centers. Add arcs, and line segments to close the shape. Extrude, about the 
mid-plane, to the specified thickness. 

         

2. Define the axis of rotation.  In this case it’s the axis of the inner circular 
hole.  Use Insert Reference Geometry Axis to open the Axis 
panel.  In the Axis panel check Cylindrical/Conical Face and select 
the inner-most cylindrical surface segment of the part and Axis 1 will be 
defined as a reference geometry entity.   
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At this point the smallest geometrical region is complete and you can move on 
the SW Simulation Feature Manager to conduct the deflection and stress 
analysis. 

To open a centrifugal analysis you have to decide if it is classified as static, 
vibration, or something else.  Instead of applying Newton’s second law, F = m 
a, for a dynamic formulation (where is F the resultant external force vector and 
is a the acceleration vector of mass m), D’Alembert’s principle is invoked to use 
a static formulation of F – FI = 0, where the inertia force magnitude is FI = m r 
ω2 in the radial direction and/or m r α in the tangential direction.  That is, we 
reverse the acceleration terms and treat it as a static problem.   

7.3  Part with Angular Velocity Load 
Since this part has symmetry in the radial and circumferential directions, the 
angular velocity case can be obtained with the smaller 36 degree segment.  In 
SW Simulation:  

1. Right click on the Part_name Study, Name the part (spin_grid here), 
pick Static analysis.  The study defaults to solid elements.  (A planar 
model is almost always the cheapest and fastest way to do initial studies of 
a constant thickness part.) 

2. When the Study Menu appears right click on Solid Edit/Define 
Material. 

3. In the Material panel pick Library Steel Cast Alloy.  Select 
Units English.  Note that the yield stress, is about 35e3 psi. It will be 
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compared to the von Mises Stress failure criterion later.  (The mass density, 
is actually weight density, γ = ρg, and is mislabeled.) 

For the centrifugal load due to the angular velocity only the spoke center plane 
and slots center plane always move in a radial direction.  That means that they 
have no tangential displacement (that is, no displacement normal to those two 
flat radial planes).  In the Manager menu:  

1. Select Fixtures to activate the first Fixture panel.  Pick Advanced  
Symmetry as the Type and select the part face in the 0 degree plane. That 
sets the normal displacement component to zero. Preview the restraints, and 
then click OK.  

 

 

2. Repeat that process and select all seven of the part flat faces lying in the 36 
degree plane (above). 

At this point a total of eight surfaces are required to have only radial 
displacements.  Either of the above two restraint operations eliminates a possible 
rigid body rotation about the axis of rotation.  The inner arc of the grid is 
assumed to be force fit bonded to the shaft in the circumferential direction. Use 
Fixtures Advanced On Cylindrical Faces Circumferential.  
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To prevent a rigid body translation of the part in the direction parallel to the axis 
you should also at least restrain the cylindrical shaft contact surface in that 
direction as well.  An alternative, for this loading, is to use symmetry of the 
front or back face of the part. 

1. Select Fixtures to activate the first Fixture panel. Pick Advanced  
Symmetry, select the inter-most cylindrical surface. 

2. Select another color for the restraints present to just avoid RBM. 
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Next you set the centrifugal body force loads due to the angular velocity.  That 
will require picking the rotational axis so select View Axes first and then:  

1. Right click External Loads Centrifugal for the Centrifugal panel.   

2. There pick Axis 1, set rpm as the Units and type in 1,000 rpm for the 
angular velocity. 

 

The radial acceleration, ar = r ω2, varies linearly with distance from the axis, so 
expect the biggest loads to act on the outer rim.  Also remember that the radial 
acceleration is also proportional to the square of the angular velocity.  Thus, 
after this analysis if you want to reduce the stresses by a factor 4 you cut the 
angular velocity in half.  (You would not have to repeat the analysis; just note 
the scaling in your written discussion.  But you can re-run the study to make a 
pretty picture for the boss.) 

For this preliminary study each curved ring segment will act similar to straight 
fixed-fixed beam of the same length under a transverse gravity load.  (To know 
about what your answers should be from SW Simulation, do that simple beam 
theory hand calculation to estimate the relative deflection at the center as well as 
the center and end section stresses.)  Thus, bending stresses may concentrate 
near the ends so make the mesh smaller there:   

1. Right click Mesh Apply Control to activate the Mesh Control panel.  
There pick the six bottom arc faces as the Selected Entities and specify 
an element size.   
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2. Then right click Mesh Create.  The initial mesh looks a little coarse, but 
okay for a first analysis.   

   

3. Start the equation solver by right clicking on the study name and selecting 
Run.  When completed review the results. 

Both the displacements and stresses should always be checked for 
reasonableness.  Sometimes the stresses depend only on the shape of the 
material.  The deflections always depend on the material properties.  Some tight 
tolerance mechanical designs (or building codes) place limits on the deflection 
values.  SW Simulation deflection values can be exported back to SolidWorks, 
along with the mesh model, so that an interference study can be done in 
SolidWorks.  You should always see if the displacements look reasonable:   

1. Double click on Results Define Displacement Plot to see their 
default display, which is a continuous color contour format.  Such a pretty 
picture is often handy to have in a report to the boss, but the author believes 
that more useful information is conveyed with the discrete band contours. 

2. Right click on Plot 1 Settings Fringe Options Discrete for the 
default deformed shape contours. 
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3. Since displacements are vector quantities you convey the most accurate 
information with vector plots. Right click Plot1; Edit Definition  
Advanced  Show as a vector plot.   

 

4. When the vector plot appears, dynamically control it with Vector Plot 
Options and increase Size.  Then dynamically vary the Density (of 
nodes displayed) to see different various nodes and their vectors displayed. 
Retain the one or two plots that are most informative.  

As expected, the center of the outer-most rim has the largest displacement while 
the smallest displacement occurs along the radial “spoke” centered on the 0 
degree plane.  You may want to compare the relative displacement of the outer 
ring to a handbook approximation in order to validate the computed 
displacement results (and your knowledge of SW Simulation).  Localized 
information about selected displacements at nodes or lines is also available.   

For problems with angular velocity or angular accelerations you should also 
view the displacements in cylindrical coordinate components.  For that use: 

1. Edit Definition Advanced and select axis-1 from the part tree.  Then 
the part’s radial displacement component will be displayed as UX. 
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2. Right click in the graphics area and select Probe.  That lets you pick any 
set of nodes in the mesh and display their resultant displacement value and 
location on the plot, as well as listing them (above). 

3. The probe operation is usually easier if you display the mesh first with 
Settings Boundary Options Mesh. Using the support and center 
points in Figure 7-4 as probe points you find a relative displacement 
difference of about 1.65e-5 inches.  That can be compared to a fixed-fixed 
uniformly loaded beam mid-span deflection estimate. 

    
Figure 7-4 Outer ring radial displacements (UX) at the symmetry planes 

All of the physical stress components are available for display, as well as 
various stress failure criteria.  The proper choice of a failure criterion is material 
dependent, and it is the user’s responsibility to know which one is most valid for 
a particular material.  The so called Effective Stress (actually distortional 
energy), or von Mises stress, value is often used for ductile materials. 
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The von Mises failure criterion (a scalar quantity) is superimposed on the 
deformed shape in Figure 7-5 using discrete color contours.  Also Chart 
Options Color Options was used to select only eight colors.   

 
Figure 7-5 Von Mises failure criterion due to angular velocity 

The maximum effective stress is only about 290 psi, compared to a yield stress 
of about 35,000 psi.  That is a ratio of about 134.  Since the centrifugal load 
varies with the square of the angular velocity you would have to increase the 
current ω by the square root of that ratio (about 11.5).  In other words you 
should expect yielding to occur at ω= 11.5 (1000 rpm) = 11,500 rpm.   Since 
this is a linear analysis problem, it would not be necessary to repeat the run with 
that new angular velocity.  You could simply scale both the displacements and 
the stresses by the appropriate constant.  If you have a fast computer you may 
want to do so to include your most accurate plots in your written summary of the 
analysis. 

For this material you would use the von Mises effective stress failure criterion.  
That is, your material factor of safety is defined as the yield stress divided by the 
maximum effective stress.  It was noted above that the ratio is greater than ten in 
this preliminary study.  The magnitude and direction of the maximum principal 
stress P1 is informative (and critical for brittle materials).  Since they are vector 
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quantities they give a good visual check of the directions of the stress flow, 
especially in planar studies (they can be quite messy in 3-D):   

1. Right click in the graphics area, select Edit Description then pick P1 
Maximum Principal Stress, and Vector style and view the whole mesh 
again.   

2. If the arrows are too small (look like dots) zoom in where they seem biggest 
and further enhance you plot with a right click in the graphics area, select 
Vector Plot Options and increase the vector size, and reduce the 
percentage of nodes used for the vector plot.  A typical P1 plot, with the 
deformed shape, is given in Figure 7-6 for the outermost ring junction with 
the radial spoke. 

 
Figure 7-6 Principal stress P1 at outer ring, due to angular velocity 

7.4  Angular Acceleration Model 
The previous model considered only constant angular velocity, ω, so the angular 
acceleration was zero.  During start and stop transitions both will present and the 
two effects can be superimposed because this is a linear analysis.  Next consider 
the initial angular acceleration (where ω = 0 for an instant).  You can always use 
the full model, but that takes a lot of computer resources.  The most efficient 
symmetric analysis would require using any 72 degree segment and invoking a 
special restraint know as circular symmetry, or multiple point constraints or 
repeated freedoms for nodes on those to edges.  That means we know the two 
edges have the same displacement components normal and tangential to the 
edges, but they are still unknowns.  
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You need to identify the axis.  Turn on the axes with View Axes.  Then select 
External Loads Centrifugal and pick Axis 1 in the Centrifugal panel 
and type in the value of the angular acceleration.  

7.5 Proper Cyclic Symmetry Model 
The above studies show that you can often pick symmetry regions in rotational 
loadings and drastically reduce the computer resources required.  Here it seems 
like you could refine the outer spoke mesh further to see worst angular velocity 
effects and refine the innermost gap ends to see the worst angular acceleration 
effects.  Actually, the full model can be replaced by the 72 degree segment using 
the SW Simulation cyclic (circular) symmetry boundary condition.   The 
automation of a cyclic symmetry analysis requires that the software can express 
the degrees of freedom in terms of changing coordinate systems established 
tangential and normal to the repeated surface of cyclic symmetry.  That is 
illustrated in Figure 7-7 (left) where the top view of a cyclic symmetry impeller 
solid shows some of the pairs of tangential and normal displacements that have 
to be established and coupled by the analysis software.  SW Simulation includes 
this ability to impose that the normal and tangential displacements on the two 
limiting surfaces are the same, even though initially unknown.  That figure 
shows that the limiting surfaces do not have to be flat.  

 
Figure 7-7 Impeller well suited for cyclic symmetry analysis 
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An impeller solid body with cyclic symmetry appears in Figure 7-8.  Out of 
plane body parts there would be more influenced by angular acceleration.  The 
two limiting planes do not have to intersect at the geometric center if the body.  
They only have to match with themselves when a copy of the included segment 
undergoes a rigid body rotation about the geometric center.  The limiting 
surfaces can occur at changes in the material or changes in the thickness, like 
Figure 7-9.  There rectangular cyclic symmetry boundary A-B rotates 60 degrees 
to join its mating limiting surface a-b.  Cyclic symmetry conditions also occur in 
thermal analysis and computational fluid dynamics. 

 
Figure 7-8 An impeller solid with  16 segments of cyclic symmetry 

                  
Figure 7-9 Cyclic symmetry surfaces mate by rotating like rigid bodies  

Continuing from the 36 degree segment; use Insert Pattern/Mirror Mirror 
to open the Mirror panel.  Select the previous part as the Features to Mirror 
and pick one of the free ring faces as the Mirror Plane, OK. 
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You could pick any 72 degree segment of the part as the cyclic symmetry 
geometry, but the above choice seemed most logical. 

In this case the two limiting surfaces, having the same unknown displacements, 
are flat radial planes.  To invoke circular symmetry use Fixtures Advanced 

Circular Symmetry to open the Circular Symmetry Panel.  There pick 
Axis-1 as the common axis for the cyclic symmetry innermost inner edges, pick 
one face, and then pick that face’s revolved location as the second face, OK.  
The SW Simulation will automatically establish matching meshes on those two 
faces and create normal and tangential coordinates at each node on those two 
faces (like in Figure 7-7). While you see two different nodes at corresponding 
points on those surface meshes, you should think of them as a single node 
having normal, and tangential displacement components to be determined by the 
specific loading conditions.  
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The angular acceleration in this example is input by its fixation to the outer 
surface of the center shaft (not shown).  That would usually be accomplished by 
a shrink fit, which would also prevent rigid body motion in the axial direction of 
the shaft.  Apply those with Fixtures Advanced On Cylindrical Faces. 

 

The restraints described above would prevent the six possible rigid body 
motions.  In this case, since the part is flat there will be no axial displacements.  
Thus, you can reduce the number of unknowns to be solved, and better stabilize 
an iterative solver, by alternately preventing the z-axis RBM by treating the top 
face as a symmetry plane.   Change the symbol colors to remind yourself that it 
is more an efficiency restraint as well as restraint against RBM.  Use Fixtures 

Advanced Symmetry. 
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Here you generate solid elements in the full 72 degree segment.  The fast 
iterative solver has worked for crude cyclic symmetry meshes; however it failed 
for practical mesh sizes.  The direct sparse solver is better suited to problems 
with multipoint constraints, like circular symmetry.  It takes much longer to run 
and requires more memory and disk space but is most likely to yield an accurate 
solution.  The results were obtained with it.  They will be compared to the 
approximate validation predictions from the previous discussions. 

      

7.6 Cylindrical component displacements 
Once again, it is logical to present the displacements in terms of their radial 
(UX) and circumferential (UY) values (the axial UZ values are essentially zero).  
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The amplified deformed cyclic symmetry shape is given in Figure 7-10.  That 
figure also shows the color levels for the magnitude of the main circumferential 
displacement values 

 
Figure 7-10 Amplified deformed shape, with circumferential displacement 

.  To verify that the circular symmetry solve has indeed computed the same 
displacements on the two limiting surfaces the circumferential values are 
graphed along the zero and 72 degree line segments. The graphs, in Figure 7-11, 
are compared with the approximation given above as a validation result.  The 
agreement is surprisingly good.  

   
Figure 7-11 Cyclic symmetry UY values at 72 degrees (top) compared with 

approximate validation 

The radial displacements, for angular acceleration only, are about a factor of ten 
times smaller.  Their amplitudes are shown in Figure 7-12.  The radial 
displacements along the outer arc are graphed on the left in Figure 7-13 and are 
compared with the half model approximation on the right of that figure.  Here, 
the radial displacements are anti-symmetric about the middle 36 degree line. 
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Figure 7-12 Radial displacement, UX,  is about ten times smaller than UY 

 

  
Figure 7-13 Outer arc radial deflection, compared to validation estimate 

The von Mises stress is always positive so it shows symmetric distributions 
(Figure 7-14) under this angular acceleration loads.  The levels are quite low and 
would not govern when compared to the angular velocity results.  The maximum 
principal normal stress, P1, is also quite small, as seen in Figure 7-14.  The 
maximum shear stresses are given in Figure 7-15 and they are also small.   All 
of these possible material failure criterions are directly proportional to the 
angular acceleration value.  They are also within about 20% of the approximate 
validation estimates given above.  That is unusually good agreement. 

The above plots of typical material failure criteria are consistent with the design 
insight plot in Figure 7-16 of the most active material regions of this part. 



Rotational Loads and Accelerations 143 

 

   
Figure 7-14 Cyclic symmetry von Mises stress and principal stress P1 from 

angular acceleration 

 
Figure 7-15 Twice the maximum shear stress is symmetric for cyclic symmetry 

restraints 

 
Figure 7-16 Main material in the load path for angular acceleration only
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8 Flat Plate Analysis 

8.1  Introduction 
A flat plate is generally considered to be a thin flat component that is subjected 
to load conditions that cause deflections transverse of the plate.  Therefore, the 
loads are transverse pressures, transverse forces and moment vectors lying in the 
plane.  Those loads are resisted mainly by bending.  It is assumed that in-plane 
membrane stresses are not present and that the transverse displacements are 
“small”.  Generally, “small” is taken to mean a deflection that is less than half 
the thickness of the plate.  If the deflection is larger than that and/or membrane 
forces are present you have to use a non-linear large deflection solution. 

8.2  Rectangular Plate 
Figure 8-1 shows some of the boundary conditions that can be applied to the 
edges of a plate.  A segment of a plate can be fixed or encastred (left), simply 
supported (center), or mixed supported (right), or have a free edge.   A simply 
supported condition usually means that the transverse displacement is zero on 
that segment but the rotation tangent to the segment is unknown.  A fixed 
supported condition usually means that the rotation vector tangent to the 
segment is also zero.  A free edge is stress free.  That is, it has no moment or 
transverse shear resultants acting along its length. 

 
Figure 8-1 Some typical boundary condition options on rectangular plates 

In this section the classic example of a simply supported plate subjected to a 
uniform transverse pressure will be illustrated.  Quarter symmetry will be 
utilized to illustrate symmetry boundary conditions for an element with 
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displacement and rotational degrees of freedom.  A short story about this case 
will be noted at the end.  The example plate is AISI 1020 steel with a yield stress 
of about 51 ksi.  The dimensions of the full plate are 4.68 by 12.68 by 0.08 
inches and it is subjected to a uniform pressure of 25 psi.  The total force is 
about 371 lb, so you expect the resultant edge reactions to be equal and opposite 
to that value.  Since external edge effects are usually important, a finer mesh is 
employed along those edges.  The plate is set to be of the “thin” type and the 
study is executed. 

The sketch is built and converted to a planar surface with Insert Surface  
Planar surface.  A static study is opened and the thickness set in Part 
Name  Edit Definition Shell Definition and it is marked as a thin shell.  
The two symmetry edges have no in-plane displace normal to the edge, nor any 
rotation about the edge.  They are invoked with Fixtures Advanced Use 
Reference Geometry.  The two physical support edges are prevented from 
translation, but can have a rotation vector tangent to the edge. They are set with 
Fixtures  Standard Immovable.  Note that the immovable restraint along 
a planar curve has the effect of indirectly eliminating the rotation vector normal 
to the plane as well as the in-plane rotation vector normal to the curve.  The two 
classes of displacement restraints are shown in Figure 8-2.   

  
Figure 8-2 Symmetry (left) and simple supported plate restraints 

The constant external pressure is set with External Loads Pressure  
Normal to, and the value is set at 25 psi.  The loaded model is shown in Figure 
8-3. The plate mesh was refined along its edges (which should always be done). 

The plate deflections are given in Figure 8-4.  The surface deflections are given 
as contours.  The short symmetry edge deflection is graphed for more detail in 
the lower image.  The graph starts at the outer (zero deflection) edge and goes to 
the maximum deflection at the plate center (zero rotation) point.  It serves to 
verify that the restraints were properly applied.  The center point deflection can 
also be compared to analytic estimates [14, 17].  Here the maximum computed  
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Figure 8-3 Constant normal pressure load on the plate 

 
Figure 8-4  Deflections of the quarter symmetry plate, and its short edge 

deflection is more than half the thickness of the plate, therefore the small 
deflection assumption appears questionable. SW Simulation did not issue a 
warning about the change in stiffness due to perceived large deflections, but a 
re-run will be considered later.   

Insight to the displacement is obtained by graphing its value along lines from the 
supported corner point.  Note in Figure 8-5 that the trend shows a reverse 
curvature.  The corner deflection is restrained to zero, by an external corner 
force, but the trend is to a lift up at the corner. 

Since plates and shells can be subjected to both bending and membrane (in-
plane) stresses the stress results should be checked on the top, bottom, and 
middle surfaces.  Here the membrane stress is zero (for small deflections).  At a 
point on the plate the stress will be in tension on one side and have an equal 
amount of compression on the other.  That is important when the material has 
different strengths in tension and compression (like concrete). 
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Figure 8-5 Deflection along from corner to corner (left) and to mid-side 

The von Mises effective stress is proportional to the square root of the sum of 
the squares of the differences in the principal stresses, so it is always positive.  
The contour, and short symmetry edge, values of the von Mises stress are given 
in Figure 8-6.  Note that the peak values exceed the yield stress, and the material 
factor of safety with respect to material failure is less than unity. 

 
Figure 8-6 Von Mises stress in the plate and its short symmetry side 

8.3 Surprising corner reactions 
The reactions can be recovered in at least two ways.  The approach using a free 
body diagram calculation is shown here.  First the transverse reaction force on 
the full two supporting edges are recovered and found to be equal and opposite 
to the resultant applied force from the pressure. 

1. Right click on Results List Free Body Force to open the Reaction 
Force panel. 

2. First select all four supporting edges to get the total reaction forces.  The 
total (above) is about 371 lb., which is equal and opposite to the applied 
resultant force. Note however, that the corner reaction forces have a 
negative sign.  That is, they act downward in the same direction of the 
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pressure. The total corner reaction force has a value of about 20% of the 
applied force from the pressure (the corner node force was counted twice). 

 

The resultants on a free body diagram come from the integral of the reaction 
force per unit length of the edge restraints.  The reaction per unit length is not 
constant and will vary in a complicated fashion.  Knowing this, the support 
edges were split to introduce shorter edges at the corner.  That lets you find the 
portion of the reactions coming from the small corner segments (Figure 8-7).   

 
Figure 8-7 Approximate resultant force and reaction s on the plate 

Now for the related side story: A large analysis group had run the above 
problem to test a new finite element system that they had recently installed.  I 
was called in as a consultant to fix an “error” they had found.  Specifically, 
when a pressure load was applied downward to a flat plate some of its reactions 
were also found to be acting downward, just as noted above.  That seemed to 
them to be physically impossible.  I stated that the software was giving the 
proper type of response since elementary plate and shell theory shows that the 
edge reactions per unit length must behave in that fashion.  To help understand 
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why, I had them plot the two non-zero top principal stresses as well as the 
deflection and maximum (top) stress along the diagonal from the center point to 
the support corner, like Figure 8-5.   

The deflection plot in Figure 8-5 shows that the deflection curvature reverses its 
sign as it approaches the corner.  The corner would lift up, but the assumed edge 
restraint requires that it not move.  Therefore, tension forces must develop in the 
corner reactions to pull it down in the assumed restrained position.  If the 
material along the restraint edge is capable of developing a resisting downward 
force, then you have the correct solution to the actual problem.  Otherwise, you 
have the solution to the assumed problem.  Unfortunately, many finite element 
studies give results for the assumed part behavior instead of the actual part 
behavior.  Then, the plots are pretty, but wrong. 

If the edges of the plate are simply sitting on top of to walls, then the wall could 
not pull down on the corner.  An air gap would open; the corner would lift up off 
the wall, and all line reactions would be in compression where the plate remains 
on the wall.  Sometimes you can actually see this corner lift off behavior in thin 
acoustical ceiling tiles.  How much of the corner actually lifts off the wall must 
be computed from an iterative contact analysis. 

If you did not have a contact analysis capability you could still get a reasonable 
answer to the lift off analysis.  To do that you could introduce a split line on 
each edge near the corner (with parametric dimensions).  Let the short end of 
each corner line be unsupported, solve the problem and check the reactions.  If 
any negative reaction forces appear, then move the split line away from the 
corner and repeat the process.  It may be a slow procedure, but it can lead you to 
the correct lift off regions. 
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9 Shell Analysis 

9.1  SolidWorks Shell Capabilities 
A general shell is different from a membrane shell, which has only in-plane 
loads and displacements, and a flat plate shell, which has only transverse loads 
and in-plane moment vectors.  A general shell can have both in-plane and 
transverse loadings resulting in in-plane force resultants, tangential resultant 
moment vectors, and transverse resultant shear force vectors.  The surface of a 
shell can be doubly curved (like a sphere or hyperbolic paraboloid), single 
curved (like a cone or cylinder), or flat.  The shell is defined by a mathematical 
mid-surface and has half the physical thickness on either side of that thickness.  
Thus, it is thought of as having three physical surfaces (top, mid, and bottom) 
with different stress levels even though it is displayed as a single surface.  The 
top and bottom sides of the shell are shown in different colors.  Shells of 
different thicknesses can also be shown in different colors. 

Within SW Simulation there are three different options for creating shell 
models: 1. From sheet metal parts having a constant thickness, 2. From surface 
geometries that have their piecewise constant thickness defined in a study, and 
3. From relatively thin solid bodies by extracting their mid-surface or offset 
surface and defining the associated thickness later in a study session.  Table 9-1 
lists the current restraint options for mid-surface and offset surface shells within 
SW Simulation.  Fixtures on an edge of a shell are applied directly to the edge.  
Note that shell load options are given in Table 9-2. 

Table 9-1 Fixtures for mid-surface or offset shell stress analysis 
Fixture Type Shell Definition 
Circular 
Symmetry 

Normal and tangential displacements on repeated surfaces 
match. 

Connectors See SW Simulation help files for bolts, pins, spot welds, 
etc. 

Fixed Geometry All translations and rotations are zero on an edge, or 
vertex. 

Fixed Hinge On a cylindrical face, only the circumferential 
displacement is allowed.  
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Fixture Type Shell Definition 
Immovable All three translations are zero on a face, edge or vertex. 
On Cylindrical 
Faces 

The cylindrical coordinate displacements and rotations 
normal to and/or on the cylindrical surface are given. 

On Flat Faces Displacements and rotations normal to and/or tangent to 
the flat face are specified. 

On Spherical 
Faces 

The spherical coordinate displacements and rotations 
normal to and/or on the spherical surface are given. 

Roller/Slider  Two displacements tangent to a flat face and the rotation 
normal to the flat face are allowed. 

Symmetry Select the symmetry plane containing shell edge or vertex 
to be restrained. (Zero normal displacement and in-plane 
rotations.) 

Use Reference 
Geometry 

A face, edge, or vertex can translate and or rotate a 
specified amount relative to a reference plane and axis. 

Table 9-2 Load conditions for mid-surface or offset shell stress analysis 
Load Type Shell Definition 
Apply force The total force on a mesh face is specified, or given on a 

side face or edge to define the mid-surface edge or 
vertex value. 

Apply normal 
force 

The total force normal to a face, at its centroid, is 
specified and converted to an equivalent pressure. 

Apply torque The total torque on a face is specified with respect to an 
axis and converted to an equivalent pressure. 

Bearing Load On a cylindrical surface give the total force in a 
Cartesian X or Y direction to convert to a sine 
distribution pressure. 

Centrifugal The angular acceleration and angular velocity are given 
about an axis, edge, or cylindrical surface. 

Gravity The gravitation acceleration value is given and oriented 
by an axis, edge, or a direction in or normal to a selected 
plane. 

Remote Load See SW Simulation help files. 
Temperature Not recommended. Transfer from thermal analysis. 

 When a thin, variable thickness, solid part clearly has a mid-surface description 
some finite element systems will generate a variable thickness shell elements by 
interpolating the thickness at each mesh node.  SW Simulation currently (2009) 
does not offer that feature.  The mid-surface shell option only works if the two 
selected surfaces have a constant thickness between them.  For piecewise 
constant thickness solids it is easy to convert them to shell models by using an 
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Insert Surface Extrude or Mid-surface or Offset-surface or Planar-
surface option.  Both the solid and the surfaces will continue to exist.  When 
you begin a simulation study you can turn off a solid and retain its shell surface 
by a right click on Solid Part Name Exclude from Analysis.  That is 
reversible using an Include in Analysis pick. 

9.2 Quarter Symmetry Tank Stress 
You need to carry out the stress analysis of an outdoor water tank.  Since it has 
quarter symmetry you can start by building only one-fourth of the geometry.  
The bottom is 0.5 inch thick while the walls are 0.25 inch thick. The side wall 
has height of 72 inches and a small lip extends below the tank bottom for 3 
inches. The lower lip will give you more realistic options on how you may need 
to restrain the part.  The complete tank and the dimensions of the tank bottom 
and the final quarter symmetry part are seen in Figure 9-1.  The material is 
galvanized steel selected to resist rusting.   

 
Figure 9-1 Tank and its final quarter symmetry region 

The tank is to be operated with the water level 6 inches from the top.  The tank 
is analyzed as a shell, so it is constructed as a surface model. The bottom plate is 
created from the center sketch using Insert Surface Planar surface. The 
top shell wall is obtained from the side line and arc using Insert Surface  
Extrude Two directions.  The lower support lip is the second extrude 
direction.  Two horizontal split lines were added to mark the top and bottom 
water levels (to aid selection of pressure faces). A split line was added to the 
bottom, at the beginning of the arc, to serve only as a reference direction for 
restraints.  At this point the Part name will appear in the Simulation Manger 
menu:  Right click on it to apply material data to all of the shells.  Pick Apply 
Material to All  Material panel From library files Steel and select 
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galvanized steel, set the Units to English.   Note that the yield strength, taken 
from a uniaxial tension test, is about 29.6e3 psi.  Since you selected a ductile 
material, that material yield property will later be compared to the von Mises, or 
effective, stress.  Our Safety of Factor (for this material) will be this yield stress 
property divided by the von Mises stress. Click on the part name to show the 
two shells.  Right click on the wall shell Edit Definition Thin Thickness 
and enter 0.25 inch.  Repeat for the bottom shell, but use a thickness of 0.5 inch. 

Remember that the actual displacement supports (restraints) can be unclear and 
you usually need to check for a few possibilities.  What looks like minor 
changes in the restraints of a part can cause large changes in the displacements 
and/or stresses.  Also, remember that in a static analysis you must always 
provide enough restraints to prevent all of the six rigid body motions (RBM) 
possible in a three-dimensional part.  In this example you will use an initial set 
of restraints, carry out the analysis, evaluate the study, and add new restraints for 
an additional analysis.  Here, begin by supporting the bottom tank edge against 
vertical motion (only).  That prevents three rigid body motions: motion in the 
vertical direction and rotation about the two horizontal axes.  Eliminate the three 
RBM that remain by using the two symmetry planes.  The symmetry planes are 
the front (x-z) and left (y-z) planes.  The edges on those planes have their 
displacement normal to the plane restrained, as well as the shell rotational 
components lying in the plane.  Those restraint sets are assigned different colors 
(symmetry green), and are shown in Figure 9-2.  They were all imposed using 
Fixtures Advanced Fixtures Use Reference Geometry. 

 
Figure 9-2 Tank base support (blue) and symmetry restraints 
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In order to apply a variable pressure you first need to create a local coordinate 
system.  Thus, prescribe a hydrostatic pressure load increasing from the top 
water level marked by the split line:  

1. Go to Insert Reference Geometry  Coordinate System to open 
the Coordinate System panel. 

2. Locate the origin at the point shown in Figure 9-2 and accept the default 
directions, so that the pressure is a function of the local y-axis. 
[WARNING: When a pressure changes signs, SW expects a split line or 
split surface to be inserted into the model along the zero value contour.] 

Continue with the application of the pressure loading:  

1. Turn on the View Coordinate System.  

2. Select External Loads  Pressure to impose the hydrostatic pressure 
load in the local y-direction.  In the Pressure panel use normal to 
selected face as the Pressure Type.  Then pick the surfaces of the tank 
walls and bottom (but not the small outside bottom support edges).  Select 
the Pressure Value Units as psi (English).  

3. Set the pressure dimensional scale Value to 0.036 psi (since the water 
density, γ, is 0.036 lb/in3).  That value is multiplied times the non-
dimensional quadratic polynomial, in the local x-y coordinate directions, 
activated by checking a Nonuniform Distribution.  Set all the non-
dimensional polynomial coefficients to zero except for the unity Y term (so 
as to create a linear pressure increase with vertical depth).   

4. Preview gives you a visual check of the pressure distribution along the 
edges of the loaded faces. 
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You should expect the highest bending stresses will be near the tank bottom-side 
wall junction region.  Thus, we will eventually probably have to control the 
mesh to make the smallest elements occur there.  However, for the first analysis 
you can accept the default mesh generation (above). 

Now you can right click on the model name and select Run to start the first 
mesh analysis.  Passing windows will keep you posted on the number of 
equations being solved and the status of the displacement solution process and 
post-processing.  You should get a notice that the analysis was completed (not a 
failed message).  Then you have access to the various SW Simulation report and 
plot options needed to review the first analysis. 

Start by double clicking the Displacement Plot1 icon.  The default plot is a 
smoothly filled (Gouraud) contour display of the resultant displacement 
magnitude and the deformed shape part.  However, since displacements are 
vector quantities consider a vector plot first:   

1. Access them from a right click, Edit Definitions U Resultant  
Advanced Vector Plot.       

2. Edit Definitions Vector Plot Options double click again on the plot 
icon to create the view sin Figure 9-3 (left). 

 

Figure 9-3 Tank resultant displacement vector and contour plots 
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Still, the contours values are useful at times.  If you do not have a color printer 
and/or if you want a somewhat finer description you may want to change the 
default plot styles:  

1. Click in the graphics window and select Edit Definition and cancel the 
advanced option. 

2. Double click again on the Plot icon to get both the magnified deflected 
shape and the color contours of the displacement values.  That alternate 
view may be easier to understand or to plot in grayscale. 

The detail graphs of the deflection normal to the wall and bottom are given in 
Figure 9-4. Note that the peak deflection at the top of the tank is several times 
the thickness of the shell.  Thus, this problem definitely will need to be re-run 
with a large deflection iterative solution. 

 
Figure 9-4 Maximum wall (left) and bottom deflections  

Recall that a shell element can have different stress levels on the three available 
surfaces.  Here, experience suggests that the membrane stress will be quite small 
compared to the bending stresses. Therefore, only the stress results on the top 
surface of the shell are displayed here.    The bottom surface should have the 
same magnitude, but opposite sign (try it), 

Check the top surface stress levels by double clicking on Stress  Plot icon.  
The default one is the scalar Von Mises (or Effective) stress.  It is actually not a 
stress but a failure criterion for ductile materials.  Since you picked a ductile 
material it should be examined and compared to the material yield stress (of 
about 29,600 psi).  Figure 9-5 shows that some of the tank is above the yield 
point, so you need to change the thickness, the material, and/or the restraint 
methods.  As expected, in that plot, the maximum effective stress occurs near 
the junction of the tank wall and bottom.  That suggests our next mesh should be 
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controlled to give smaller elements in that region. When this material is near its 
yield point the protecting galvanized coating fails first and the material will 
begin to rust and loose strength. 

 
Figure 9-5 Effective stress distributions, and its graph up the tank wall 

This part was re-run with the large deflection option.  For some problems, that 
option shows increased membrane stresses that are missed by classical small 
deflection theory.  However, in this case the changes were small.  The new 
graphs are seen in Figure 9-6.  The tank will have to be changed to avoid 
damaging the galvanized coating. 

 
Figure 9-6 Large deflection result for wall deflection and effective stress 

This model could also be revised to look at other restrain conditions.  For 
example, if the tank base sits on two 2” x 4” wooden boards (at the bottom 
edge) you should expect higher stresses.  That requires additional split lines on 
the current bottom edge lip surface to pick a smaller support surface.  The 
results in Figure 9-7 and Figure 9-8 show that the large displacements double, 
but there is little change in the peak stresses. 
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Figure 9-7 Placing the base on a board doubles the displacements 

 
Figure 9-8 Effective stresses for a board supported tank 

Likewise, if you assumed that the tank sinks into the ground (or you eliminate 
the bottom edge) so the full tank bottom is supported in the vertical direction 
then you could use the existing geometry.  You would just set a vertical (normal 
only) restraint there.  The stresses and deflections would be much smaller in that 
case.  To test that concept, you would only need to add one additional restraint 
set that provides vertical support to the tank bottom plate. 

9.3  Solid Stress Analysis Approximation with 2.5D 
There are many 3D parts that can be represented with a 2D drawing of regions 
noted as having different constant thicknesses.  Components of that sort are 
commonly referred to as 2.5D solids.  They can be analyzed with shell models, 
for any loading states, as a way to validate full 3D solid studies and/or to help  
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plan the mesh controls needed to make the initial 3D study economical.  As an 
example, consider a ship bulkhead that is subject to an in-plane constant bi-axial 
stress state, with σx = σ  and σy = σ/2.  The bulkhead contains two symmetrical 
portals (Figure 9-9) that are 1 m wide.  The openings will cause a local stress 
concentration, say σmax, at their edge (to be shown below).  Since this is a linear 
analysis, the results can be directly scaled for any value of σ. 

 
Figure 9-9 Portals through a ship bulkhead gangway 

The stress concentration factor, Kt, for bi-axial tension around an elliptical hole 
in an infinite plate is [11]: 
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where a and b are the major and minor axes of a similar ellipse.  To reduce the 
stress concentration factor around the opening, the wall thickness is to be 
increased in two stages.  Employ thickness ratios of 1:4:10 relative to the 
standard thickness of 0.02 m.  Note that these wall thicknesses could be 
parameters in a weight optimization study.  The dimensions on the two regions 
of increased wall thickness are seen in Figure 9-10. 

The sketch of the three regions is extruded relative to the mid-plane of the 
bulkhead, with merge results checked, to form a 3D solid.  The quarter 
symmetry model with loads and restraints and its solid mesh is given in Figure 
9-11.  There is one quadratic element through the thickness of the main 
bulkhead.  That is sufficient, since there are no transverse loads to cause 
bending.  Otherwise, mesh control would be required to force more solid 
elements into the thickness. Before continuing on to the structural solid results, 
the creation of the 2.5D shell validation model will be introduced. 
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Figure 9-10 Regions of increased wall thickness 

    
Figure 9-11 A quarter symmetry solid model and solid mesh 

The original solid was extruded as three merged constant thickness regions, 
about a common mid-plane.  Several commercial finite element systems could 
mesh such a solid with mid-surface shell elements and automatically assign the 
correct thickness to each element.  SW Simulation currently (2009) does not do 
that.  You can however employ an assembly of the three regions, bonded 
together, each consisting of a mid-surface membrane shell having a specified 
thickness.  Here, you need at least two of those three shell surfaces to be in the 
same plane.   
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Extrude the first region just like it is shown in Figure 9-10.  Save that body, 
named as “Thin”, and suppress it so it does not merge with the next extrusion.  
Extrude the next body with the same thickness, name it “Mid” and suppress it.  
Extrude the third region with the same thickness and save it with the name 
“Thick”.  Import the three bodies into an assembly and mate them together.  As 
shown in Figure 9-12, you can set each body to have a different thickness.   

    

 
Figure 9-12 Setting constant thickness shells in three assembled bodies 

The last two regions were defined as thick, although that was probably not 
necessary for this in-plane loading state.  If the edge of the opening had been 
much thicker it could have also been re-run as an out of plane shell as another 
validation bound estimate.   

Figure 9-13 shows the three imported bodies in the SolidWorks assembly, 
before mating, and the created shell meshes after bonding in SW Simulation.  
This assembly was loaded and given symmetric restraints like in Figure 9-11 
(but with additional rotational symmetry restraints for the shell edges). To 
illustrate the stress concentration around the opening of the single thickness 
model (which omits the two thicker reinforced regions) was executed.  Its 
displacement, von Mises stress, and (twice) the maximum shear stress are given 
in Figure 9-14.  The above stress concentration factor approximation assumed  
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Figure 9-13 Flat shell, three thickness, bounded body assembly and mesh 

    

 
Figure 9-14 Constant thickness bulkhead: displacement, von Mises, intensity 
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the opening was in the center of a symmetrical region, which is not the case.  
Being offset from the center increases the stress level at the bottom of the 
modeled opening.  The 2.5D model gives a very good validation of the solid 
model results, with a lot less computational resources.  The contour plot 
comparisons are set to have the same contour ranges.  The contour plots have 
the solid on the left of the figure and the 2.5D (piecewise constant shell) model 
on the right.  The displacements are illustrated in Figure 9-15.   

   
Figure 9-15 Bulkhead displacement results: solid (left), 2.5D (right) 

The von Mises stress comparison is seen in Figure 9-16.  Compared to the non-
reinforced wall of Figure 9-14, the peak stress has been reduced by about a 
factor of 7.5.  That is seen more clearly in Figure 9-17 which gives the graph of 
the von Mises stress along the vertical line from the bottom of the opening to the 
bottom of the model.  The intensity (twice the maximum shear stress) from the 
solid and 2.5D models are given in Figure 9-18.  The validations are good. 

The above three thickness shell model did not catch some of the 3D response of 
the material adjacent to the hole.  The flanges of the curved region around the 
hole of the model did not have constant displacements.  The mid-plane moved 
the most, while the outer edges of the flange were seen to move less.  That is, 
there was a relative, symmetric, slight curving (bending) into the opening by the 
thickest region.  A graph of the flange bending displacement, from front to back, 
is given in Figure 9-19.   The current 2.5D model missed that very small feature, 
but an out of plane shell model would have shown a similar result. 
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Figure 9-16 Bulkhead von Mises stress results: solid (left), 2.5D (right) 

 
Figure 9-17 Gangway stress reduction from single (top) to three thicknesses 
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It is always important to consider ways to validate your finite element 
calculations, even if that requires a different class of finite element model.  It has 
been said that you should use two different models, as above, and then throw 
them both away and build a better model based on the insight gained from 
carrying out the first study and its validation. 

 

    
Figure 9-18 Twice the maximum shear stress in the bulkhead: solid (left), 2.5D  

 

 
Figure 9-19 Solid model deflection along the thick flange, front to back
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10 Space Truss and Space Frame 
Analysis 

10.1  Introduction 
One-dimensional models can be very accurate and very cost effective in the 
proper applications.  For example, a hollow tube may require many thousands of 
solid elements to match its geometry, even though you expect its stresses to be 
constant.  A truss (bar) or frame (beam) element can account for the geometry 
exactly and give “exact” stress results and deflections with just a handful of 
equations to solve.  In SW Simulation, truss and frame elements are available 
only for static (constant acceleration), natural frequency, buckling, or nonlinear 
studies.  It is recommended that you review the SolidWorks weldments tutorial 
and the truss tutorial before using trusses or frames. 

The truss element is a very common structural member.  A truss element is a 
"two force member".  That is, it is loaded by two equal and opposite collinear 
forces. These two forces act along the line through the two connection points of 
the member.  The connection points (nodes) between elements form a 
concurrent force system.  That is, the joints transmit only forces.  Moments are 
not present at the joints of a truss.  The truss elements in SW Simulation are all 
space truss elements.  There are three displacement DOF at each node (see the 
right side of Figure 3-1), and up to three reaction forces at a restrained joint.  A 
space truss has six rigid body motions, all of which must be restrained in an 
analysis.  The space truss and space frame models are created in SW Simulation 
by 3D line sketches.  For a truss the lines must exactly meet at common points 
(joints).  The lines of the space frame models can meet at common points and/or 
terminate as an intersection of two lines.  To avoid numerical ill-conditioning, it 
is best if a space frame does not have two joints very close (say, the width of the 
cross-section) to each other.  If that is necessary, SW Simulation takes special 
action to build the finite element model there. 
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The line that represents a truss or frame member has to be located relative to the 
cross-section of the member.  Where it intersects the cross-section is called the 
pierce point.  For trusses it is important that the pierce point be at the centroid of 
the cross-section.  That happens automatically when you use a built in library 
shape.  If you construct a cross-section make sure that the truss pierce point is at 
the centroid.  If the pierce point is not at the centroid, as in the right of Figure 
10-1, then an axial load will cause bending stresses to develop and to be 
superimposed on the axial stress.  That is allowed in frame elements but not 
truss elements. 

 
Figure 10-1 Centroidal (truss) and eccentric (beam) section pierce points 

Clearly, the elastic bar is a special form of a truss member.  To extend the 
stiffness matrix of a bar to include trusses in two- or three-dimensions basically 
requires some analytic geometry.  Consider a space truss segment in global 
space going from point 1 at (x1, y1, z1) to point 2 at (x2, y2, z2). The length of the 
element between the two points has components parallel to the axes of ܮ௫ ൌ
ଶݔ െ ,ଵݔ ௬ܮ ൌ ଶݕ െ ,ଵݕ ௭ܮ ൌ ଶݖ െ ଶܮ ଵ and the total length isݖ ൌ ௫ଶܮ ൅ ௬ଶܮ ൅   .௭ଶܮ
The direction cosines are defined as the ratio of the component length 
increments divided by the total length of the element, L.  They are used to 
transform a bar stiffness matrix to the space truss stiffness matrix.  For 2D 
problems, only one angle is required to describe the member direction.   A truss 
element stiffness requires only the material elastic modulus, E, the cross-
sectional area, A, and the member length, L.  A space frame element also 
requires the three geometric moments of inertia of the cross-section.  Two 
inertias are needed for the transverse bending, and the third is needed for 
torsional effects.  The SW Simulation frame element also utilizes the material’s 
Poisson’s ratio.  The mass density, ρ, is needed for gravity (acceleration) loads, 
or natural frequency computations.  Weight loads acting on a truss are 
transferred to its two end nodes as forces only, and the mid-span bending effect 
of the weight is ignored. 
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If you combine the bar member, which carries only loads parallel to its axis, and 
a beam which carries only loads transverse to its axis you get the so-called 
beam-column element, or general frame element.  When deflections are large, 
the iterative solution updates the axial load in a beam and that can significantly 
affect the results.   Adding the ability to carry torsion moments along the 
element extends the behavior to a space frame. In other words, a space frame is 
a combination of individual beam-column elements that resists loadings by a 
combination of transverse bending moments, axial member forces, and 
transverse (shear) forces, and an axial torsional moment. Therefore, it is a more 
efficient structure than a space truss element.  Weight loads acting on a frame 
are transferred to its two end nodes as both forces and couples.  Therefore, the 
effect of the weight is included in the deflection and stresses along the full 
length of a frame element. 

10.2 Statically Determinate Space Truss 
Consider the simple symmetric space truss shown in Figure 10-2.  It has two 
horizontal members, denoted by a, and an inclined member, b, which is located 
in the vertical mid-plane.  The truss has three immovable restraints (at the 
dashed circles) and a vertical point load, P = 1,000 lb at the free node.  The 
spatial dimensions of the nodes are shown in the figure.  The members are 
square hollow tubes, with the horizontal pair being 2 x 2 x 0.25 inches, and the 
other 4 x 4 x 0.25 inches.  All three members are made of ASTM A36 steel. 

 
Figure 10-2 Geometry of the simplest space truss 



Space Truss and Space Frame Analysis 169 

 

The construction of the 3D line models is done by means of a 3D Sketch: 

1. Insert 3D Sketch.  Insert construction lines along each of the axes to 
help locate nodes (remember to press Tab to change to a new plane).  Add 
and dimension (in inches) additional construction lines in each coordinate 
plane.  In the 3D Sketch Lines.  Draw one line to open the Line 
Properties panel. 

2. Expand the Additional Parameters option to provide access to the end 
points of the first element.  

 
3. Specify the coordinates of the starting point and/or the ending point 

and/or the increments in coordinates from one end.  Spot check the 
element length value. Click OK.  Repeat for the other elements (or review 
the 3D sketch tutorial for other approaches). 

After all the space truss line elements have been located, and saved, the next 
task is to look up or construct each member’s cross-section: 

1. View Toolbars Weldments  and click Structural Member   
2. In the Structural Member panel, Selections Type Square tube.  

Pull down to the 2 x 2 x 0.25 inches size. Select the two horizontal elements 
as the path segments.  Under Settings Apply corner treatment 
and click on end miter and OK. 
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3. In the Structural Member panel Selections Type Square tube.  

Pull down to the 4 x 4 x 0.25 inches size for the compression member.  It 
should be larger to avoid buckling (which should be checked). 

4. Select the inclined, vertical plane element as the path segment.  Change 
Alignment to 45 degrees, OK.   

 

In the SW Simulation menu: 

1. Right click on Simulation New Study Static. 
2. Select all three beams, Edit definition Apply/Edit Beam Truss.  

Click OK. 



Space Truss and Space Frame Analysis 171 

 

 
3. Right click on Truss name Apply Material to All Bodies  

Library Steel ASTM A36, click OK. 
4. Right click on Joint Group Edit  All Calculate.  SW Simulation 

verifies and displays all four joints. You can manually pick joints also. 

         
5. External Loads Force.  In the Force panel Select Joints.  Pick 

the one free node and select the Front plane (click + sign on part name 
tree, pick Front Plane) to set the plane.  Select the desired tangential 
(vertical) direction.  Select lb units, and set a value of 1,000 lb as the 
vertical component. Click OK. 
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6. Fixtures Fixed Geometry Immovable, select the three wall ball 
joints.  They prevent the three rigid body translations and three rotations.  
Click OK. 

 

7.  Mesh Create Mesh.  There are no mesh control options for trusses.   
8. Run.  SW Simulation calculates the space truss joint locations and their 

displacements. 

In the Simulation Menu:  Right click Results Define Displacement 
Plot  URES: Resultant displacement. The deformed plot and the probed 
maximum displacement are in Figure 10-3. 

   
Figure 10-3 Space truss scaled deflection 
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In the Simulation Menu:  Right click Results Define Displacement 
Plot Resultant Reaction Force.  Set the units to lb and select 
Advanced Vector Plot, OK.  Use Vector Plot Options to control the 
vector lengths. Repeat the process for the vertical reaction components (RFY: Y 
Reaction Force) and verify that they sum to a value that is equal and opposite 
(+1,000 lb) to the total applied vertical load(s).  It is also wise to verify that both 
the x- and z-components of the reaction forces sum to zero.  These two reaction 
probe sets are illustrated in Figure 10-4. 

 

 
Figure 10-4 Space truss vertical reaction force probes and sums 

In a truss, you are usually interested in both the member forces and their axial 
stresses:   

1. To see the list of member forces use Results List Beam Forces  
Forces to select the units and the Beam Range numbers of interest.  
You can save those data as comma separated value files. 

   

2. In a similar manner you can list the axial stress in truss members. 
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In the Simulation Menu: Double click on Stress1 to show the default plot.  
Select different view points, as in Figure 10-5.  Use Edit Definition Stress 
Plot and select Axial and set the units to psi.  Note that each truss member, by 
definition, has a constant axial stress level.  The member stress levels are very 
low compared to the material yield point.  It is unlikely that a buckling study of 
the compression member is needed, even if you included the neglected weight of 
the members. 

 
Figure 10-5 Truss member’s constant axial stress 
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10.3 Analytic Beam Element Matrices 
An elastic beam acts like a generalized spring with two nodal degrees of 
freedom at each end: the transverse displacement, v, and the slope, ߠ.  However, 
in addition to end point transverse shear load, V, and moment, M, it can have 
distributed transverse loads per unit length, q(x), and/or thermal moment due to 
a temperature change, say ∆T,  through its thickness, h, from bottom to the top.  
The resultants of such effects are lumped at the ends as additional point forces 
and/or moments.  For a beam with a cross-sectional moment of inertia, I, length, 
L, and material with an elastic modulus of E and a coefficient of thermal 
expansion of α, the corresponding analytic 4 by 4 element equilibrium matrices 
are: 

ாூ
௅య
቎
  12 ܮ6  
ܮ6   ଶܮ4   

 െ12 ܮ6  
െ6ܮ ଶܮ2     

െ12 െ6ܮ
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   12 െ6ܮ
  െ6ܮ ଶܮ4   

቏ ቐ 
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ଵߠ
ଶݒ
ଶߠ
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ଵܸ
ଵܯ
 

ଶܸ
ଶܯ

ൢ ൅ ௅
଺଴
቎ 
 21      9
ܮ3  ܮ2     
 9   21
െ2ܮ െ3ܮ

 ቏ ቄ 
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ଶ ቅݍ ൅

ఈ∆்ாூ
௛

ቐ 
   0 1
   0
െ1

 ቑ, 

where ݍଵ and ݍଶ are the transverse distributed load per unit length at the first 
(left) and second end, respectively.  The point sources ௞ܸ and ܯ௞ represent 
externally applied force and moment at end k.  In matrix notation the 
equilibrium equation is 

ሾࢋࡷሿሼ࢜ሽ ൌ ൛࢖ࡲൟ ൅ ൛ࢗࡲൟ ൅ ሼࢀࡲሽ 

which equates the product of the elastic stiffness and the generalized 
displacements to the sum of the generalized forces resulting from point sources, 
distributed sources and thermal sources. 

This specific element is called the cubic beam because the four generalized 
nodal displacements define a cubic polynomial in one-dimension.  In other 
words, the transverse deflection of the beam, ݒሺݔሻ, varies cubically with the 
position along the axis of the beam, x.  This is one of the most widely utilized 
finite elements.  For any of the load combinations given on the right side of the 
above matrix expression the solution gives the analytically exact results at the 
nodes. However, the results (deflection, slope, moment and transverse shear) 
interior to the element are only exact when the distributed load is constant 
ଵݍ) ൌ  ଶሻ.  Otherwise, you need a fine mesh of beam elements to recoverݍ
accurate transverse shear results. 
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In SolidWorks notation, the x-direction above is called the axial direction and 
the V and M results are computed with respect to local beam direction-1.   A 
similar set of matrix relations occur in the orthogonal plane, called direction-2, 
when utilized in three-dimensions as a space frame. 

The analytic beam equations can often be used to give simple closed form 
validation estimate for real problems that must be obtained by numerical finite 
element studies.  As the first example, consider finding the deflections and 
reactions of cantilever beam with a triangular distributed line load shown in 
Figure 10-6.   

 
Figure 10-6 Beam deflection and resultant load for a triangular line load 

The resultant end forces and moments from the line load become: 

௤ࡲ ൌ
௅
଺଴
቎ 
 21      9
ܮ3  ܮ2    
  9   21
െ2ܮ െ3ܮ

 ቏ ቄ 0ݓ ቅ ൌ
௪௅
଺଴
ቐ 
  ܮ9 2 
  21
െ3ܮ

 ቑ. 

The first (left) end is free, so the shear force and moment there vanish, ଵܸ ൌ
0, ଵܯ  ൌ 0.  The unknown wall reaction shear and moment acts on the second 
node.  The resultant load ܴ ൌ ܮݓ 2⁄  acts at a third of the distance from the wall.   
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The essential boundary conditions are that the right end deflection and slope are 
zero.  They leave only the first two rows of the beam equilibrium equation for 
finding the tip deflections: 

ாூ
௅య
ቂ  12 ܮ6
ܮ6 ଶ ቃܮ4 ቄ 

ଵݒ
ଵ ቅߠ ൌ ቄ 00 ቅ ൅

௪௅
଺଴
ቄ   9 2ܮ ቅ ൅ ቄ 0 0 ቅ. 

Inverting the square 2 by 2 matrix gives the free end deflections as: 

ቄ 
ଵݒ
ଵ ቅߠ ൌ

௅య

ଵଶாூ௅మ
ቂ   4ܮ

ଶ െ6ܮ
െ6ܮ   12

 ቃ ௪௅
଺଴
ቄ ቅܮ9 2   ൌ

௪௅య

ଵଶ଴
ቄ 4ܮെ5 ቅ. 

These are the analytically exact end deflection and end slope.   

The known exact solution to this problem is a fifth degree polynomial 
deflection, namely 

ሻݔሺݒ ܫܧ 120 ൌ ସሾ 4ܮݓ െ ݔ5 ܮ ൅ ሺݔ ⁄ܮ ሻହ ⁄ ሿ. 

That means the exact moment in the member (ݒ ܫܧᇱᇱ) will be a cubic 
polynomial, while the transverse shear force (ݒ ܫܧᇱᇱᇱ) will be a quadratic 
polynomial.  Nevertheless, the cubic beam element approximation gives exact 
end moment and shear.  The system reactions come from the last two rows of 
the beam equilibrium matrices: 

ܫܧ
ଷܮ ቂ 

െ12 െ6ܮ
ܮ6   ଶ ቃܮ4   

ଷܮݓ

120 ቄ 
ܮ4
െ5 ቅ ൌ ൜  ଶܸ

ଶܯ
 ൠ ൅

ܮݓ
60 ቄ 

  21
െ3ܮ ቅ ൅ ቄ 0 0 ቅ 

൜  ଶܸ
ଶܯ
 ൠ ൌ

ܮݓ
6 ቄ െ3    ܮ ቅ 

which are again exact.  Since each beam has only four undetermined constants, 
the deflection of any point along the length is approximated by a cubic 
polynomial (with ݎ ൌ ݔ ⁄ܮ  being the non-dimensional position): 

ሻݔሺݒ ൌ ଵሺ1ݒ  െ ଶݎ3 ൅ ଷሻݎ2 ൅ ݎଵሺߠ െ ଶݎ2 ൅ ܮଷሻݎ ൅ ଶݎଶሺ3ݒ െ ଷሻݎ2
൅ ଷݎଶሺߠ െ  ܮଶሻݎ

The flexural and shear stresses at any point depend on the moment and 
transverse shear force at the section, respectively.  Knowing the analytic 
moments and shear forces at both ends of the beam we could estimate the 
internal moments and shear as straight lines between the two values.  However, 
the exact moment and shear diagrams have cubic and quadratic variations, 
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respectively.  The analytic cubic beam estimate has a large error, but is 
conservative in this example.  Other examples (such as this beam with both ends 
fixed) show the cubic beam analytic moment and shear estimates to be highly 
non-conservative.  

The consistent finite element theory for the cubic beam moment and shear are 
linear and constant along the beam length, respectively.  Specifically, they are:  

ሻݔሺܯ ൌ ሾݒଵሺ12ݎ െ 6ሻ ൅ ݎଵሺ6ߠ െ 4ሻܮ ൅ ଶሺ6ݒ െ ሻݎ12 ൅ ݎଶሺ6ߠ െ 2ሻܮሿ/ܮଶ 

ܸሺݔሻ ൌ ሾݒଵሺ12ሻ ൅ ܮଵሺ6ሻߠ ൅ ଶሺെ12ሻݒ ൅  .ଷܮ/ሿܮଶሺ6ሻߠ

Of course numerical solutions with many elements give very good results.  Here 
we are emphasizing quick analytic estimates based on a mixture of solid 
mechanics theory and finite element theory.  If you used two analytic beam 
elements you would get much better moment and shear estimates, but you have 
to solve more equations (try it). 

Probably the most common cantilever beam concept is where it is only loaded 
by a single end force, ଵܸ. Again solving only the last two equilibrium rows: 

ቄ 
ଵݒ
ଵ ቅߠ ൌ

ଷܮ

ଶܮܫܧ12 ቂ 
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ܫܧ12 ቄ 
ܮ4
െ6 ቅ 

which gives the classic tip deflection of ଵܸܮଶ/3ܫܧ.  

As a final analytic beam example, consider the cantilever with only a 
temperature change (cooler on top) that is constant along its full length.  For a 
thermal loading only the right hand side changes to: 
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Since the right end deflection and slope are zero the independent displacement 
relations (for a negative temperature change) are obtained from the top two rows 
of the equilibrium equations: 

ܫܧ
ଷܮ ቂ 

12 ܮ6
ܮ6 ଶ ቃܮ4 ቄ 

ଵݒ
ଵ ቅߠ ൌ

െܫܧܶ∆ߙ
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and the free tip deflections (similar to the middle of Figure 10-6) are 
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which results in wall reactions of 
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 ൠ ൌ ఈ∆்ாூ

௛
ቄ 00 ቅ. 

This means that since the beam was free to expand, there is no thermally 
introduced wall reaction shear or moment.  That will not be true for a statically 
indeterminate beam.  For example, had the beam been fixed-fixed the two end 
reaction moments would be ܫܧܶ∆ߙט ݄⁄ .  That is, the beam would have a 
constant moment and corresponding flexural stresses, but no transverse shear. 

10.4 Frame Elements 
When you have a member that carries both axial loads, like the bar, and 
transverse loads, like the beam, the resulting member is known as a frame 
element or beam-column.  A frame element is shown in Figure 10-7.   For planar 
frame elements there are three generalized displacements per node (two 
displacements and one rotation).  When used as a space frame element that 
number increases to three displacements and three rotations per node.  The third 
rotation comes from including torsional effects about the axial direction. 

 
Figure 10-7 Combining the bar and cubic beam defines a frame element 

For small deflections, the analytic models given above for the axial and 
transverse effects are assumed uncoupled and you just solve both models 
independently.  Note that for small deflection studies the axial displacements 
must be obtained first in order to calculate the axial force in the bar.  If the 
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displaced form rotates the bar then the axial force has a component in the 
original transverse direction and the beam-column becomes coupled.   
Mathematically, the nature of the problem changes because the governing 
differential equation changes from the classic beam 

ܫܧ
݀ସݒ
ସݔ݀ ൌ  ሻݔሺݓ

to a coupled equilibrium 

ܫܧ
݀ସݒ
ସݔ݀ െ  ݂

݀ଶݒ
ଶݔ݀ ൌ  ሻݔሺݓ

where f is a pre-existing axial force (tension positive).  The classic equation 
yields solutions for the beam displacements that are polynomials.  The coupled 
system requires the exact solution to be hyperbolic functions instead of 
polynomials.  Of course, the coupled system can be approximated in FEA 
studies by using the cubic beam model, but the element lengths need to be 
greatly reduced.  When the cubic beam is used with the pre-existing force it has 
an additional stiffness term, called the geometric stiffness, which must be added 
to the matrix equilibrium equations.  That matrix is 

ሾࡳࡷሿ ൌ ௙
ଷ଴௅
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36 ܮ3
ܮ3 ଶܮ4
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Notice that a tension force (positive f) increases the stiffness of the beam and 
thus reduces the transverse deflection v(x).  A compression load has the opposite 
effects.  The matrix equilibrium equation becomes: 
                                  ሾࢋࡷ ൅ ሽ࢜ሿሼࡳࡷ ൌ ൛࢖ࡲൟ ൅ ൛ࢗࡲൟ ൅ ሼࢀࡲሽ. 

To solve this system you usually employ a large displacement iteration.  First, 
the geometric stiffness is neglected because f is not known.  From the first set of 
displacements the axial bar forces are found as reactions.  They are passed on to 
the beam so its geometric stiffness can be found.  The revised system is solved, 
including ࡳࡷ, to yield new displacements.  The process iterates until the changes 
in the forces and the displacements are very small. 

To extend the stiffness matrix of a frame element to include two- or three-
dimensions basically requires the use of its direction cosines.  The required 
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transformation matrix is similar to the one needed for trusses but with additional 
terms for the nodal rotations.  When such an element is used in general three-
dimensional space it is called a space frame element.  In that case bending 
moments can occur in two planes orthogonal to the axis of the element.  A space 
frame also has a torsional element model of the axis as a shaft. 

10.5 Statically Indeterminate Space Frame 
Consider an unequal leg planar frame that is to be subject to a transverse force 
and an in-plane support settlement.  The cross-section is an ISO 80 x 80 x 5 mm 
square tube.  The tall vertical leg is 15 ft, the short one 10 ft and the top member 
12 ft long.  A survey shows that the support for the shorter leg has settled and 
imposed a vertical downward displacement of 0.45 inch and a clockwise rotation 
of 0.02 radians normal to the plane of the frame.  Before considering the 
transverse load, a study needs to be run to establish the deflections and stresses 
introduced by the non-rigid support displacement. There are numerous tabulated 
frame results given in [11], but none match this load case. 

Begin by drawing and dimensioning the three lines defining the frame.  Then 
form the structural members: 

1. View Toolbars Weldments and click Structural Member. 
2. In the Structural Member panel, Selections Standards ISO.  In 

Selections Type Square tube.  Pull down to the 80 x 80 x 5 mm 
size.  Select all three line segments the as the path segments. 

  
3. Under Settings Apply corner treatment and click on end miter 

(above right) and OK. 
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In the SW Simulation menu: 

1. Right click on the Simulation New Study Static. 
2. In the new study, highlight all three beam members, and right click on 

Apply/Edit Beam.  
3. Set the element Type to Beam and default to Rigid End Connection at 

the ends of all elements.  All three space frame members appear now in the 
beams list, OK. 

4. Right click on Part name Apply Material to All Bodies Library 
files Steel ASTM A36, click OK. 

5. Right click on Joint group Edit All Calculate.  SW Simulation 
locates and displays all four joints (you can manually pick joints as well). 

6. Fixtures Fixed Geometry.  Pick the lower left support as an encastre 
(fixed support).  This prevents all three rigid body translations and three 
rotations.  Click OK.  Change the restraint name (in the SW manager menu) 
to Fixed_lower_joint via a slow double click.   

 
7. Specify the non-zero support settlements.  Fixtures Use Reference 

Geometry.  Pick the lower right joint, selected the Front Plane as the 
reference geometry (from the SolidWorks menu, or by expanding the part 
tree in the graphics area).  Set the Translations as upward 0.45 inch, and 
the Rotation normal to the front plane (z-axis) as 0.02 radians counter-
clockwise.  Green symbols appear at the two settlements.  Name the 
restraint to Settlement. 
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8. Fixtures Use Reference Geometry. Select the Front Plane.  Set the 
zero values for the remaining four DOF at that joint, change their color to 
blue.  Name the restraint to No_Settlement. 

   

9. Mesh Create Mesh.  There are no mesh control options for beams or 
frames.  The additional created nodes allow more displacement vector 
displays, and better varying member stress displays. 

10.  Run. SW Simulation calculates the space frame joint locations and 
computes their displacements. 

Since there were no externally applied forces (just non-zero support 
displacements) you should expect that the reaction forces to be equal and 
opposite.  Likewise, since the two supports are off-set vertically, the moment 
reactions should not be equal and opposite, as seen on the left in Figure 10-8.  
That figure also shows a sketch of the overall reactions, due to the support 
settlement alone.  An FEA always yields the correct reactions for the imposed 
displacements and loads (none here).   You can spot check the system  
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Figure 10-8 Frame settlement moment reactions, and system equilibrium 

equilibrium, for example, by taking z-axis moments about the right support 
point:  0 ൌ ௔ܯ  െܯ௖ െ ܨ௫ሺܮ௔ െ ௖ሻܮ ൅  ௕ which is satisfied to within 2 in-lbܮ௬ܨ
out of at total of 25,330 in-lb.  In this case all the reaction loads are in the x-y 
plane of the frame and the moment vectors are perpendicular to that plane. 

In the Simulation menu select Results Define Displacement Plot  
URES Advanced  Vector Plots.  Set the display units to inches. In this 
case, all translational displacements are in the plane of the frame.  Figure 10-9 
shows that the maximum resultant displacement was about 0.99 inches.  The 
locations of the probed maximum horizontal and vertical displacements are 
different, as seen in Figure 10-10. 

SW Simulation can display the member forces and moments, including the axial 
force, transverse shear force in two directions normal to the frame axis, two 
local bending moments, and any torsional moment. For frame members you can 
have axial stress, torsional stress, transverse shear stress (two sets), and two 
flexural stresses combined.  Therefore, the worst stress at a section varies over 
the cross-sectional area.  The typical combination of stresses, in one direction 
normal to the frame, is sketched in Figure 10-11.  The worst stress will usually 
also vary over the length of each element.  Each frame element is divided into 
about 50 or more sub-elements for the purpose of determining, and graphing, the 
variation of the deflections, forces, moments, and stresses along the length of a 
typical frame element.  At the centroid of each sub-element, SW Simulation 
computes the combined stress at four (or more) locations and displays the worst. 
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Figure 10-9 Settlement deformed planar frame shape 

 

  
Figure 10-10 Maximum x- and y-settlement (right) induced displacements 
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Figure 10-11 Combining axial stress and flexural stress for the worst stress 

To graph the worst stress value in the frame, utilize: 

1. Results Define Stress Plot.  In the Stress Plot panel, right click 
Edit Definition Worst case, set units to psi, turn on Deformed 
Shape option, if desired. Click OK. Review the default plot. 

    
2. For frame elements it is useful to know the local coordinate directions for 

each member.  They are employed in displaying the internal shear and 
moment values.  To see those local directions right click on Beam 
Diagram name Settings Options Show beam directions 
(above).  The triad color coding is red for axial, green for member direction 
1, and blue for member direction 2. 

3. For individual sub-element details, right click on the Stress Plot name 
Probe.  Then zoom in on individual elements and select their center 

points at equal spaced intervals.  
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4. To graph the forces and moments along the frame members use Results  
Define Beam Diagrams to open the Beam Diagram panel and there 
you pick the desired units, the force or moment required, as well as the 
Selected Beams for display.  The moment in the top frame member is 
displayed:  

  

5. Display the axial force (tension positive) you see results consistent with 
the system FBD in Figure 10-8: 
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6. The z-moment, for the first two elements, in direction 2 is likewise 
displayed (with clockwise positive): 

 

In SW Simulation, the local beam directions are set by the axial direction first, 
and the by the direction of the maximum (direction 2) and minimum principal 
directions of the cross-section area moment of inertia.  For symmetrical cross-
sections (like this example) the maximum and minimum inertias have the same 
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value.  Thus, the program arbitrarily picks one as direction 2. That means the 
choice of direction 1 or 2 may not be consistent for a single diagram display.  
Other FEA systems sometimes require the user to define the local directions for 
member output results.  That is a confusing and error prone task that is avoided 
in SW. 

This completes the consideration of the totally in-plane response of the stated 
settlement condition.  Next the out of plane force will be superimposed to create 
a true space frame response. 

Now, a normal joint force of 200 lb. is superimposed on the previous case to see 
the out of plane displacements of this space frame: 

1. External Loads Force.  In the Force panel Select Joints.  Pick 
the top left joint and select the Front plane to set the reference direction.  
Pick the direction Normal to, and set the Force to 200 lb. OK. 

 
2. Mesh Create Mesh. There are no mesh controls for frames.  Run. 
3. The new reaction items are the base moments about the x-axis and the z-

force at the bases.  They are viewed with Results Define 
Displacement Plot  RMX: Reaction moment about x, etc. 
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4. Results Define Displacement Plot URES: Resultant 
Displacement, select Advanced Vector Plots.  

 
The displacements have more than doubled with new displacement components 
normal to the plane of the frame.  The out of plane displacement components are 
seen in Figure 10-12. 

The out of plane stresses (UZ) are superimposed on the previous ones above.  
Therefore, the worst stresses will vary more around the perimeter of the cross-
section.  Some regions will have higher material stress levels while others have 
reduced values.  
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Figure 10-12 Resultant and out of plane displacements for combined loadings 

Re-check the worst case stress values for the combined case: 

1. Results Define Stress Plot. In the Stress Plot panel, pull down 
Worst case, set units to psi. Click OK. 

2. Right click on the Stress Plot name Probe. Select each node on the 
right leg from support to corner.  Pick graph icon, click OK.   
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Other probed worst stress results for the combined support settlement and the 
out of plane normal force are given in Figure 10-13.  The values have increased 
by about 50% and vary more with location. 

 
Figure 10-13 Worst case element stress probe for the combined loadings 
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11 Vibration Analysis 

11.1  Introduction 
A spring and a mass interact with one another to form a system that resonates at 
their characteristic natural frequency.  If energy is applied to a spring-mass 
system, it will vibrate at its natural frequency.  The level of a general vibration 
depends on the strength of the energy source as well as the damping inherent in 
the system.  Consider the single degree of freedom system in Figure 11-1 that is 
usually introduced in a first course in physics or ordinary differential equations.  

 

Figure 11-1 A spring-mass-damper single degree of freedom system 

 There, k is the spring constant, or stiffness, and m is the mass, and c is a viscous 
damper.  If the system is subjected to a horizontal force, say f(t), then Newton’s 
law of motion leads to the differential equation of motion in terms of the 
displacement as a function of time, x(t): 

m d2x /dt2 + c dx / dt + k x(t) = f(t) 

which requires the initial conditions on the displacement, x(0), and velocity, v(0) 
= dx / dt(0).  When there is no external force and no damping, then it is called 
free, undamped motion, or simple harmonic motion (SHM): 

m d2x /dt2 + k x(t) = 0. 

The usual simple harmonic motion assumption is x(t) = a sin (ωt) where a is the 
amplitude of motion and ω is the circular frequency of the motion.  Then the 
motion is described by 
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[k – ω2 m] a sin (ωt) = 0, or [k – ω2 m] = 0. 

The above equation represents the simplest eigen-analysis problem.  There you 
wish to solve for the eigenvalue, ߱, and the eigenvector, a.  Note that the 
amplitude, a, of the eigenvector is not known. It is common to scale the 
eigenvector to make the largest amplitude unity.  The above scalar problem is 
easily solved for the circular frequency (eigenvalue), 

߱ ൌ ௡ܨߨ2 ൌ ඥ݇ ݉⁄ , 

which is related to the so called natural frequency, Fn, by Fn = ω / 2π. 

 

From this, it is seen that if the stiffness increases, the natural frequency also 
increases, and if the mass increases, the natural frequency decreases.  If the 
system has damping, which all physical systems do, its frequency of response is 
a little lower, and depends on the amount of damping.  Numerous tabulated 
solutions for natural frequencies and mode shape can be found in [3].  They can 
be useful in validating finite element calculations. 

Note that the above simplification neglected the mass of both the spring and the 
dampener.  Any physical structure vibration can be modeled by springs 
(stiffnesses), masses, and dampers.  In elementary models you use line springs 
and dampers, and point masses.  It is typical to refer to such a system as a 
“lumped mass system”.   For a continuous part, both its stiffness and mass are 
associated with the same volume.  In other words, a given volume is going to 
have a strain energy associated with its stiffness and a kinetic energy associated 
with its mass.  A continuous part has mass and stiffness matrices that are of the 
same size (have the same number of DOF).  The mass contributions therefore 
interact and can not naturally be lumped to a single value at a point.  There are 
numerical algorithms to accomplish such a lumped (or diagonal) mass matrix 
but it does not arise in the consistent finite element formulation. 

11.2  Finite Element Vibration Studies 
In finite element models, the continuous nature of the stiffness and mass leads to 
the use of square matrices for stiffness, mass, and damping.  They can still 
contain special cases of line element springs and dampers, as well as point 
masses.  Dampers dissipate energy, but springs and masses do not.   
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If you have a finite element system with many DOF then the above single DOF 
system generalizes to a displacement vector, X(t) interacting with a square mass 
matrix, M, stiffness matrix, K, damping matrix C, and externally applied force 
vector, F(t), but retains the same general form: 

M d2X / dt2 + C dX / dt + K X(t) = F(t) 

plus the initial conditions on the displacement, X(0), and velocity, v(0) = dX / 
dt(0).  Integrating these equations in time gives a time history solution.  The 
solution concepts are basically the same, they just have to be done using matrix 
algebra.  The corresponding SHM, or free vibration mode (C = 0, F = 0) for a 
finite element system is 

M d2X / dt2 + K X(t) = 0. 

The SHM assumption generalizes to X(t) = A sin (ωt) where the amplitude, A, is 
usually called the mode shape vector at circular frequency ω.  This leads to the 
general matrix eigenvalue problem of a zero determinant: 

| K - ω2 M | = 0. 

There is a frequency, say ωk, and mode shape vector, Ak, for each degree of 
freedom, k.  A matrix eigenvalue-eigenvector solution is much more 
computationally expensive that a matrix time history solution. Therefore most 
finite element systems usually solve for the first few natural frequencies.  
Depending on the available computer power, that may mean 10 to 100 
frequencies.  SW Simulation includes natural frequency and mode shape 
calculations as well as time history solutions.  

Usually you are interested only in the first few natural frequencies.  In SW 
Simulation, the default number of frequencies to be determined is five (that 
number is controlled via Study Properties Options  Number of 
frequencies).  A zero natural (or slightly negative one) frequency corresponds 
to a rigid body motion.  A part or assembly has at most six RBM of ‘vibration’, 
depending on how or if it is supported.  If a shell model is used the rotational 
DOF exist and the mass matrix is generalized to include the mass moments of 
inertia. For every natural frequency there is a corresponding vibration mode 
shape.  Most mode shapes can generally be described as being an axial mode, 
torsional mode, bending mode, or general mode. 
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Like stress analysis models, probably the most challenging part of getting 
accurate finite element natural frequencies and mode shapes is to get the type 
and locations of the restraints correct.  A crude mesh will give accurate 
frequency values, but not accurate stress values.  The TK Solver case solver 
software contains equations for most known analytic solutions for the 
frequencies of mechanical systems.  They can be quite useful in validating the 
finite element frequency results. 

In section 3.3, the stiffness matrix for a linear axial bar was given.  It is repeated 
here along with its consistent mass matrix: 

ሾ݇ሿ ൌ ா஺ 
௅
ቂ    1 െ1
െ1    1 ቃ ,

ሾ݉ሿ ൌ ௠
଺
ቂ 2 1
1  2 ቃ, m = ρAL. 

If you utilize a quadratic (three node) line element the corresponding element 
matrices are  

ሾ݇ሿ ൌ ா஺
ଷ௅
൥ 
   7 െ8   1
െ8 16 െ8
   1 െ8    7

 ൩,  ሾ݉ሿ ൌ ௠
ଷ଴
൥ 
   4  2 െ1
   2 16    2
െ1   2    4

 ൩. 

11.3 Analytic Solutions for Frequencies 
The analytic frequency and mode shape solutions for many parts with common 
geometries are found In a course on the vibration of continuous media.  The 
geometries include axial bars, axial shafts in torsion, beams with transverse 
motion vibration, flat plates of various shapes, and thin shells of various shapes.  
Several examples of them are given in the “validation problems” set of examples 
presented along side the software tutorials.   

Consider the longitudinal vibration of a bar.  The results depend on which type 
of support is applied to each end of the bar.  For one end restrained and the other 
end free the natural frequencies are 

߱௡ ൌ
ሺଶ௡ିଵሻగ௖

ଶ௅
, c = ටா

ఘ
, n= 1, 2, 3, … ∞. 

However, if both ends are restrained they are 

߱௡ ൌ
௡గ௖
௅

, c = ටா
ఘ
, n= 1, 2, 3, … ∞. 
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This shows that for a continuous body there are, in theory, an infinite number of 
natural frequencies and mode shapes.  Try a single quadratic element to model a 
fixed-fixed bar frequency.  Restrain the two end DOF (the first and third row 
and column) of the above 3 by 3 matrices.  Only a single DOF remains to 
approximate the first mode.  Solve the restrained matrix eigen-problem: 
ሾkሿ െ ωଶሾmሿ| ൌ 0.  The reduced terms in the matrices are 

ܣܧ
ܮ3

ሾ 16 ሿ െ ߱ଶ ρAL
30

ሾ 16 ሿ ൌ 0 

so ߱ଵଶ ൌ
ଵ଴ா
௅మఘ

 and ߱ଵ ൌ √10 ௖
௅
ൌ 3.16 ௖

௅
 which is less that 1% error compared to 

the exact result.  Adding more elements increases the accuracy of each 
frequency estimate, and also yields estimates of the frequencies associated with 
the additional DOF.  For example, adding a second quadratic bar element gives 
a total of three un-restrained DOF.  So you could solve for the first three 
frequencies.  The value for ߱ଵ would be more accurate and you would have the 
first estimates of ߱ଶand ߱ଷ. 

Usually, the masses farthest from the supports have the most effects on the 
natural frequency calculations.  If you only care about the frequencies you could 
use split lines to build larger elements near the supports.  For beams and shells, 
the transverse displacements are more important than the tangential rotational 
DOF. 

11.4 Frequencies of a curved solid 
To illustrate a typical natural frequency problem consider a brass 75 degree 
segment of an annulus solid having a thickness of 0.3 m, an average radius of 
1.5 m, and a width of 1 m.  The component is encastred (fixed) at one 
rectangular face.  The thickness to width ratio is 0.3.  That suggests that the 
study should be conducted with either a solid model or a thick shell model. Both 
types of elements will be used to indicate the range of uncertainty.  

There is no simple analytic estimate to validate the study of a thick curved body.  
However, there is a simple cantilever beam frequency estimate that can give an 
estimate of the frequencies.  The first frequency of such a thin beam is 
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߱ଵ ൌ 1.732ඨ
ܫܧ
ସܮܣߩ ൌ 1.732ඨ

ଶ݄ܧ

 ସܮߩ12

 Here, the effect length, L, must be estimated.  If you take the outer arc length as 
that length, the estimate is ߱ଵ ൌ    .Using the centerline gives 92.3 Hz  .ݖܪ 48.4

Generally, the displacement degrees of freedom are more important in getting 
natural frequencies and mode shapes than are rotational DOF.   Therefore, the 
solid study is probably best here.  In vibration problems, the material located 
farthest from the supports are more important.  You should use mesh control to 
create small elements in such regions.  The modeling process is:   

1. Sketch and dimension the area.  Extrude it to a thickness of 0.3 m. 

 

 

2. Click on a curved face, Insert Sketch.  
3. Add a line and arc near the free edges farthest from the support, for later 

mesh control.  Insert Curve Split Line (above) 

Selecting the SW Simulation Manager icon: Right click on the top name to 
access Study, which opens the Study panel.  
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Assign a Study name, choose Frequency for the Analysis type.  At this 
point Solids will appear in the Manager menu:  
1. Right click on it to apply material data.  The component is to be made of 

brass.   
2. Pick Apply Material to All  Material panel From library files 

button Copper Alloys and select brass, set the Units to MKS.  

Specify a finer mesh away from the support, and a crude mesh near the support: 

1. Mesh Mesh Control, select small outer faces, set size to 0.06 m. 

 

2. Mesh Mesh Control, select other faces, set size to 0.3 m. 
3. Mesh Create Mesh 

 

4. Select Fixtures Immovable and pick the support rectangles. Run. 
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The Run Properties were set to compute five modes and frequencies, but 
only the first three are summarized here.  Select Results and display each mode 
in turn.  Change views for better understanding as in Figure 11-2.  

       

        

         
Figure 11-2 First three solid studies modes and frequencies 
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Mode one is like that of a cantilever beam, with the outer edge moving 
perpendicular to the original plane.  Mode two is a vibration in the original 
plane.  Mode three seems to be mainly a twisting vibration.  The frequencies are 
shown in the figure text.  You can also have SW Simulation list them.  The first 
three modes are also given in Table 11-1, along with the corresponding values 
from a thick shell model presented below.  There is about a 10% difference in 
the frequencies.   

Table 11-1 Natural frequencies (Hz) from solids and thick shells 

Model Mode 1 Mode 2 Mode 3 

Solid 52 142 169 

Thick shell 46 126 155 

Thin beam 48.4 - - 

 

The above study was repeated with a thick shell. It was defined by starting an 
additional study, and selecting the top surface and defining it to be a thick shell, 
as seen in Figure 11-3.  A thick shell includes additional transverse shear effects 
that should be important for a body with this aspect ratio. 

 
Figure 11-3 Select the top plane as a thick shell approximation 

The same mesh controls were used to refine the model along its outer arc..  
Some results are in Figure 11-4 for the first two modes of vibration.  Note that 
the thick shell approximation yields frequency estimates that are about lower 
that the full solid model. 
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Figure 11-4 First two thick shell frequencies 
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12 Buckling Analysis 

12.1  Introduction 
There are two major categories leading to the sudden failure of a mechanical 
component: material failure and structural instability, which is often called 
buckling.  For material failures you need to consider the yield stress for ductile 
materials and the ultimate stress for brittle materials. 

Those material properties are determined by axial tension tests and axial 
compression tests of short columns of the material (see Figure 12-1).  The 
geometry of such test specimens has been standardized.  Thus, geometry is not 
specifically addressed in defining material properties, such as yield stress.  
Geometry enters the problem of determining material failure only indirectly as 
the stresses are calculated by analytic or numerical methods. 

 
Figure 12-1 Short columns fail due to material failure 

Predicting material failure may be accomplished using linear finite element 
analysis. That is, by solving a linear algebraic system for the unknown 
displacements, K δ = F.  The strains and corresponding stresses obtained from 
this analysis are compared to design stress (or strain) allowables everywhere 
within the component. If the finite element solution indicates regions where 
these allowables are exceeded, it is assumed that material failure has occurred. 

The load at which buckling occurs depends on the stiffness of a component, not 
upon the strength of its materials.  Buckling refers to the loss of stability of a 
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component. The buckling mode is usually independent of material strength. This 
loss of stability usually occurs within the elastic range of the material.  The two 
phenomenon are governed by different differential equations [18].  Buckling 
failure is primarily characterized by a loss of structural stiffness and is not 
modeled by the usual linear finite element analysis, but by a finite element 
eigenvalue-eigenvector solution, |K + λm KF| δm = 0, where λm is the buckling 
load factor (BLF) for the m-th mode, KF is the additional “geometric stiffness” 
due to the stresses caused by the loading, F, and δm is the associated buckling 
displacement shape for the m-th mode.  The spatial distribution of the load is 
important, but its relative magnitude is not.  The buckling calculation gives a 
multiplier that scales the magnitude of the load (up or down) to that required to 
cause buckling.  The multiplier depends on the material modulus. 

Slender or thin-walled components under compressive stress are susceptible to 
buckling.  Most people have observed what is called “Euler buckling” where a 
long slender member subject to a compressive force moves lateral to the 
direction of that force, as illustrated in Figure 12-2.  The force, F, necessary to 
cause such a buckling motion will vary by a factor of four depending only on 
how the two ends are restrained.  Therefore, buckling studies are much more 
sensitive to the component restraints that in a normal stress analysis.  The 
theoretical Euler solution will lead to infinite forces in very short columns, and 
that clearly exceeds the material ultimate stress.  In practice, Euler column 
buckling can only be applied to long columns and empirical transition equations 
are required for intermediate length columns.  For very long columns the loss of 
stiffness occurs at stresses far below the material ultimate or yield stresses. 

 
Figure 12-2 Long columns fail due to instability 
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There are many analytic solutions for idealized components having elastic 
instability.  About 75 of the most common cases are tabulated in the classic 
references [ 11, 15-17].  Euler long column buckling is quite sensitive to the end 
restraints.  Figure 12-3 shows five of several cases of end restraints and the 
associated k value used in computing buckling load or stress.   

  
Figure 12-3 Restraints have a large influence on the critical buckling load 

12.2  Buckling Terminology 
The topic of buckling is still unclear because the keywords of “stiffness”, “long” 
and “slender” have not been quantified.  Most of those concepts were developed 
historically from 1D studies.  You need to understand those terms even though 
finite element analysis lets you conduct buckling studies in 1D, 2D, and 3D.  For 
a material, stiffness refers to either its elastic modulus, E, or to its shear 
modulus, G = E / (2 + 2 v) where v is Poisson’s ratio.  

Slender is a geometric concept addressing the ratio of a members length and a 
property of the cross-sectional area that is quantified by the radius of gyration.  
The radius of gyration, r, has the units of length and describes the way in which 
the area of a cross-section is distributed around its centroidal axis.  If the area is 
concentrated far from the centroidal axis it will have a greater value of the radius 
of gyration and a greater resistance to buckling.  A non-circular cross-section 
will have two values for its radius of gyration.  The section tends to buckle 
around the axis with the smallest value. The radius of gyration, r, is defined as: 
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ݎ ൌ ඥܫ ⁄ܣ , where I and A are the area moment of inertia, and area of the cross-
section.  For a circle of radius R, you obtain r = R / 2.   Solids can have regions 
that are slender, and if they carry compressive stresses a buckling study is 
justified.  Long is also a geometric concept that is quantified by the non-
dimensional “slenderness ratio” L / r, where L denotes the length of the 
component.  The slenderness ratio, of a part made of a single material, is defined 
to be long when it is greater than ߨ ݇⁄ ඥ2ܧ ⁄௬ߪ , where ߪ௬ is the material yield 
stress.  A long slenderness ratio is typically greater than 120.  The above 
equation is the dividing point between long (Euler) columns and intermediate 
(empirical) columns.  The critical compressive stress that will cause buckling 
always decreases as the slenderness ratio increases.  The critical Euler buckling 
stress depends on the material, the slenderness ratio, and the end restraint 
conditions. 

12.3 Buckling Load Factor 
The buckling load factor (BLF) is an indicator of the factor of safety against 
buckling or the ratio of the buckling loads to the currently applied loads. Table 
12-1 illustrates the interpretation of possible BLF values returned by SW 
Simulation.  Since buckling often leads to bad or even catastrophic results, you 
should utilize a high factor of safety for buckling loads (say BLF>2).   

 
Table 12-1 Interpretation of the Buckling Load Factor 

BLF  Buckling Status Remarks 
>1 Buckling not 

predicted 
The applied loads are less than the 
estimated critical loads. 

 = 1 Buckling 
predicted 

The applied loads are exactly equal to the 
critical loads.  Buckling is expected. 

< 1 Buckling 
predicted 

The applied loads exceed the estimated 
critical loads.  Buckling will occur. 

-1 < BLF 
< 0 

Bucklin possible Buckling is predicted if you reverse the 
load directions. 

-1 Buckling possible Buckling is expected if you reverse the 
load directions. 

< -1 Buckling not 
predicted 

The applied loads are less than the 
estimated critical loads, even if you 
reverse their directions. 
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12.4  General Buckling Concepts 
Other 1D concepts that relate to stiffness are: axial stiffness, E A / L, flexural 
(bending) stiffness, E I / L, and torsional stiffness, G J / L, where J is the polar 
moment of inertia of the cross-sectional area ( J = Iz = Ix + Iy).  Today, stiffness 
usually refers to the finite element stiffness matrix, which can include all of the 
above stiffness terms plus general solid or shell stiffness contributions.  Analytic 
buckling studies identify additional classes of instability besides Euler buckling 
(see Figure 12-4).  They include lateral buckling, torsional buckling, and other 
buckling modes.  A finite element buckling study determines the lowest 
buckling factors and their corresponding displacement modes.  The amplitude of 
a buckling displacement mode, |δm|, is arbitrary and not useful, but the shape of 
the mode can suggest whether lateral, torsional, or other behavior is governing 
the buckling response of a design. 

 
Figure 12-4 Some sample buckling mode shapes 

12.5 Local Lateral Buckling of a Cantilever 
Consider the plane stress analysis of a horizontal tapered cantilever beam 
subject to a transverse vertical load distributed over its free end face.  The 
member was L = 50 inch long, t = 2 inch thick, and the depth, d, tapered from 3 
inch at the load, to 9 inch at the fixed support.  A study of the history of 
mechanics of materials shows that the concept of a fixed, or cantilever, or 
encastre support came from elementary beam theory.  Originally it meant that a 
point at the neutral axis of a beam had both a zero displacement and rotation.  
That also implied that the support was capable of providing a reaction force 
vector and moment vector.  There are several ways a support can provide a 
resisting force and moment to prevent a region of material from translating and 
rotating.  Engineering practice has developed several standard symbols to 
represent a “fixed “support, rollers, pins, etc.  Some of those symbols appear as 
icons in FEA restraints modules.  You have to decide if those simplified support 
concepts are valid for your problem.  
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The use of finite element analysis in 2D or 3D requires you to always consider 
the effect of Poisson’s ratio and how to avoid or model the point singularity in 
stresses that Poisson’s ration causes due to restraint assumptions that you make.  
At a fixed wall in a 2D beam model the top fiber is typically being stretched 
horizontally.  Due to Poisson’s ratio, that same point wants to contract 
downward.  If that motion is prevented, as it is in the common assumption for a 
fixed support, then the vertical stress there must suddenly jump from basically 
zero to an extremely high value over a small area to develop the support force 
necessary to prevent that contraction.  Then theoretical stress singularities 
develop in the 2D (and 3D) theory of elasticity solutions, but probably not in the 
physical entities.  Since fixing the support edge will cause false infinite stresses 
at the two corners, a more realistic support condition was used in this example 
by including a semi-circular segment of the plate to which the beam is welded.   
The edge of that curved plate segment was fixed instead.  That removes a 
singularity due to Poisson’s ratio.  However, a weaker singularity remains 
because a sharp re-entrant corner was used.  A simple fillet would remove that 
singularity. 

The plane stress model was built, loaded, restrained as described above and 
solved.  The deformed shape in Figure 12-5 is what you would expect and 
predict from simple beam theory.  The predicted flexural stresses are almost 
constant along the length instead of increasing as they approach the support.  
That is because the beam is tapered.  The moment of inertia of the beam 
increases with the cube of the depth.  Thus, it grows faster than the bending 
moment due to the end load.   

 
Figure 12-5 Plane stress deflection magnitudes and directions 
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Even though the stress distribution looks different from a constant thickness 
beam, the stresses are quite low here.  Both the von Mises and the maximum 
shear stress material failure criterion (Figure 12-6) are around 1 ksi.  Comparing 
either one to the material yield point of about 90 ksi you can see by inspection 
that the material factor of safety is about 90 to 100, far above the minimum 
required value of unity. 

 

 

Figure 12-6 Von Mises (top) and maximum shear stress failure criteria 

This very high material factor of safety probably suggests (incorrectly) that a 
simple redesign will save material, and thus money.  The load carrying capacity 
of a beam is directly proportional to its geometric moment of inertia, Iz = t d 3 / 
12. Thus, it also is proportional to its thickness, t.  Therefore, it appears that you 
could simply reduce the thickness from t = 2 to 0.2 inches and your material 
FOS would still be above unity.  If you did that then the “thickness to depth 
ratio” would vary from 0.2 / 3 = 0.067 at the load to 0.2 / 9 = 0.022 at the wall, a 
range of about 1/15 to 1/45.   

If a component has a region where the relative thickness to depth ratio of less 
than 1/10 you should consider the possibility of “local buckling” .  It usually is a 
rare occurrence, but when it does occur the results can be sudden and 
catastrophic.  To double check the safety of reducing the thickness you should 



210 Finite Element Analysis Concepts via SolidWorks 

 

 

add a second study that utilizes the SW Simulation buckling feature to determine 
the lowest buckling load.  To do that: 

1. Right click on the Simulation New Study to open the Study panel.  
Assign a new Study name, select Buckling as the Type of analysis. 

2. To use the same loads and restraints from the prior static study drag the 
External Loads from the first study and drop them into the second one 
(except for any normal to the plane).  Likewise, drag and drop the first 
shell Materials into the second study. 

3. Create a new finer mesh.  Right click on the Part name Run. 

A buckling, or stability, analysis is an eigen-problem.  The magnitude of the 
scalar eigen-value is called the “buckling load factor”, BLF. The computed 
displacement eigen-vector is referred to as the “buckling mode” or mode shape.  
They are only relative displacements.  Usually they are presented in a non-
dimensional fashion where the displacements range from zero to ±1.  In other 
words, the actual value or units of a buckling mode shape are not important.  
Still, it is wise to carry out a visual check of the first buckling mode: 

1. When the solution completes, pick Displacements Plot1 and examine 
the resultant relative displacement URES.  Note that the displacement 
contour curves in Figure 12-7 are inclined to the long axis of the beam 
instead of being vertical as before in Figure 12-5. 

 
Figure 12-7 Buckling mode displacement values (normal to surface) 
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2. Use Settings to get a plot of the displacement along with the undeformed 
shape, and rotate the display to an out-of-plane view, as in Figure 12-8. 

The displacement magnitudes shown in the figures are simply relative.  Most 
FEA systems scale the buckling mode shapes to range from zero to േ1.  The 
signs mean that free end moved out of plane in the positive z-direction, while 
the bottom corner, near the support, moved in the opposite direction. From 
Figure 12-8 you see that under the vertical load the (very thin) beam buckled 
mainly sideways (perpendicular to the load) rather than downward.  This is an 
example of lateral buckling.  That is typical of what can happen to very thin 
regions.   

 
Figure 12-8 Relative lateral (out of plane) buckling mode displacements 

Next, the question is: how large must the end load be to cause such motion, and 
failure?  To see the magnitude of the BLF (eigenvalue): right click on Results 

List Buckling Mode Factors.  In the List Modes panel, Figure 12-9, 
read the BLF value of about 0.67.  The buckling load factor is an indicator of the 
factor of safety against buckling or the ratio of the buckling loads to the 
currently applied loads.  Since buckling often leads to bad or even catastrophic 
results, you should utilize a high buckling factor of safety (at least >2) for 
buckling loads.  Instead, the study shows that only about 2/3 of the planned 
load will cause this member to fail by lateral buckling due to loss of stiffness in 
the out of plane direction.   
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Figure 12-9 First buckling mode load factor 

To understand why this failure has occurred, you must re-consider the thickness 
reduction or plan to add lateral bracing members and repeat the buckling study.  
Remember that the geometric moment of inertia of the beam about the vertical 
(y) axis is Iy = d t 3 / 12.  It is a measure of the lateral bending (and buckling) 
resistance.  By reducing the thickness, t, by a factor of 10 the original Iz (and the 
in-plane bending resistance) went down by the same factor of 10, but Iy (and the 
out-of-plane bending resistance) went down by a factor of 1,000. 

To illustrate the importance of lateral bracing, consider two lateral support 
options: 1. only the vertical free tip edge is restrained against motion normal to 
the beam; and 2. the beam is fully supported laterally over its full tapered face 
area. The new BLF, listed in Figure 12-10 increase drastically. 

 

  
Figure 12-10 BLF from lateral support of the tip (left) and full beam face 

Figure 12-11 shows that the lateral motion in the first case occurs mainly at the 
mid-span.  The BLF is then about 1.6 which means that the applied load would 
have to be increased by that factor for buckling to theoretically occur.  In reality, 
that value was computed with a perfectly flat beam.  If a small lateral miss-
alignment was included in the construction of the beam (as happens in the real 
world), the BLF would be smaller.  If the beam is fully supported laterally, as in 
the second case, then the listed BLF is very high (Figure 12-10) because then the 
displacements must be in the plane of the beam instead of transverse to it. 
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Figure 12-11 Buckling mode with lateral support at the tip edge 
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13 Concepts of Thermal Analysis 

13.1 Introduction 
There are three different types of heat transfer: conduction, convection, and 
radiation.  A temperature difference must exist for heat transfer to occur.  Heat is 
always transferred in the direction of decreasing temperature.  Temperature is a 
scalar, but heat flux is a vector quantity. The thermal variables and boundary 
conditions relate to the displacements and stress in an axial bar through the 
analogy as summarized in Table 13-1. 

Table 13-1 Terms of the 1D thermal-structural analogy 

Thermal Analysis Item, [units], 
symbol 

Structural Analysis Item, [units], 
symbol 

Unknown: Temperature [K], T Unknown: Displacements [m], u 
Gradient: Temperature Gradient 
[K/m], ∇T 

Gradient: Strains [m/m], ε 

Flux: Heat flux [W/m2], q Flux: Stresses [N/m2], σ 
Source: Heat Source for point, line, 
surface, volume 
[W], [W/m], [W/m2], [W/m3], Q 

Source: Force for point, line, 
surface, volume 
[N], [N/m], [N/m2], [N/m3], g 

Indirect restraint: Convection Indirect restraint: Elastic support 
Restraint: Prescribed temperature  
[K], T 

Restraint: Prescribed displacement  
[m], u 

Reaction: Heat flow resultant  [W], H Reaction: Force component  [N], F 
Material Property: Thermal 
conductivity  [W/m-K], k 

Material Property: Elastic modulus  
[N/m2], E 

Material Law: Fourier’s law Material Law: Hooke’s Law 
 

Conduction takes place within the boundaries of a body by the diffusion of its 
internal energy.  The temperature within the body, T, is given in units of degrees 
Celsius [C], Fahrenheit [F], Kelvin [K], or Rankin [R].  Its variation in space 
defines the temperature gradient vector, ∇ T, with units of [K/m] say.  The heat 
flux vector, q, per unit area is define by Fourier’s Conduction Law, as the 
thermal conductivity matrix, k, times the negative of the temperature gradient, q 
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= - k ∇ T.  The integral of the heat flux over an area yields the total heat flow 
for that area. 

Thermal conductivity has the units of [W/m-K] while the heat flux has units of 
[W/m2].  The conductivity, k, is usually only known to three or four significant 
figures.  For solids it ranges from about 417 W/m-K for silver down to 0.76 
W/m-K for glass.   A perfect insulator material (k 0 ؠ) will not conduct heat; 
therefore the heat flux vector must be parallel to the insulator surface.  A plane 
of symmetry (where the geometry, k values, and heat sources are mirror images) 
acts as a perfect insulator.  In finite element analysis, all surfaces default to 
perfect insulators unless you give a specified temperature, a known heat influx, a 
convection condition, or a radiation condition. 

Convection occurs in a fluid by mixing.  Here we will consider only free 
convection from the surface of a body to the surrounding fluid.  Forced 
convection, which requires a coupled mass transfer, will not be considered.  The 
magnitude of the heat flux normal to a solid surface by free convection is qn = h 
Ah (Th – Tf) where h is the convection coefficient, Ah is the surface area 
contacting the fluid, Th is the convecting surface temperature, and Tf is the 
surrounding fluid temperature, respectively.  The units of h are [W/m2-K].  Its 
value varies widely and is usually known only from one to four significant 
figures.  Typical values for convection to air and water are 5-25 and 500-1000 
W/m2-K, respectively. 

Radiation heat transfer occurs by electromagnetic radiation between the 
surfaces of a body and the surrounding medium.  It is a highly nonlinear 
function of the absolute temperatures of the body and medium.  The magnitude 
of the heat flux normal to a solid surface by radiation is qr = ε σ Ar (Tr 4 – Tm 4).  
Here Tr is the absolute temperature of the body surface, Tm is the absolute 
temperature of the surrounding medium,  Ar is the body surface area subjected to 
radiation,   σ = 5.67 x 108 W/m2–K4 is the Stefan-Boltzmann constant, and ε is a 
surface factor (ε = 1 for a perfect black body). 

Transient, or unsteady, heat transfer in time also requires the material 
properties of specific heat at constant pressure, cp in [k J/kg-K], and the mass 
density, ρ in [kg/m3].  The specific heat is typically known to 2 or 3 significant 
figures, while the mass density is probably the most accurately known material 
property with 4 to 5 significant figures. 
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The one-dimensional governing differential equation for transient heat transfer 
through an area A, of conductivity kx , density ρ, specific heat cp with a 
volumetric rate of heat generation, Q, for the temperature T at time t is  ∂(kx 
∂T/∂x)/∂x + Q(x) = ρ cp ∂T/∂t, for 0 ≤ x ≤ L and time t ≥ 0.  It requires initial 
conditions to describe the beginning state, and boundary conditions for later 
times. For a steady state condition (∂T/∂t = 0) the typical boundary conditions of 
one of the following: 

1. T prescribed at 0 and L, or 
2. T prescribed at one end and a heat source at the other, or 
3. T prescribed at one end and a convection condition at the other, or 
4. A convection condition at one end and a heat source at the other, or 
5. A convection condition at both ends. 

In the 3D case the differential equation becomes the anisotropic Poisson 
Equation (see Chapter 15).  That is, the above diffusion term (second derivatives 
in space) is expanded to include derivatives with respect to y and z, times their 
corresponding thermal conductivity values. 

13.2 Thermal Analysis Input Properties 
Table 13-2 and Table 13-3 list the isotropic and orthotropic thermal material 
properties  available in SW Simulation , respectively.  For anisotropic materials 
you usually need to utilize the custom material definition process (page 94), and 
the material direction definitions given below.   

Only the conductivities are theoretically needed for a steady state study, but SW 
Simulation always requests the mass density.  Any transient (time dependent) 
thermal analysis involves the product of the mass density and specific heat, as 
seen in the above equation. 

 
Table 13-2 Isotropic thermal properties 

Symbol Label Item Application 
ρ DENS Mass density Transient 
c C Specific heat, at 

constant pressure 
Transient 

k KX Thermal conductivity  Steady state, transient 

 



Concepts of Thermal Analysis 217 

 

Table 13-3 Anisotropic thermal properties in principal material directions 

Symbol Label Item 
ρ DENS Mass density 
c C Specific heat, at constant pressure 
kx KX Thermal conductivity in material X direction 
ky KY Thermal conductivity in material Y direction 
kz KZ Thermal conductivity in material Z direction 

13.3 Finite Element Thermal Analysis 
The finite element method creates a set of algebraic equations by using an 
equivalent governing integral form that is integrated over a mesh that 
approximates the volume and surface of the body of interest.  The mesh consists 
of elements connected to nodes.  In a thermal analysis, there will be one 
simultaneous equation for each node.  The unknown at each node is the 
temperature.  Today, a typical thermal mesh involves 20,000 to 100,000 nodes 
and thus temperature equations.  The restraints are specified temperatures (or a 
convection condition since it includes a specified fluid temperature).  The 
reactions are is the resultant heat flow that is necessary to maintain a specified 
temperature. All other conditions add load or source terms.  The default surface 
condition is an insulated boundary, which results in a zero source (load) term.  
The assembled matrix equations for thermal equilibrium have exactly the same 
partitioned form as the structural systems of section 2.5: 

൤ 
࢛࢛ࡷ ࢍ࢛ࡷ
࢛ࢍࡷ ࢍࢍࡷ

 ൨ ൜ 
࢛ࢀ
ൠ ࢍࢀ ൌ   ൜ 

ࢍࡲ
࢛ࡲ
 ൠ 

where now Tg represents the given (restrained) nodal temperatures, Fg represents 
the known resultant nodal heat power (heat flow) at the node.  This system of 
equations is solved for unknowns ࢛ࢀ just as described in section 2.5.  The 
thermal reactions, ࢛ࡲ, at the given temperature nodes represent the total heat 
flow, in or out, necessary to maintain the given temperatures, Tg.  From the 
above structural-thermal analogy, the matrix equations of a linear (temperature 
interpolation) conducting element (from sections 2.3 and 2.4) is 

݇  ቂ    1 െ1
 െ1    1 ቃ ൜ 

ଵܶ

ଶܶ
 ൠ ൌ   ൜ ܨଵܨଶ

 ൠ 

where k ؠ kx A / L may be referred to as the thermal stiffness of the rod of 
length, L, area , A, and thermal conductivity kx.  In this case, T corresponds to a 
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nodal temperature, and F corresponds to the resultant nodal heat power from the 
various heat sources.  The thermal load (source) items for steady state analysis 
are given in Table 13-4.  Both convection and radiation require inputs of the 
estimated surface conditions.   

Table 13-5 gives typical convection coefficients values.  Note that there is a 
wide range in such data.  Therefore, you will often find it necessary to run more 
than one study to determine the range of answers that can be developed in your 
thermal study.   

Table 13-4 Loads for steady state thermal analysis 
Load Type Geometry Required Input 
Convection Faces Film coefficient and bulk temperature 
Heat Flux Faces Heat flux (heat power/unit area) value  

Heat 
Power 

Pts, edges, 
faces, parts 

Total heat power value (rate of heat generation 
per unit volume times the part volume) 

Insulated 
(Adiabatic) 

Faces None. This is the default condition for any face 
not subject to one of the three above conditions 

Radiation Faces Surrounding temperature, emissivity values, 
and view factor for surface to ambient radiation 

 

Table 13-5 Typical heat convection coefficient values, h, [W/m2 K] 
Fluid Medium h 

Air (natural convection) 5-25 
Air /  superheated steam (forced convection) 10-500 
Oil (forced convection) 60-1800 
Steam (condensing) 5000-120,000 
Water (boiling) 2500-60,000 
Water (forced convection) 300-6000 

 
Table 13-6 Restraints in steady state thermal analysis 

Restraint  Geometric Entities Required Input 
Temperature Vertexes, edges, faces and parts Temperature value  
Contact 
resistance 

Two contacting faces. 
See discussion. 

Total or unit thermal 
resistance.  
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Having supplied all the restraints, loads, and properties you can run a thermal 
analysis and continue on to post-processing and documenting the results.   

Table 13-6 gives the thermal restraints items for steady state analysis. Most 
programs offer only a temperature restraint.  SW Simulation also offers the 
ability to define a non-ideal material interface, as in Figure 13-1.   That is often 
needed in practice and is referred to as a contact resistance.  It basically defines 
a temperature jump across an interface for a given heat flux through the 
interface.  The necessary resistance input, R, depends on various factors.  Table 
13-7 gives typical R values, while Table 13-8 cites values of its reciprocal, the 
conductance. 

    
Figure 13-1 Ideal and thermal contact resistance interfaces 

Table 13-7 Typical contact resistance values, R x e4, [m2 K/W] 
Contact Pressure Moderate 100 kN/m2 1e4 kN/m2 

Aluminum/aluminum/air   0.5 1.5-5.0 0.2-0.4 
Copper/copper/air   0.1 1-10 0.1-0.5 
Magnesium/magnesium/air   0.5 1.5-3.5 0.2-0.4 
Stainless steel/stainless steel/ air   3 6-25 0.7-4.0 
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Table 13-8 Typical contact conductance values, C, [W/m2 K] 
Contacting Faces (pressure unknown) Conductance 

Aluminum / aluminum / air 2200 - 12000 
Ceramic / ceramic / air 500 - 3000 
Copper / copper / air 10,000 - 25,000 
Iron / aluminum / air 45,000 
Stainless steel / stainless steel / air 2000 - 3700 
Stainless steel / stainless steel / vacuum 200 - 1100 

The temperature often depends only on geometry.  The heat flux, and the 
conthermal reaction, always depends on the material thermal conductivity.  
Therefore, it is always necessary to examine both the temperatures and heat flux 
to assure a correct solution.  The heat flux is determined by the gradient 
(derivative) of the approximated temperatures.  Therefore, it is less accurate than 
the temperatures.  The user must make the mesh finer in regions where the heat 
flux vector is expected to rapidly change its value or direction.  The heat flux 
should be plotted both as magnitude contours, and as vectors.  The items 
available for output after a thermal analysis run are given in Table 13-9. 

Table 13-9 Thermal analysis output options 

Symbol Label  Item 

T  TEMP Temperature 
∂T/∂x  GRADX Temperature gradient in the selected reference 

X-direction  
∂T/∂y  GRADY Temperature gradient in the selected reference 

Y-direction 
∂T/∂z  GRADZ Temperature gradient in the selected reference 

Z-direction 
|∇ T|  GRADN Resultant temperature gradient magnitude 
qx  HFLUXX Heat flux in the X-direction of the selected 

reference geometry 
qy  HFLUXY Heat flux in the X-direction of the selected 

reference geometry 
qz  HFLUXZ Heat flux in the X-direction of the selected 

reference geometry 
q  HFLUXN Resultant heat flux magnitude 

The temperatures should be plotted as discrete color bands or as contour lines.  
The temperature contours should be perpendicular to insulated boundaries.  Near 
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surfaces with specified temperatures, the contours should be nearly parallel to 
the surfaces.  These “eyeball” checks are illustrated in Figure 13-2.  

 
Figure 13-2 Guidelines for checking temperatures in isotropic materials 

The heat flux vectors should be parallel to insulated surfaces.  They should be 
nearly perpendicular to surfaces with a specified constant temperature.  Those 
flux checks are illustrated in Figure 13-3. These remarks on insulated boundaries 
do not apply if the material is anisotropic with the principal material directions 
inclined relative to the insulated surface (as will be seen later). 

 
Figure 13-3 Graphical checks for heat flux in isotropic materials 

The exact temperature gradient is discontinuous at an interface between different 
materials because their thermal conductivities will be different.  Pretty 
continuous color contours (the default) tend to prevent these important 
engineering checks.  The temperature and temperature gradient vector can 
depend only on the geometry in some problems.  Written results should not be 
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given with more significant figures than the material input data.  For heat 
transfer problems that is typically three or four significant figures. 

In SW Simulation it is possible to list, sum, average, and graph results along 
selected edges, lines, curves or surfaces.  Thus, you should plan ahead and add 
"split lines" to the mesh where you expect to find such graphs informative. The 
thermal reaction heat flows is available in SW Simulation while viewing the 
heat flux result plots.  A thermal reaction is obtained via Results Define 
Thermal Plot Heat flux resultant  List selected where the sum entry gives 
the net heat flow. 

SW Simulation also offers p-adaptive elements (p is for polynomial).  Keeping 
the mesh unchanged, it can automatically run a series of cases where it uses 
complete second, third, fourth, and finally fifth order polynomial interpolations.  
It allows the user to specify the allowable amount of error.  That is, it can solve 
a given problem quite accurately.  However, you still must define the geometry, 
materials, load and restraint locations, and load and restraint values as well as 
interpret the results properly.  You still have the age old problem of garbage-in 
garbage-out, so avoid computer aided stupidity. 

13.4 Classical 1D Thermal Solutions 
When you start working with new software it is wise to run a problem for which 
the results are known.  That lets you be sure you understand the proper 
utilization of the software.  Later, you will execute complex problems and seek 
simplified solutions in an attempt to validate your study.  There are a few well 
know thermal problems that have simple solutions that give you some insight 
into heat transfer solutions and are easily verified with a SW Simulation 
analysis.  The first of these is a planar wall with a temperature difference on 
each side.   

This is often approximated as a semi-infinite wall, having a unit area A=1 and 
thickness of L, which reduces the mathematical problem to a one-dimensional 
study.  The solution [5] shows that the temperature through the wall is linear in 
space: ܶሺݔሻ ൌ   ௜ܶ௡ሺ1 െ ݔ ⁄ሻܮ ൅ ௢ܶ௨௧ ݔ ⁄ܮ .  Therefore, the heat flux, per unit 
area, is constant: ݍ ൌ െ݇ܣ  ݀ܶ ⁄ݔ݀ ൌ ݇ሺ ௜ܶ௡ െ ௢ܶ௨௧ሻ ⁄ܮ .  Note that the 
temperature distribution depends only on the shape, but the heat flux always 
depends on the material.  Any finite element model will give the exact result [2].  



Concepts of Thermal Analysis 223 

 

The heat transfer through a wall will be illustrated by a SW Simulation model.  
It could be solved with a single layer of elements through the wall.  Here it is 
assumed that the analytic solution is not known, so a large number of unknowns 
are used to clearly illustrate the response.  The alloy steel (k = 6.69e-4 BTU/in-s-
F) wall is five inches thick. A unit cross-sectional area is used. The inner (left) 
side is kept at 100 F while the outer side is at 0 F.  Those two restraints must be 
explicitly applied.  The other four faces of the body are planes of symmetry and 
are automatically treated as insulated.  The mesh is shown along with the 
resulting linear temperature drop distribution.  The linear temperature change 
with position is clearly seen in Figure 13-4.   

 
Figure 13-4 Linear temperatures of a homogeneous wall  

Note that at a position 40 % through the wall the temperature difference has 
dropped 40 % to 60 F.  This result will be compared to a cylindrical wall later.  
The heat flux should be constant.  Constant values do not contour well so the 
contour bounds must be set to give a reasonable plot. The flux values at the inlet 
and outlet faces are selected and listed in tables shown in Figure 13-5.  It shows 
that each square inch of the outer wall requires about 0.0134 BTU/s of power to 
maintain the outer temperature.  For a planar wall made up of constant thickness 
layers of different materials the heat flux must still remain constant, but the 
temperature difference will occur as linear changes from one interface to the 
next.  The linear distribution of temperature is more easily seen with a graph 
along one edge of the mesh.   
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Figure 13-5 Constant heat flux gives equal and opposite heat flows 

 

Another well known heat transfer problem with a simple analytic solution is that 
of radial conduction through an infinite pipe, or curved wall.  In that case, the 
temperature difference varies in a logarithmic manner through the wall 
thickness: ܶሺݎሻ ൌ   ௜ܶ௡ ൅ ሺ ௢ܶ௨௧ െ ௜ܶ௡ሻ lnሺݎ ⁄௜௡ݎ ሻ /ln ሺݎ௢௨௧ ⁄௜௡ݎ ሻ.  That means that 
the heat flux per unit area must decrease through the wall, since it passes 
through more material:   ݍሺݎሻ ൌ ݇ሺ ௜ܶ௡ െ ௢ܶ௨௧ሻ ሺݎ ln ሺݎ௢௨௧ ⁄⁄௜௡ሻሻݎ .  The example 
here [4], will be for an alloy steel (k = 6.69e-4 BTU/in-s-F) pipe with an inner 
radius of 4 inches and with a thickness of 5 inches.  Thus, it is very similar to the 
previous example having inner and outer temperatures of 100 F and 0 F, 
respectively.  In this case, each of those restraints is applied to cylindrical faces.  
The other four faces of the solid radial wedge are insulated and do not require 
specific action.  A fine mesh, the resulting temperature contours, and the radial 
variation of the temperature are given in Figure 13-6.  The contour plot there 
might appear to again be linear, but the graph of the temperature along a radial 
edge is actually logarithmic.  Compared to Figure 13-4, you see that at a 
distance of 40 % through the wall the temperature has dropped more than 40 % 
to about 50 F.   
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Figure 13-6 Logarithmic radial temperature through a cylindrical wall  

The non-constant nature of the corresponding heat flux is seen in the contour 
plot and in the radial edge heat flux graph of Figure 13-7.  The exact inner and 
outer heat flux values are 0.0206 and 0.00917 BTU/s-in2, respectively.  Those 
heat flux values agree very well with the graph end points.  The total radial heat 
flow, q A, through the cylinder is constant since the conducting area increases as 
the heat flow per unit area, q, decreases. 

 

   
Figure 13-7 Radial heat flux in a cylindrical wall, and the heat flow 
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The last radial heat transfer example could have also been solved by using the 
SW Simulation mid-surface shell element, which has one temperature unknown 
per mesh node.  When the 5 degree solid segment of the cylinder (top) is 
meshed as a mid-surface shell (in the circumferential direction) the mesh is 
placed in the middle of a plane of constant thickness.  The sketch is converted to 
a surface via Insert  Surface  Planar and after starting a thermal study its 
unit thickness was set in Part  Edit Definition  Thin.   The same allow 
steel material as before is used.  Here the mesh of a typical radial wedge is 
generated in a constant axial (z) plane.  Clearly, it has only a tiny fraction of the 
many equations as the solid mesh above.  The two temperature restraints are 
applied to the two circular arc edges.  The two straight edges and the shell 
face(s) are insulated.  The temperature results agree very closely with the much 
more expensive solid computations.  That is easily seen by examining the 
temperature results given in Figure 13-8.  They match the analytic radial 
solution almost exactly. 

   

   
Figure 13-8 Pipe segment temperatures from mid-surface shell mesh  

 

Likewise, the heat flux contours and radial graph values in Figure 13-9 are also 
in close agreement with the solid model (and the analytic solution).  Most 
conduction problems also involve free convection.  That usually gives a steeper 
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change in temperature over a region.  Next a segment of a circular rod (Figure 
13-10) is examined where the length is only two times the diameter.   

 

   

 
Figure 13-9 Mid-surface shell heat flux result for the pipe 

   
Figure 13-10 Circular rod with an end temperature and convection 

That is near the lower limit where you might want to expect a one-dimensional 
approximation to be accurate.  Convection occurs on the outer surface while one 
end is kept at 100 F.  The other three symmetry surfaces in the model are 
insulated.  Any wedge angle could have been used, but a value of 30 degrees 
was picked to give good element aspect ratios. 

Myers [8] gives the one-dimensional solution for a rod conducting heat along its 
interior and convection that heat away at its surface.  The temperature is shown 
to change with axial position, x, as a hyperbolic cosine of mx, where m2 = h P L 
/ k A L, is a ratio of convection strength to conduction strength.  It involves the 
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surface convection coefficient, h, the perimeter, P, of the conducting area, A, 
over the length L, and the material thermal conductivity, k.  Typical temperature 
distributions, for a low value of m are seen in Figure 13-11.  The surrounding 
free convection air is assumed to be at 0 F.  Comparing the centerline and 
surface graphs of the temperature there is very little difference and they both 
follow the one-dimensional approximation given by Myers.  Notice that the far 
end plane temperature does not match that of the surrounding air.   

 
Figure 13-11 Center (left) and surface temperature, for a small m value 

A similar comparison of the heat flux magnitude is given in Figure 13-12.  That 
figure shows a much larger difference between the centerline and surface heat 
flux.  But the average of the two graphs is still quite close to the analytic 
approximation given by Myers. 

 

   
Figure 13-12 Surface and center heat flux magnitude results, for a small m 
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It is not uncommon for the user supplied convection coefficient to be in error 
due to measurement errors or errors occurring in a unit’s conversion.  As an 
example, the above study was re-run with the convection coefficient increased 
by a factor of 10.  The convection heat transfer mode was increased relative to 
the conduction mode (m was approximately tripled).  The new temperatures, in 
Figure 13-13, are significantly different from those of Figure 13-11.   

   
Figure 13-13 Center temperature for convection, h, increased by ten  

The surface and centerline temperature graphs are still about the same and still 
follow the hyperbolic cosine change given by Myers.  However, the 
temperatures in the distal half of the bar have dropped to rapidly approach, or 
match the temperature of the surrounding air. 

The convection coefficient has lower and upper bounds, of 0 and ∞.  The two 
bounding values have different physical effects in a study.  A low value of h 
causes the surface to approach an insulated state, while a high value causes the 
surface to approach a restraint of a specified temperature.  The latter state is 
what is seen in Figure 13-13.  The distal end of the part is responding as if it had 
a restraint temperature of 0 F applied to it.  These two limits on h are also 
reflected in terms of the temperature contour lines.  The lower limit causes the 
contour lines to approach being perpendicular to the surface as they do for 
insulated boundaries.  Likewise, the upper limit causes the temperature contours 
to approach being parallel to the surface as they would if it was subjected to a 
constant temperature restraint.  These examples illustrate the value of using 
analytic approximations to estimate and validate the results from a finite element 
study.  The first example also shows that if an analytic solution is not available 
for validating a solid study sometimes an independent two-dimensional finite 
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element study can be useful.  You always should estimate the expected results 
before you start a study and to validate the study results when finished. 

13.5 Heat Transfer with an Orthotropic Material 
It is becoming more common to encounter materials which have properties that 
are directionally dependent (anisotropic).  A common case is that of orthotropic 
materials that have their properties completely defined in terms of three 
perpendicular directions.  Those three principal material directions are usually 
defined by a user defined coordinate system.  The input reference system 
provides the data necessary to compute the direction cosines between the 
material directions and the global x-y-z-axes.  That defines a coordinate 
transformation matrix, say T, that converts the principal properties, say K123, to 
the corresponding global properties with the product Kxyz = T T K123 T.  For the 
common isotropic case this reduces to Kxyz = k I, where I is the identity matrix. 

13.6 General Anisotropic Material Directions 
The previous section assumed that the principal material directions of an 
orthotropic material happened to align with the axes used to construct the part.  
This section is intended to show how to utilize a more general description of 
principal material directions.  In many commercial FEA systems every element 
can have its own local coordinate system to define its anisotropic material 
directions.  That places a heavy burden on the user to create such data.  SW 
Simulation uses the more common approach of allowing the user to input a 
material direction associated with a single part.   

To illustrate the process, for either thermal or stress analysis, a simple square 
part is taken to have its principal material direction inclined at an angle of 65 
degrees with respect to the part’s x-axis.  

1. First the square is sketched and created as a planar part with Insert  
Surface Planar Surface. Then a split line is constructed for use in 
constructing the material coordinate system, with Insert Curve Split 
Line.  

2. Next, create the material directions via Insert Reference Geometry  
Coordinate System.  Select a point on the split line as the Vertex and 
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the actual split line as the direction on the material’s x-axis (first principal 
material direction).  For a three-dimensional material direction you would 
have to continue and locate the y- and/or z-axis of the material. 

 

 

The next major step is to associate the anisotropic material properties with the 
coordinate system that was just constructed.  Clearly, such a material has to be 
established as a custom material.  That process was described earlier (page 94).  
It changes in details here in the Material panel where you enter the actual 
material property values.  The new steps are: 

1. Change the default material type (Linear Elastic Isotropic) to Linear 
Elastic Orthotropic. 

 

2. You have to define the material Reference geometry.  It usually defaults 
to one of the standard planes, like the Front Plane in the previous example 
(and the image above).  In the expanded part tree, click on Coordinate 
System 1 to change the default setting. 
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Then you enter all the anisotropic data for this material.  In the thermal case they 
are currently restricted to the orthotropic thermal conductivities; just type in 
those values.  Here, the material y-conductivity is ten times its x-conductivity 
(ky = 10 kx).  For this two-dimensional example there is no conduction normal 
to the part. 

These properties define the conductivity matrix only in the local material 
directions.  The element conduction (thermal stiffness) matrix is defined in the 
global coordinate system.  Therefore, the local conductivity matrix must be 
transformed (rotated) 65 degrees to the global axes [2].  That transformation is 

݇ሺߠሻீ௟௢௕௔௟ ൌ ܶሺߠሻ்݇௅௢௖௔௟ܶሺߠሻ 

where the above orthotropic conductivity matrix and 2D coordinate 
transformations are:  

݇௅௢௖௔௟ ൌ ൤ ݇ଵଵ ݇ଵଶ
݇ଶଵ ݇ଶଶ

 ൨ ൌ ቂ 0.007 0
0 0.7 ቃ ܷܶܤ ݅݊ · ܿ݁ݏ · ⁄ܨ  

ܶሺߠሻ ൌ   ቂ   ߠ ݏ݋ܥ ߠ ݊݅ܵ
െܵ݅݊ ߠ ቃ ߠ ݏ݋ܥ ൌ ቂ   0.423 0.906

െ0.906 0.423 ቃ 

Carrying out the matrix multiplications, the global conductivity matrix (for later 
use) becomes 

݇ீ௟௢௕௔௟ ൌ ൤ 
݇௫௫ ݇௫௬
݇௬௫ ݇௬௬

 ൨ ൌ ቂ    0.576 െ0.266
െ0.266    0.131 ቃ ܷܶܤ ݅݊ · ܿ݁ݏ · ⁄ܨ  

Here, the square part simply has constant temperatures imposed on its vertical 
edges (0 F on the left 100 F on the right). The part is insulated on the horizontal 
edges.  For an isotropic material, the temperature change would be linear with x.  
That is, the temperature contours of an isotropic material would be vertical and 
equally spaced.  The thermal restraints are applied as before. The computed 
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spatial distribution of the temperatures, in Figure 13-14, drastically differs from 
that expected from an isotropic material.   

 
Figure 13-14 Anisotropic (left) and isotropic material temperatures 

Of particular note is the fact that those contours do not intersect the insulated 
boundary at right angles, as an isotropic material always does.  The reason for 
that is as follows.  Recall that the heat flux vector is the negative product of the 
global conductivity matrix, kGlobal, and the temperature gradient.  For this two-
dimensional problem the two heat flux components are: 

௫ݍ ൌ െ݇௫௫
డ்
డ௫
െ ݇௫௬

డ்
డ௬
,    

௬ݍ ൌ െ݇௬௫
డ்
డ௫
െ ݇௬௬

డ்
డ௬

. 

while the scalar normal heat flux is 

௡ݍ ൌ Ԧݍ · ሬ݊Ԧ ൌ ௫݊௫ݍ ൅  ௬݊௬ݍ

where ሬ݊Ԧ is the unit normal to the surface.  On an insulated surface the normal 
heat flux is zero,  ݍ௡ ൌ 0.  For this example, and the previous one, you have 
݊௫ ൌ 0, ݊௬ ൌ േ1 on the top surface.  There, the vanishing heat flux introduces a 
constraint that 
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,ݔ௬൫ݍ ௧௢௣൯ݕ ൌ െ݇௬௫
డ்
డ௫
൫ݔ, ௧௢௣൯ݕ െ ݇௬௬

డ்
డ௬
൫ݔ, ௧௢௣൯ݕ ൌ 0, 

so that there is a constraint on the x- and y-components of the temperature 
gradient there.  Namely, 

డ்
డ௬
൫ݔ, ௧௢௣൯ݕ ൌ

௞೤ೣ
௞೤೤

డ்
డ௫
൫ݔ,   ௧௢௣൯ݕ

Therefore, the temperature contour is not generally perpendicular to the 
boundary for an anisotropic thermal conductivity.  It becomes perpendicular 
when ߲ܶ ݕ߲ ൌ 0⁄  which means when ݇௬௫ ൌ 0.  That is always true for an 
isotropic material and for a globally orthotropic material, like the one in the 
previous Carslaw example.  In both those cases, ߲ܶ ⁄ݕ߲ ൌ ߲ܶ ߲݊⁄ ൌ 0 and the 
temperature contours were normal to the top edge.   

For an isotropic material with the above essential boundary conditions, the heat 
flux would be a constant at all points.  The heat flux vectors would have only an 
x-component since the top and bottom edges are insulated.  The anisotropic 
behavior of the heat flux is quite different, as seen in Figure 13-15 where the 
magnitude of heat flux varies widely.  

 
Figure 13-15 Heat flux values for anisotropic material 

The integral of the normal heat flux on a boundary is the thermal reaction 
needed to maintain the applied temperature.  The graphs of the left and right 
edges are in Figure 13-16.  By inspection of the last two graphs, it is clear that 
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the integral of the heat flux (area under the curves) is the same.  Therefore, the 
reaction heat flow in equals the heat flow out.  Such thermal equilibrium must 
be satisfied by all materials, anisotropic or not.  

Also, Figure 13-17 shows the heat flux vectors are seen to be generally inclined 
and indicate corner singularities in contrast with the isotropic heat flux.  Of 
course, the heat flux vectors are still parallel to insulated surfaces since no heat 
flows across insulated boundaries.  

 

    
Figure 13-16 Normal heat flow into (left) and out of the anisotropic part 

 
Figure 13-17 Anisotropic and isotropic(right) material heat flux vectors 

13.7 Analysis of a Block with a Cylindrical Hole 
A vertical square steel plate (Figure 13-18) is 30.48 cm on each side, has a 1.27 
cm radius center hole, and is 10 cm thick.  The steel is measured to have a 
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thermal conductivity of 26 W/m C.  The center hole carries a hot fluid and the 
left and right faces of the square plate have natural convection to air at 21 C and 
a convection coefficient of 409 W/m2 C.  The top and bottom faces of the plate 
are insulated.  The fluid in the center hole enters at about 449 C, exits at 349 C 
and is assumes to vary linear along the hole. You want to estimate the heat input 
necessary to maintain the center hole temperatures. 

                
Figure 13-18 Identifying two planes of analysis symmetry 

The problem geometry and material have one-eighth symmetry, but the 
restraints and thermal load have only one-fourth symmetry.  Thus the best you 
can do from an efficiency point of view is to model one of the 90 degree 
segments.  Note that by “cutting” the part with two symmetry planes, you will 
have to assign proper boundary conditions on those two planes to account for 
the removed material.   

Before beginning the following finite element analysis you should estimate the 
temperature results and/or attempted to bound them.  For a plane wall with a 
known inside temperature on one side and convection on the other the exact 
temperature solution is linear through the wall.  The 1D analytic solution for a 
constant thickness wall estimation gives the temperature of the convection 
surface as 

௦ܶ ൌ
௛ೌ೔ೝ்ೌ೔ೝା்ೢೌ೗೗௞ ௅⁄

௞ ௅⁄ ା௛ೌ೔ೝ
 . 

where L is the thickness of the conduction path.  The temperature along a line of 
symmetry can often be modeled with a 1D model that has the same end 
conditions as the symmetry line.  Here those end conditions are the same and 
mainly their lengths vary.  The average temperature along the inner surface is 
399 C.  The lower length is L0 = 0.1524 m.  Therefore, the estimated outside 
wall temperatures along the bottom edge are 
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଴ܶ ൌ
409ܹ ݉ଶܥ כ ܥ 21 ൅⁄ ܥ 399 כ 26ܹ ⁄ ܥ݉  0.1524 ݉⁄

26ܹ ⁄ ܥ݉  0.1524 ݉⁄ ൅ 409 ܹ ݉ଶܥ⁄ ൌ  ܥ 132

The vertical symmetry line and top insulation line combine for a length of L1 = 
0.2921 m.  Likewise, the top end point at the convection surface is estimated to 
have a lower value of T1 = 89 C.  These two estimates mean we expect the 
temperature on the convection surface to decrease from bottom to top points.  
You can also estimate the heat flow through a 1D wall there (assuming parallel 
heat flux vectors) as q0 = K (Twall – Tair ) / L0, which gives heat flux estimates of 
q0 = 18,900  W/m2, and q1 = 9,865 W/m2 at the same lower and upper points of 
the convection surface.  Averaging those two heat flux and multiplying by the 
convection surface area give a total heat outflow estimate of 2.17e4 W. 

You should anticipate some visual results that should appear in the post-
processing.  The temperature contours should be parallel to each surface with a 
given constant temperature (the central hole), and they should be perpendicular 
to any insulated surface (the top and bottom faces) and any symmetry plane.  
Neither case should occur at a convection boundary, except for the two special 
extreme cases of h = 0 so Ts = T wall and h = ∞ (or h >> k/L) which gives Ts = h 
air.  Those two special conditions can exist, but they usually occur because of 
user data errors.  Finally, the temperature and heat flux contours should be 
smooth.  Wiggles in a contour usually mean that the mesh is too crude there.  If 
wiggles occur in an important region the mesh should be refined there and the 
analysis repeated.  You can also visualize some of the heat flux vector results.  
First, they should be parallel to any insulated surface (or symmetry condition).   

From the previous thermal studies, recall that SW Simulation allows the 
specification of constant temperatures on surfaces. However, it does not 
currently allow user input of linear temperature variations required here.  Thus, 
you could get an approximate result using the average temperature of the whole.  
That would be most economically done with a planar model.  To get the 
required result, you need a way trick the simulation into applying a linear 
temperature essential boundary condition.  That can be done by covering a 
surface with a false layer of highly conductive material.  When the false layer is 
included in the study it will tend to yield a linear temperature distribution 
between the temperatures at its two ends.  Bonding such a layer to the actual part 
might yield the required boundary condition.  To accomplish that, the true block 
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part was extruded as the actual material, and the actual hole was extruded as a 
second false material (for tricking the solver).  They were combined in an 
assembly and meshed together as shown in Figure 13-19. 

 
Figure 13-19 Block with a heated hole and a false material within the hole 

In the SW Simulation Manager panel: 

1. Right click on the Simulation New Study.  Set the Study name, 
thermal Analysis type. 

2. Under the part name Apply Material to All.  A review of the 
Material panel standard materials yields no match.  Thus, a custom 
material input is required.  This procedure has changed with the 2010 SW 
release (as outlined on page 94).  You are now required to pick and existing 
material (hopefully similar), copy it from the standard material tree, paste 
it into the custom material region, edit the custom values.   

3. Here, you type in 25.95 W/m-C for the Thermal conductivity value, 
click Apply and Close.  Then slow double click on the name and change it 
to “Thermal duct”.  In a similar fashion, the false material was assigned a 
false conductivity that was 10,000 times higher than the block thermal 
conductivity. 

Apply the only “essential boundary condition” (the known linear temperature 
distribution).  In the SW Simulation Manager menu: 

1. Thermal Loads  Temperature opens the Temperature panel. 
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2. Set the Temperature to the inlet value of 499 C. Pick the inlet area of the 
false material. 

  

3. Likewise, set the outlet temperature at the other end of the false material 
(above).  This is the trick that you hope will cause the cylindrical surface to 
have the desired linear temperature variation.  

Invoke the right side free convection as the only loading condition.  In the 
Manager menu: 

1. Use Thermal Loads Convection to open the Convection panel.  
Pick the flat convection face as the Selected Entity.  In Convection 
Parameters set the convection coefficient, h = 409 W/(m2 C). 

2. Set the air temperature to 294 K (about 70 F). 

 

The insulated surfaces, which correspond to the top plane and the symmetry 
planes, require no action. That is because in any finite element thermal analysis 
that state (of zero heat flux) is a “natural boundary condition”.  That is, it occurs 
automatically unless you actively prescribe a different condition on a boundary.  
This also means that the front and back of the extruded part (i.e., the “top and 
bottom” of your shell) are automatically insulated. 

The central hole is so small that you should expect to have high temperature 
gradients there and plan ahead to assure smaller elements there:   
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1. Use a right click Mesh Apply control.  In Mesh Control select the 
cylindrical surface as the Selected entity by utilizing the Select Other 
feature to pick that hidden surface. 

   

2. Observe the default element size and reduce its value in the Control 
Parameter to 0.08 inch, click OK. In the Manager menu right click 
Mesh Create.  In the Mesh panel click OK for the mesh generation 
shown earlier in Figure 13-19. 

Start the temperature solution with right click on the Name Run.   Usually 
you get a solution completed message.    Here, the false material might cause a 
numerical conditioning problem.  Sometimes the fast iterative solver might fail.  
If that happens you need to change to the sparse direct solver (under 
Tools Options or Run Properties) which is slower, but more robust. 

Begin the results review with a temperature plot to access if the boundary 
condition trick worked.  In the Manager menu under Thermal: 

1. Double click on Temperature Plot 1.  The default contour plot of 
temperatures would appear as a smoothed (Gouraud) color image.  Usually 
a stepped shaded image gives a better hint of a bad mesh.   

2. To create one right click in the graphics window, Edit Definition  
Thermal Plot Display.  Set Units to Celsius and change Fringe type 
to discrete filled, click OK. 

3. Right click in the graphics window, select Chart Options.  In the Color 
Map panel pick 8 colors of thin Width and 2 Decimal places, click OK.  
Such a typical temperature plot is seen in Figure 13-20 on the left side.   
The right side of the figure shows a List Selected graph along the edge of 
the true hole, from the inlet to the outlet side. 
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Figure 13-20 Temperature level along the true hole edge 

4. Activate an exploded view of the temperatures to further verify that the trick 
has accomplished the desired linear temperature  essential boundary 
condition along the true hole surface (Figure 13-21). 

  
Figure 13-21 Exploded temperatures of the true and false hole material 

You can also obtain graphs of selected results along the boundary of the part. To 
obtain a temperature graph: 

1. Right click in the graphics area of a temperature plot, pick List 
Selected… 

2. Pick the desired edge (lower straight symmetry line) as the Selected 
items.  Click on Update .  

3. To see a graph of the temperature along that edge select Plot.  That graph 
indicates a bad mesh if the graph is not smooth.  Here (Figure 13-22) it 
seems smooth, but it has a very sharp gradient at one end. 
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Figure 13-22 Graph of temperatures along lower symmetry line 

Remember that the 1D approximation would give you a straight line between the 
max and min temperatures, so the actual temperature graph gives you some feel 
for how much to trust such a 1D estimate.   

The temperature distribution on the free convection surface is usually of specific 
interest.  It also can sometimes be compared to known solution chosen to try to 
estimate a correct result, as is done here with a 1D estimate.  Therefore it is 
desirable to supplement the above probe operation with an edge temperature 
summary and a graph.  That is accomplished by repeating the last set of 
operations, but selecting the insulated edge as the selected item. 

The top and bottom edges were found to be a 113 and 110 C, respectively. The 
1D hand calculated edge temperature range along the convection surface ranged 
from 132 C down to 88 C and average to 110 C.  That agrees reasonably well 
with the computed range. 

The heat flux is a vector quantity defined by Fourier’s Law: q = -K ∇ T.  Thus, 
it is best displayed as a vector plot for two-dimensional problems.  However, for 
three-dimensional parts the vector views can be confusing. 

1. Right click in the graphics window, Edit Definition Thermal Plot 
Display.  Set Units to W/m2. 

2. Pick Component resultant heat flux.  The magnitudes are given in Figure 
13-23. 
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Figure 13-23 Heat flux (nodal) magnitudes from linear temperature hole 

Like with the temperatures, one can obtain summary results for the heat flow 
through a surface of the block. Here, the heat enters along the hole and exits at 
the convection surface.  To obtain a heat flux summary: 

1. Right click in the graphics area of a heat flux plot, pick List Selected… 
2. Pick the desired cylindrical hole surface the Selected items. 
3. Click on Update.  The summary of the normal heat flux values along that 

path appear in the list at each node on that path.  The Avg, Max, and Min 
heat flux magnitudes appear in the Value column.  

4. Note that the Value column also contains the Total Heat Flow as about 
500 W (positive in, negative out) across the selected surface.  It is the 
integral of the normal heat fluxes over the curved surface area selected.  In 
other words, it is the heat flow in necessary to maintain the given 
temperature. 

The above heat flow into this system (given above) should be equal and opposite 
to the heat flow going out at the convection face (since there were no internal 
heat generation rate data).  If they do not reasonably agree then the mesh should 
be revised.  Such differences occur since they are calculated from the gradients 
of an approximate temperature solution.  The temperatures are always more 
accurate that the heat flux, but you need to have acceptable accuracy for both.  
Repeating the above procedure for that convection surface gives the total heat 
flow (Figure 13-24) as about -505 W.  That is an acceptable difference of only 
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1%.  However, a refined mesh could easily reduce the error in this equilibrium 
check of the thermal reactions.  

    
Figure 13-24 Heat flow balance at the temperature and convection surfaces 

A heat flow in or out of the system must occur at every specified temperature 
node and at any convection nodes.  If your finite element system provides those 
data it is good practice to review them.  SW Simulation does allow you to 
recover those data, as shown above, but if it did not basic engineering would 
give you an estimate of the total heat flow (per unit length assumed here for the 
thickness into the page). Such a validation check is important since it is not 
unusual for a user to enter incorrect values for the K and h values.  The ratio of 
those values is important in convection calculations. 

From the vector plot of heat flux in Figure 13-23 you see that at both the inner 
cylindrical surface and the outer insulated surface that the flow is basically 
normal to the surface.  Integrating the normal heat flux passing through either 
surface gives the total heat flow lost.  Your computer model was only 1/4 of the 
total domain.  Therefore, the true heat loss is about Q total = 2,000 Watts.  

13.8   Crossing Pipes Analysis 
Chapter 7 of [7] outlines a steady state thermal analysis of an assumed pipeline 
junction.  Here alternate points of view and additional post-processing features 
will be presented.  The first difference is to recognize that the geometry, 
material properties and boundary conditions have a plane of symmetry.  
Therefore, a half model can be employed.  That lets the full mesh be efficiently 
applied to non-redundant results.  The half model is seen in Figure 13-25, where 
each pipe hot end surface has been color coded light red, the original interior is 
green, and the material exposed on the symmetry plane is in yellow.  This is one 
of those problems where the temperature solution depends only on the geometry 
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and is independent of the material used.  Of course, the heat flux vectors and the 
thermal reactions will always depend on the thermal conductivity, k.   

                 
Figure 13-25 External and section view of crossing pipes 

The larger junction has inner and outer diameters of 3.5 and 5.0 inches, 
respectively.  The smaller junction has inner and outer diameters of 1.0 and 2.5 
inches, respectively.  The overall length of each section is about 8 inches.  The 
material is brass.   

Most experimental properties are known only to two or three significant figures.  
However, the library table values can be misleading because the properties 
sometimes were measured in a different set of units and multiplied by a 
conversion factor and incorrectly displayed to 7 or 8 significant figures. The SW 
tabulated thermal conductivity of brass is displayed in its experimentally 
measured units as k = 110 W/m-K, but had you used English units it would be 
converted and displayed to 8 significant figures instead of a realistic value of 
about k = 1.47e-3 BTU/in-s-F. 

This pipe junction has four sets of restraints, or “essential boundary conditions”, 
where the temperature is specified at each pipe end ring surface (Figure 13-25 
right).  The first is applied by selecting the hottest end area and assigning it a 
given value of 400 C.  The other three ends are treated in a similar way.  The 
application of the first restraint is illustrated in Figure 13-26.  That figure also 
shows that the default restraint names have been replaced with more meaningful 
ones.  That practice often saves time later when a problem has to be reviewed. 
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Figure 13-26 Inlet temperature at larger pipe, and assigned restraint names 

The boundary condition on the (yellow) symmetry plane must be introduced to 
account for the removed material.  Since it is a plane of symmetry it acts as a 
perfect insulator.  That is, there is no heat flow normal to the plane (qn = 0).  
That is the “natural boundary condition” in a finite element analysis and is 
automatically satisfied.  The original interior surface also has not yet been 
specifically addressed.  Neither has the remaining exterior (gray) surface.  They 
both also default to insulated (or adiabatic) surfaces having no heat flow across 
them.  That is probably not realistic and convection conditions there will be 
considered later in the appendix.  All that remains is to generate a mesh, 
compute the temperatures and post-process them. 

The automatic mesh generator does a good job.  The inner and outer views of 
the default mess are in Figure 13-27.  When the solution is run the default 
temperature plot shows two hot pipe regions and two cooler ones.  However, in 
the author’s opinion, the default continuous color plots hide some useful 
engineering checks of the temperatures.  Therefore, the plot settings were 
changed to show discrete color bands.   
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Figure 13-27 Default crossing-pipes solid quadratic mesh 

The inner and outer surface temperature displays are seen in Figure 13-28.  They 
make it a little easier to check that the contours are perpendicular to the flat 
symmetry plane, and nearly parallel to surfaces having constant temperatures.   

  
Figure 13-28 Half model internal and external conduction temperature 

Another alternative is to change the settings to line contours to obtain the results 
of Figure 13-29.  You can also change the number of color segments to reduce 
or increase the number of contours lines displayed in either mode.  It is 
common, and desirable, to make technical reports more specific by graphing the 
results along selected lines or curves.  That is done by utilizing the List Selected 
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option after the temperature has been plotted.  Then you select an edge, of model 
split line, pick update and then plot.  

       
Figure 13-29 Line contour exterior temperature result for conduction only 

The selected line, at an inner edge adjacent to the hottest inlet, is seen in Figure 
13-30 along with the resulting temperature graph versus the non-dimensional 
position.   Since there is no convection, heat generation, or non-zero heat flux 
conditions the temperature results and contours are the same for all materials.  
However, the heat flux does change magnitude with different materials.    

  
Figure 13-30 Selecting model lines for graphing temperature probe lists 

The heat flux magnitude contours are given in Figure 13-31.  The contour lines 
are less smooth than the previous ones for the temperature because the heat flux 
is always less accurate than the temperatures.  Had these contours shown larger  
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Figure 13-31 Conducting crossing pipes heat flux contours 

wiggles it would be a signal that a finer mesh should be utilized.  Since the heat 
flux is a vector quantity it should also be plotted as a vector.  The resulting color 
vector plot is shown in Figure 13-32 (and in black and white after changes with 
Vector Plot Options).  The heat flux vectors show that heat flows into the 
junction at the 400 C surface and out at the 80 and 100 C ends.  The 250 C end 
has some inflow and some heat outflow.   

Here you can also have SW Simulation compute the thermal reactions necessary 
to maintain the specified temperatures.  To do that, use the List Selected 
option and select each of the four pipe ends in order.  At each one, you pick 
update to list and sum all the individual nodal heat flux values.  Figure 13-33 
shows those four total heat flows.  They show that a total of about 850 W of 
power in (positive) at the two hottest surfaces and out (negative) the two coolest 
pipe ends.  Since a half symmetry model was used here, that figure needs to be 
doubled to determine the required input power of about 1,700 W to maintain the 
specified temperature restraints.  If the current example were changed to steel 
with a conductivity of about k = 51.9 W/m-K then the heat flux magnitudes 
would drop by about a factor of two while the temperature would be unchanged. 
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Figure 13-32 Conducting pipes internal heat flux vector distribution 

     
400 C End                      280 C End                             

            
100 C End                        80 C End 

Figure 13-33 Crossing pipes reaction total heat flow at inlets and outlets 

 
Figure 13-34 Pipe heat flow equilibrium check 
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The neglected convection conditions or known heat flow on the boundaries will 
change the temperature distribution in the original problem.  To illustrate this 
point, assume the outer surface convects to air at a temperature of 30 C (303 K) 
with a convection coefficient of about h = 5 W/m2.  Also let the pipe interiors 
convect to oil at 70 C (343 K) with an assumed convection coefficient of about 
600 W/m2.  You simply have to apply two convection conditions (seen in Figure 
13-35), and re-compute the solution.   

 

 
Figure 13-35 Adding internal (left) and external convection to the pipes 

As expected, the convection effects cause a greater heat loss and thus higher 
temperature gradients (and thus heat flux) near the inlet regions.  That can be 
seen by comparing the original temperatures in Figure 13-28 to the revised ones 
in Figure 13-36. The original graph of temperatures along the interior edge in 
Figure 13-30 shows less temperature drop than the new graph in Figure 13-37.  
There are steeper temperature gradients than seen in the original problem. The 
heat flux vectors, including convection, are given in Figure 13-38. 
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Figure 13-36 Rapid temperature reduction due to convection 

  

 
Figure 13-37 Revised edge temperature graph along inner edge 
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Figure 13-38 Internal heat flux vectors with convection effects 

 

When the integrals of the normal heat flux were summed, using the values from 
the above mesh, the thermal reactions were out of balance by about 40%.  
Therefore, the mesh was refined and the solution re-computed.  The 
temperatures change relatively little, but the heat flux was revealed in more 
detail. The heat flux from the refined mesh is in Figure 13-39.  The reactions are 
the integral of those surface values (sum of the areas of each color region).   

The prior larger elements did not pick up all the fine variations in heat flux 
values, especially the small red regions near the hottest inlet. Therefore, the 
reactions were significantly in error, despite the fact that the temperatures were 
quite good.  If you again compute the reaction heat flow, you need 2*2,138 W = 
4,276 W to maintain the specified boundary conditions.  The summed reaction 
heat flow reactions for the six regions are given in Figure 13-40.  These 
reactions are quite different from those in Figure 13-34. 
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Figure 13-39 Heat flux values from a refined mesh 

 
Figure 13-40 Thermal reactions when including convection losses 

13.9  Thermal Analysis of a Ram Block 
A high pressure flow line has a safety shut-off section that allows an oval shape 
ram to enter from two sides and seal off the flow.  The component shown in 
Figure 13-41 is made of C276 steel.  The center cylindrical internal passage 
carried a fluid at 400 F, while the exterior surface was cooled by natural 
convection by surrounding cool water (at 45 F). The convection coefficient there 
is typical for water, h = 2.89e-4 BTU/s in2 F.   A uniform temperature rise of an  
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Figure 13-41 Solid ram block, its eighth-symmetric corner 

unrestrained body will not cause thermal stresses to develop.  However, here 
you should expect non-uniform temperatures that will cause thermal stresses.  
Here you will get the non-uniform temperature distribution, using a conductivity 
of k = 1.736e-4 BTU/s in F, but delay the thermal stress load case until later.  
(Review the SW Simulation tutorial on thermal stresses.) 

The oval ram access hole will be assumed to be filed with another solid 
surrounded by an insulating material.  Later, you could repeat this study in an 
assembly that has those materials.  That would give a more accurate temperature 
distribution around the oval opening (which is the main location of concern).   

Before beginning a 3D study it is wise to estimate some aspect of the answer in 
advance.  The estimate might be analytic, 1D or 2D finite element, or a 
combination of those.  For plane walls the exact temperature varies linearly 
through the wall and linear finite elements can give an exact solution, with a 
single element through each material.  But this part is closer to a thick wall 
cylinder, which generally has a logarithmic temperature distribution.  Thus, a 
typical 1D finite element solution would need more than one axisymmetric 
element to get a reasonable approximate solution.   

There is an exact solution for a thick cylinder with the inside temperature given 
and convection on the outer surface.  Here you could use that to estimate the 
unknown part temperature at the convecting water surface.   You could get 
bounds by using the minimum and maximum (corner) wall thickness.  Jiji [6] 
gives the analytic solution for the temperature through the cylinder.  Let a and b 
denote the inner and outer radii, respectively.  For a conductivity of k and 
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convection to water at a temperature of T w with a convection coefficient of h w 
the logarithmic temperature distribution is: 

ܶሺݎሻ ൌ   ௔ܶ െ lnሺݎ ܽ⁄ ሻሺ ௔ܶ െ ௪ܶሻ
݇ ܾ݄௪⁄ ൅ ln ሺb a⁄ ሻ  

 

The radial heat flow (W/s) per unit length of the cylinder is constant but the heat 
flux, qr, is not, because the cylindrical area of flux flow, A = 2πrL, is not 
constant at each radial position.   The heat flux (W/s in2) is 

௥ݍ ൌ
݇
ݎ
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To estimate the body temperature at the surrounding water surface simply set r 
= b.  From the given data a = 9.375 in, for this part 12.375 in ≤ b ≤ 14.5 in so 
say b = 13.4 in.  Here k = 1.736e-4 BTU /s in F, T w = 45 F, h = 2.89e-4 BTU/s 
in2 F so that T (b) = T b = 84.6 F is a reasonable average estimate, and rising to 
about 98 F at the thinnest section.  The heat flux is about q r = 0.020 BTU/ s in2 
at the inner radius, and drops to about 0.015 BTU/s in2 at the outer radius. 

The part has one-eighth symmetry, so that relatively simple geometry will be 
employed in the thermal study: 

1. Construct the solid body and give it a name, say Block_thermal. 

2. New Part OK.  Right click on Simulation New study to get the 
Study panel. Enter a Study name, pick thermal as the Analysis type, 
click OK. 

3. Apply/Edit Material: use the custom material properties for C276 steel 
that were defined earlier (thermal conductivity, K = 1.736e-4 BTU/in s F). 

Only the inner circular surface needs a thermal restraint: 

1. Thermal Loads Temperature opens the Temperature panel. 

2. There pick the cylindrical face as the Selected entity, enter 400 F as the 
Temperature, click OK. 
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The two flat outer walls have convection to the surrounding water.  Apply it via: 

1. Thermal Loads Convection to open the Convection panel. 

2. There pick the two faces as the Selected Entities.  Enter 2.89e-4 BTU/s 
in2 F for h, and 45 F for the temperature under the Convection 
Parameters, click OK. 

  

The remaining five surfaces are insulated.  They include the three flat 
rectangular symmetry planes, and by assumptions the ram oval access surface 
and the top most surface.  An insulated surface (zero normal heat flow) is a 
natural boundary condition in finite element formulations. They require no 
action or input. 

Were the oval hole not present you would expect the temperature contours to be 
very close to those in a thick cylinder.  Handbook 1D solutions are available for 
thick wall cylinder.  That relatively uniform temperature distribution will be 
disrupted by the (insulated) oval hole.  Therefore, you should control the mesh: 
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1. Right click on Mesh Apply Control to open the Mesh Control panel.  
There pick all the edge curves on the oval surface to be the Selected 
Entities, just to be safe. 

 

2. Under Control Parameters reduce the element size from the default 
displayed value to 0.5 inch, click OK.  The resulting mesh given in Figure 
13-42 is reasonable fine. 

Pick Study name Run to generate the solution. 

 
Figure 13-42 Initial solid mesh with thermal symbols 

The only plots and probes are under the thermal report.  Start with the default 
temperature plot: 
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1. Results Define Thermal Plot Temperature gives the surface 
temperature plots.  They will include the extreme values since no internal 
volumetric heat generation was active here. 

2. Rotate the temperature and search for the region of closest contour lines 
(highest temperature gradient) since that region would cause the highest 
thermal stresses.  As expected, that occurs on the internal intersection line 
between the oval and the cylindrical holes.   

 

3. Examine that region in more detail in the bottom model view of Figure 
13-43. Pick Settings Fringe Options Line. 

         
Figure 13-43 Temperature at middle intersection edge, and top (right) 
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Even though the highest temperature will be on the surfaces, it may be useful to 
also plot an interior section so as to see how close most of the body would be to 
the 1D axisymmetric analytic solution:  

1. Right click in the graphics area, and pick Section clipping. 

2. Select the Top plane, Show uncut portion and move the slider to see 
various sections. 

As expected, Figure 13-44 shows that the internal contours are almost nested 
cylindrical isosurfaces like (the logarithmic distribution) of a thick walled 
cylinder. 

 
Figure 13-44 Nearly cylindrical temperature contours in an upper section 

Regions of high thermal gradient, and thus high heat flux, may be missed with a 
smoothed temperature contour plot.  Thus, also display them with: 

1. Right click in the graphics area, Edit Definition.  Select resultant heat flux 
(HFLUXN) and the desired units. 

2. Right click for Settings Fringe Options Discrete (Figure 13-45). 
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Figure 13-45 Magnitude of the heat flux peaks at the inner intersection 

The magnitude display of Figure 13-45 confirms the location of concern for 
future thermal stress studies.  Complete that check by looking at the heat flux 
vectors:  

1. Right click in the graphics area, Edit Definition.  Select Advanced  
Vector Plot click OK. 

2. Right click on the Plot name Vector Plot Options and scale the size 
and number of vectors. 

The display in Figure 13-46 (above) yields a final verification of the concern 
about the intersection curve area having high temperature gradients. 

  
Figure 13-46 Wireframe view with heat flux vectors 
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The estimated thin wall surface temperature of about 84.4 F agrees very well 
with the temperature contours seen in Figure 13-43 which are about 90 F at the 
surface.  The approximate average radial heat flux of about 1.8e-2 BTU/s in2 is 
also in good agreement with the analytic estimate.   

If you were not aware of the analytic approximation, or know how to derive it 
you could find a 1D (axisymmetric) finite element solution to estimate the 
expected results.  The summary of such a solution is based on the typical linear 
element described in Akin [2] for approximating radially symmetric heat 
problems.  A single element could give an analytic estimate of the surface 
temperature.  Such an element has a constant heat flux, so several should 
actually be utilized in a 1D validation check. 

13.10 Axisymmetric thermal analysis 
Many FEA systems have a separate module for axisymmetric problems defined 
by completely revolving a planar area about a central axis.  That is, the model is 
described as a planar part and the hoop effects are brought in through the 
mathematical model.  That is the most computationally effective way to study an 
axisymmetric body, with axisymmetric loads and boundary conditions.  SW 
Simulation conducts such a study in a slightly less efficient way by requiring the 
use of a solid that is an arbitrary wedge slice of the body of revolution.  Any 
wedge angle works, in theory, but in practice the angle for the “revolve extrude” 
needs to be picked with the goal of allowing elements with good aspect rations 
to be generated.  The author typically employs a 3 to 5 degree extrude to create 
the solid.  When the solid is built, the two sweep faces become planes of 
symmetry, because the solution will not vary along the circumferential direction. 

Consider a thick walled cylinder with a given internal temperature and 
convection at its external radius.  The analysis of heat transfer in a thick wall 
infinite cylinder is a one-dimensional problem, and the analytic solution is 
known [1].  The cylinder has inner and outer radii of 9.375 and 13.40 inches, 
respectively, and is made of aluminum alloy 1345.  The inner and outer 
temperatures are 500 and 45 degree F, respectively, with and outer convection 
coefficient of 2.89e-4 BTU/F-s-in2.  The goal is to determine the inner 
temperature distribution, and the required heat flow through the wall.  This 
problem provides a chance to verify your knowledge of SW Simulation, and to 
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illustrate some optional features.  To access some optional features you must 
have a part open, or prepare to open the first part with File New Part OK. 

Begin a sketch of the cross-section by inserting the centerline of revolution at 
the origin.  Construct a rectangle with the vertical sides located at the inner and 
outer radial distances.  Have the bottom of the rectangle at the level of the origin 
and assign it an arbitrary thickness on 1 inch.  With the sketch open, select 
Features  Revolve Boss/Base.  In the Revolve panel select the vertical 
axis; specify the angle as 5 degrees behind the front plane, OK.  The wedge 
section is seen in Figure 13-47. 

 

EE 

Figure 13-47 A wedge solid used to represent an area of revolution 

 

Revolving the area behind the front plane simply makes it easier to examine the 
typical planar results true shape in the front view. 

 Next, enter SW Simulation by selecting its manager icon.  In SW Simulation: 

1. Right click on the Simulation New Study to open the Study panel. 

2. Insert a Study name (say Inf_cyl_thermal_wedge), select Thermal from 
the Analysis type list.  

Begin with the essential boundary condition of the inner specified temperature: 

1. In the SW Simulation manager right click on Thermal Loads  
Temperature.  When the Temperature panel appears right click on 
the inner face to insert it as the Selected Entities.   

2. Under Temperature set the units as degrees Fahrenheit and insert a 
value of 500.  Hit Preview to verify your assignment, click OK. 
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Next apply the convection conditions of the outer cylindrical (light green) face: 

1. In the SW Simulation manager right click on Thermal Loads  
Convection.  

2. When the Temperature panel appears rotate the part until you can see 
the light green face.  Right click on the outer face to insert it as the 
Selected Entities.  

3. Under Convection Parameters select English units, set the 
temperature to 45 F, and the surface free convection coefficient (h) to 
2.89e-4 BTU/F-s-in2.  Click Preview, and then OK. 

   

Convection is a boundary condition of the mixed or Robin type.  It can approach 
either a specified temperature surface or an insulated surface.  Usually those 
limits are only reached with user input errors.  Also keep in mind that the 
remaining four surfaces of this part are automatically insulated in an FEA, 
unless you assign another condition. 

Another very useful option is the ability to assign names to any item in the 
construction tree.  This helps you remember your thought process when you 
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need to come back at a later time to review your analysis or design. In the 
manager panel: 

1. Slow double click on Temperature-1 under Thermal Loads. Enter a 
descriptive term, say Hot_Inside_T.   

2. Likewise, change Convection-1 to Convect_H2O. 

       

The material is in the standard materials library: Right click on the Part name 
Apply/Edit Material to open the Material panel.  Select SolidWorks 

Materials Aluminum Alloys 1345 Alloy, OK.    

For this 1D problem only a few elements are needed in the radial direction.  
Thus, the default mesh will be generated: 

1. In the manager tree, right click Mesh Create to open the Mesh 
panel. 

2. In the Mesh panel accept the default element size and transition controls, 
click OK.  Do not check “Run study after meshing”.  You should always 
check the mesh first. 

 

3. Visually inspect the mesh.  Having about 20 elements in the radial direction 
should be fine.  The solution in the circumferential direction and in the axial 
direction should be constant, so the number of elements in those directions 
does not matter (but they do cost).   
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The thermal analysis is ready for solution.  Right click on the Study name 
Run.  After the equation solver reports a successful calculation the post-

processing results can be reviewed and plotted. 

Begin the study review by examining the temperature distribution: 

1. In the SW Simulation manager tree click on Temperature and the 
double click Plot-1.  The default plot is a continuous color contour.   

2. For an alternate format right click in the graphics area and pick Settings.  
In the Thermal Plot panel pick a Discrete for the Fringe Type, click 
OK.  The discrete contours appear.  The convection surface temperature is 
about 364 F.  The temperature varies logarithmically with radial position in 
cylinders. 

  

Graphs can provide more detail in selected regions.  Graph the radial 
temperature first (above): 

1. Right click in the graphics window, pick List Selected. 

2. Select the bottom edge, click Update to see max, min, and average 
values.  In List Selected panel, pick Plot to display the graph. 

The graph agrees very well with the logarithmic analytic solution.  A reasonable 
estimate could have been obtained with a single element hand solution to help 
validate the temperature result. 

The heat flux is a vector quantity obtained from the scalar temperature.  In this 
case, it must be in the radial direction (plot the vector form to see that) so just 
the values are shown here in Figure 13-48. 
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Figure 13-48 Radial heat flux magnitudes 

Integrating the heat flux over the inlet and outlet surfaces yields the respective 
thermal reactions of 0.104 BTU/s into the part (positive) and an equal amount 
leaving.  The constant heat flux in was 0.128 BTU/s-in2 which drops to 0.089 
BTU/s-in2 through the larger outlet area.  Of course, the area of conduction here 
used in finding the thermal reactions was arbitrary.  Even though the area is 
arbitrary, the thermal reactions are equal and opposite, as shown in Figure 
13-49.  The point is that you can extract those data, and they are physically 
important in some cases. 

 

  
Figure 13-49 Heat flux summary checks confirm thermal reactions
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14 Thermal Stress Analysis 

14.1 Introduction 
Non-uniform temperature distributions in a component cause deflections and 
stresses in the part.  Such “thermal loads” are difficult, if not impossible, to 
visualize and usually need to be determined by a thermal analysis.  The output 
temperatures from that thermal analysis can be used as input data for a stress 
analysis.  Design tasks often involve parts made of more than one material.  
Sometimes the materials are bonded together and at other times they are not.  
Assembled parts may look like they consist of bonded parts simply because 
appear to be touching.  However, analysis software may default that adjacent 
parts are not bonded or even in contact unless the user specifically establishes 
such relations.    

14.2  Layered Beam Thermal Stress Model  
To illustrate these concepts consider the common elementary physics 
experiment of uniformly heating two bonded beams made of materials having 
different coefficients of thermal expansion, α.  When subject to a uniform 
temperature change, ∆T, the bonded beam takes on a state of constant curvature, 
of radius r, even though there are no externally applied forces.  The unstressed 
length is L, and the final end deflection as δ (see Figure 14-1).  Such devices are 
commonly used in mechanical switches that are temperature activated. 

 
Figure 14-1 A bimatellic strip 
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To illustrate this type of bimetallic strip, make a relatively long beam of 
rectangular cross-section from steel, and one with identical geometry of copper.  
You will save the two parts and then bring them together in an assembly.  Let 
the length be L = 1000 mm, width w = 80 mm, and depth d = 10 mm for each 
material.  When assembled, the two members will have a total thickness of t = 
2d and two planes of symmetry of the geometry, material properties, and the 
uniform temperature change.  Thus, you will use a one-quarter symmetry model.  
One symmetry plane will be at the middle of the length and transverse to it.  The 
second will pass through the long axis of the beam and divide it into two equal 
sizes.  Therefore, each of the material parts will be 500 mm by 40 mm by 10 mm.   

Construct the steel first beam:  Right click Front Edit Sketch Insert 
rectangle. Set the width to 40 mm and the depth to 10 mm.  Use Extruded 
Boss/Base Extrude panel.  Pick Blind and a distance of D1 = 500 mm, 
click OK.  Now that you have built the first beam body, assign it the material 
property of alloy steel.  Then save the part with File Save as filename 
steel_beam.sldprt. 

 Open a new (second) part to construct the copper beam portion.  Repeat the 
processes above except select copper as the material and save it with the 
filename copper_beam.  Use Window Tile Horizontally to see both parts. 

Now open a new assembly: 

1. Use File  New Assembly OK.  In the Open Document panel 
click on the steel beam in its window and drag it to the assembly window.  
As the first part it will be fixed in the view and other parts will move 
relative to it. 

2. Click on the copper beam part and drag it into the assembly window.  

Next you need to carry out the geometric mating of the different materials so 
that the surfaces that may be bonded in the finite element analysis are touching 
in the assembly: 

1. Select the Mate (paper clip) icon. In the Mate panel pick concentric as 
the Standard Mate.  

2. Select the long bottom edge of the copper and the long top edge of the steel 
as the Mate selections. 
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3. In the Mate panel pick concentric as the Standard Mate.  

4. Select the short bottom front edge of the copper and the short top front edge 
of the steel as the Mate selections, click OK.  Finally, File Save as 
file name copper_steel.sldasm. 

        

Before leaving the assembly, note that the copper part was placed on top of the 
steel part.  That should give you a hint on the deflection directions that will be 
computed in the SW Simulation study. 

Before building a full computer model you should try to estimate what to expect 
as an answer.  As the assembly was built, the copper was on top.  Since it has a 
higher coefficient of thermal expansion the top will get longer that the bottom.  
If they are bonded then beam should bend away from the copper.  If bonded 
there will be a common axial extension, which is less than the free thermal 
expansion of the copper, but more than the free expansion of the steel.  An equal 
and opposite set of internal bonding forces are developed at the common 
(equilibrium) extension.  The classic handbook “Roark’s Formulas for Stress 
and Strain” [16, 17] gives the beam theory solution for the deflections and 
stresses for a bimetallic strip (neglecting Poisson’s ratio included here).  The 
maximum deflection for equal thickness material layers reduces to: 
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The given data yields a deflection estimate of ߜ௬ = 0.0281 m. 

Assume that the mated assembly was stress free at a temperature of 20 C and is 
to be heated to a uniform temperature of 300 C.  Still in the assembly process, 
begin a SW Simulation study. 

1. Select the SW Simulation icon to open its manager panel. Because the 
assembly has touching faces the Component Contacts feature defaults 
to Global Contact with fully bonded surfaces.  If that was not desired you 
would manually have to edit the Contact Sets group. (Later, you will try 
unbounded or free surfaces for comparison purposes). 

2. Right click on the Simulation New Study. In the Study panel give a 
Study name, pick the static Analysis type, click OK. 

Having given a study name and a mesh type you would usually assign material 
properties.  However, that assignment was made within SolidWorks while 
constructing the two individual beam parts.  You could edit the imported 
properties at this point if you have decided on a different material. 

Remember that the material properties for each beam were selected within 
SolidWorks.  They have been imported into SW Simulation and may need to be 
reviewed or edited.  In this problem you have bonded materials subjected to the 
same temperature change.  Therefore, the coefficients of thermal expansion 
(actually their difference) are very important and should be double checked.  
Assume that has been done. Identify the thermal loading early in the process: 

1. Right click on the Study name Properties (rather than the 
Temperature panel). 

2. In the Static panel pick Flow/Thermal Effects.  Check the Include 
thermal effects, and pick Input temperature. 

3. Enter the final temperature value and units and the stress free (zero 
strain) temperature value of 20 C, click OK.   

For future reference you should note that the Static panel provides for non-
uniform temperature distributions to be imported from external files saved in a 
prior thermal study. 
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As with any problem, you must prevent the six possible rigid body motions 
(RBM).  That must be done in a way that does not restrict the thermal motion, 
unless the true support system does that.  You also need to invoke the two 
symmetry planes used to reduce the computational costs.  The first (short) 
symmetry plane restrains rigid body motion in the direction of the long axis of 
the beam (i.e. normal to the plane).  Since there are multiple points on that 
restraint plane it will also prevent RBM about the two coordinate axes lying in 
that plane (so three RBM remain to be addressed).   

The second (long) symmetry plane must also prevent displacement normal to it, 
and thus also prevents the third remaining RBM rotation (1 RMB translation 
remains).  Finally, one point must be restrained to eliminate the remaining 
possible translational RBM (in the direction parallel to the corner formed by the 
two symmetry planes).  Any point in the assembly could be picked and all 
computed motions in this last direction will be computed relative to that chosen 
point.  The most logical point to chose is in the corner junction of the first two 
restraint planes, and at the interface of the two materials at the center of the 
beam.  The basic restraint steps are: 

1. Right click on Fixtures Advanced Symmetry. Pick the two flat 
faces at the vertical center.  The assembly looks like a cantilever with 
respect to that plane and forms a half-symmetry model.  Likewise, enforce 
vertical plane symmetry in the axial direction by picking the two back faces. 
They give a quarter symmetry model. 

   

2. However, one rigid body motion remains to be eliminated.  Use Fixed 
Geometry and select the corner vertex as the Selected Entities. 
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(Actually, you only needed to fix the displacement parallel to the 
intersection line of the first two restraint planes because two of the point 
restraints are already done.) 

 

You should expect the temperature change to cause a bonded beam to curve.  
Therefore, bending stresses will develop.  Due to the bonding very large 
interface shear stresses should also be expected.  A crude mesh will probably 
give a reasonably accurate displacement calculation.  However, to get accurate 
bending stress recovery you need at least 5 to 6 layers of elements through the 
thickness of each material.  That requires mesh control on each of the four faces 
sharing the thickness dimension.  Bending fiber stresses are most likely to be 
large on the top and bottom layer of each material.  Thus they need a good 
surface mesh too.  You can either lower the average element size to get that 
and/or manually control the element sizes.  The most rapid changes in the 
stresses will occur at the free end, and possibly at the center plane.  Use 
Mesh Mesh Control to force finer meshes at the two ends. 

   

Remember that there are no external mechanical loads to be applied here, only 
the uniform temperature change.  There are many displacement degrees of 
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freedom in this mess and most are wasted since there will be little change in 
displacements through the width, w.  While you should get good deflection 
results the three elements through each material thickness may not give good 
stress estimates.  (A shell model, in plane stress, probably would have been 
more accurate, but only in the y-z plane, and had much fewer equations to 
solve.)  All that remains is to input the uniform temperature change for both 
bodies. 

Use Thermal Loads Temperature to reach the Temperature Panel.  
There, expand the part tree so you can see the names of both parts.  Pick each 
part name from that tree and verify that they appear in the selected items list.  
Set the type to temperature (versus Initial that could be used in a transient 
model).  Enter the uniform temperature change as 300 C. 

 

 

 

Now start the equation solver with Study name  Run in the manager panel.  
A look at the deformed shape shows the shape that was expected due to the 
higher thermal expansion coefficient of the copper.  The overall displacement 
size (un-magnified) is large compared to the total beam thickness.  That would 
usually mean that you should consider a geometrically non-linear large 
displacement analysis, but it might not be justified for this thermal loading.  If 
the materials had not been bonded you would have just axial (UZ) 
displacements.  Looking at them in detail, as seen in Figure 14-2, you see that 
axial displacement component is always positive, but decreasing from top to 
bottom (from copper to steel). The total displacements (URES), and the 
transverse (UY) components, are given in Figure 14-2.  Both are much larger 
that the previous axial components.  You can create a list of the largest UY 
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components by zooming in on the region and picking nodes with the Probe 
feature. 

 
Figure 14-2 Deformed shape and its vertical component graph 

The temperature difference not only causes a curvature in the long (axial) 
direction of the assembly, but also in the narrow direction.  That is a three-
dimensional structural response that the much more cost effective plane stress 
approximation would have totally missed.  To see that effect (Figure 14-3), 
create a graph of the vertical direction along the interface edge at the free end.  
While its value is small, compared to the about 28 mm of end motion, the 
occurrence of bowing of the interface along the entire length of the beam is 
predicted by three-dimensional elasticity theory. 

 
Figure 14-3 Transverse curving at interface plane, at the free end 
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The stresses in the bimetallic beam should be essentially constant except very 
close to the free end.  Thus, you need only display the two ends in detail.  The 
von Mises stresses at each end are given in Figure 14-4.  The wiggles in the 
contours imply that the mesh is too crude near the center bonding plane (which 
is an important region for this load state.) 

      
Figure 14-4 Fixed and free end von Mises stress magnitudes 

At this point (because of Figure 14-4) you should already expect that this mesh 
is too crude to rely upon for stress results.  To verify that, consider the free end 
region yz-shear stress and the maximum 3D shear stress plot of Figure 14-5, and 
Figure 14-6, respectively.  Clearly, the contour lines have many wiggles and the 
study should be repeated with a finer mesh and/or a plane stress mesh.  If you 
look at the deflection and stress plots in all three coordinate planes (not shown 
here) you see that this 3D model has mainly a 2D response.  Very little is 
changing through the 40 mm half width.  That also suggests using a shell model 
for the first phase of a problem like this one.  After doing that you could more 
wisely control a 3D mesh for a final study. 
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Figure 14-5 Free end yz-stress component values 

 
Figure 14-6 Maximum 3D shear stress at the free end region 

Wiggles in stress contours can also be caused by using the default small 
deflection theory (as done here) to obtain a result that seems to be a large 
displacement result (greater than half the smallest material or part thickness).  
The above results suggest that this study should be rechecked, after the final part 
revisions, with a large displacement analysis option (see below). 

It may be surprising how complex the end stress regions are for this simple 
geometry.  It is common for the end region of one material bonded to another to 
develop a weak stress singularity.  Keep that fact in mind when designing initial 
meshes so that you do not miss important results by having large elements that 
average out the local details to the point that you cannot see them.  
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While you may not trust the current stress results, you should still compare the 
computed displacements (which are always more accurate that the computed 
stress) to the initial engineering estimate of the maximum deflection.  The 
computed maximum magnitude, in Figure 14-2, was about 2.87 mm.  The 
original deflection estimate was δY = 2.81 mm, so the agreement was 
surprisingly good. 

A large deflection analysis requires an iterative loading and displacement 
solution loop.  In each loop a small part of the (thermal) loading is added to 
form a new resultant load.  The corresponding displacements are computed and 
added to the original positions of the elements’ nodes.  The updated element 
positions are employed to re-compute the element stiffness (conduction) 
matrices.  The looping is repeated about 10 to 20 times to obtain the final 
displacements and the last set of element stresses.  That is called a 
“geometrically non-linear analysis” (as contrasted to a “materially non-linear 
analysis” which is much more complicated).  If it does not fail, a large 
deflection analysis runs about 50-60 times longer that the standard analysis 
presented above.  This was done, but the process resulted in only minor changes.  
The large deflection study mainly reinforced the observation was that this 
problem requires a much finer mesh, even though the part is geometrically quite 
simple. 

The bonding makes a great difference in the response of any assembly.  To see 
that change, you could modify this assembly, and omit the bond at the touching 
surfaces.  The resulting stresses should be zero and the displacements will only 
be in the UZ axial direction (try it). 

 
Figure 14-7 Deflection of the layers when the interface is not bonded 

14.3 Ram Block Thermal-Stress Study 
The previous example was simple enough that you could reasonably assume that 
it was subjected to a uniform temperature change (as a steady state result).  The 
other, more common class of thermal stress problem requires the non-uniform 
temperatures to be computed before the stress study and to be imported into the 
stress model.  It is not unusual for a totally different program to be used for that 
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purpose.  Then there is a potential problem in those results being from an 
incompatible mesh. If so, it is necessary to project or interpolate the external 
temperature data onto the stress mesh nodes.  That is a potential source of error, 
so check the transfer carefully if you have to use such a procedure.   

In SW Simulation you can avoid that problem simply by doing the thermal study 
first.  Then you open the following thermal-stress study the software defaults to 
using the output from the as input to the stress study.  That file selection is under 
user control, so you could import thermal results from another source. 

Here, the previously discussed Ram Block thermal study results will be input to 
determine the resulting thermal stress state.  Those stresses will be compared to 
the even earlier Ram Block pressure loading stress results.  To do that re-open 
the Ram Block model and create a thermal stress study.  Copy the part, 
restraints, materials, and mesh into the new study.  Suppress the pressure 
loading.  It could be un-suppressed later to see the combined effects of 
temperatures and pressures.   

The only new action required is to import the mesh temperature files: 

1. Right click on the Thermal stress part name Properties  
Flow/Thermal Effects and check the default temperature results file 
name for the input temperatures (Ram_block).   

 

2. You must also define the reference temperatures for which the part is 
stress free.  Use a room temperature value, say 77 F, OK. 
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Next, you simply run the study and check the results.  The von Mises stresses 
due to the temperatures alone are shown in Figure 14-8.  They are huge, about 
twice the yield stress level of the material, and about twice the level due to the 
pressure loading (Figure 5-17).  Clearly, there is no need to evaluate the 
combination of pressure and temperature loads.  The part must be completely re-
designed.  It would be wise to begin an optimization study to vary the 
parametric dimensions for the wall thicknesses.  For completeness the thermal 
displacements are in Figure 14-9, for comparison to the pressure only 
displacements in Figure 5-15. 

  

 
Figure 14-8 Huge thermally induced von Mises stresses 
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Figure 14-9 Ram block thermally induced displacements
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15  Related Analogies 

15.1 Basic Concepts 
The differential equation used in a finite element study in one discipline often 
appears in a different discipline, but with a different physical meaning for the 
unknown and the coefficients in the equation.   That is particularly true for the 
diffusion equation (heat transfer here) and the biharmonic equation (flat plate 
deflection here). They are the most common second order and fourth order 
differential equations, respectively, in engineering.  Therefore, a finite element 
solution presented for one field of application can often be utilized in another 
field by analogy.  Consider the slightly generalized 2D field equation, in the 
solution domain: 

݇௫
߲ଶ߮
ଶݔ߲ ൅ ݇௬

߲ଶ߮
ଶݕ߲ ൅ ܲ ൌ 0 

Subject to a Dirichlet boundary condition on boundary segment Γ஽of  ߮ ൌ
߮௚௜௩௘௡  or a Neumann boundary condition (known normal flux) on Γே of 

݇௡
߲߮
߲݊ ൌ ௚݂௜௩௘௡ 

or a convection (Robin) boundary condition on boundary segment Γோ of 

݇௡
߲߮
߲݊ ൌ ݄ሺ߮ െ ߮ஶሻ ൌ ݄߮ ൅ ݃ 

where the boundary segments do not overlap.  The meanings of the above 
symbols, in a few disciplines, are listed in Table 15-1.  These analogies allow 
you to use SW Simulation to solve problems in such fields by replacing the SW 
Simulation inputs with corresponding values (and units) for the field of interest.  
You should also edit the graphic outputs to show the desired terminology (as 
done here with the SnagIt software). 
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Table 15-1 Some general field equation terms 
φ k P h φ∞ f 

Temperature Thermal 
Conductivity 

Heat 
Power 

Convection 
Coefficient  

Convection 
Temperature  

Boundary 
Flux 

Voltage Electrical 
Conductivity 

Current 
Source 

0 0 Boundary 
Current 

Hydraulic 
Head 

Soil 
Permeability 

Flow 
Source 

0 0 Boundary 
Flow 

Velocity 
Potential 

1 Flow 
Source 

0 0 Boundary 
Velocity 

15.2 Seepage Under a Dam 
Water in a reservoir will almost always seep under and/or around a dam.  It 
needs to be controlled to have a low velocity so that the region around the dam 
will not be eroded away.  This seepage, or porous media flow, field will be 
illustrated for a dam resting on layered, and thus orthotropic, soils [13].  Here, φ 
is the hydraulic or piezometric head, measured in meters of water. The P term is 
a source or sink of water flow (injection or removal well, m3/day) and is zero in 
this example.  The fluid velocity components through the soil are defined by 
Darcy’s law, which is directly analogous to Fourier’s law (for orthotropic soil in 

material directions): ௫ܸ ൌ െ݇௫
డఝ
డ௫
,     ௬ܸ ൌ െ݇௬

డఝ
డ௬

. 

The dimensions of the soil regions, dam, and toe wall are given in Figure 15-1 in 
meters.  The left side of the dam holds water 30 m deep, while the right side is 1 
m deep.  Split lines locate the impervious dam interface at the soil top.  The far 
boundaries of the soil are also impervious (no normal flow, f = 0, the natural 
boundary condition).  The layer soil permeabilities (or hydraulic conductivities) 
are 20 m/day and 15 m/day in the horizontal and vertical directions, respectively.  
Those two orthotropic properties are specified with respect to the Front Plane 
and input as seen in Figure 15-2.  Usually layered soils are inclined and require 
the use of a local material coordinate system to define the principal material 
directions (as previously illustrated). 
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Figure 15-1 Orthotropic soil beneath a dam 

 
Figure 15-2 Orthotropic soil permeabilities in the Front Plane 
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The constant hydraulic head on either side of the dam are like specified 
temperatures.  Of course, the chosen unit of Celsius here represents m (meters of 
water).  Those two essential restraints are seen in Figure 15-3. 

  
Figure 15-3 Set lake (left) and stream water pressure boundary values 

The very narrow toe wall constructed at the front of the dam causes a sharp 
reentrant corner in the soil (almost a crack).  That means very high gradients 
(velocities) will occur there.  Therefore, it is necessary to invoke mesh control 
there to force small elements at the base of that wall.  A portion of the soil mesh 
is given in Figure 15-4.   

 

Figure 15-4 Refined mesh around the toe wall tip 

Now you can Run the study.  The resulting soil water pressures are given in 
Figure 15-5.  The image was captured and then edited to label the color bar for 
the current units.  The purpose of the toe wall is to lower the uplift pressure 
under the gravity dam.  The graph of the pressure along the base of the dam is in 
Figure 15-6  It would have varied from 30 to 1 m without the toe wall.   Note 



286 Finite Element Analysis Concepts via SolidWorks 

 

 

that it has a very steep gradient at the downstream end of the base of the dam.  
The slope of that graph is related to the speed of the flow. 

 

 
Figure 15-5 Hydraulic head (pressure) in the soil, with edited color bar 

 

 
Figure 15-6 Pressure along the base of the dam 

In this analogy, the heat flux magnitude corresponds to the speed of the water 
through the soil.  The flow speed is shown in Figure 15-7.  As expected, the re-
entrant corners cause a local singularity at the base of the toe wall. There, the 
water moving down the left side of the wall rapidly reverses direction as it 
moves up the right side of the wall.  A second singularity at the downstream 
edge of the dam is also noted.   
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Figure 15-7 Speed of the ground water flow 

That is due to another type of singularity not discussed before.  There you have 
an essential boundary condition to the right of the point but a no flux boundary 
condition to the left of the point (edge of the dam).  A mathematical 
discontinuity occurs there.  Its presence was not accounted for in the original 
mesh.  A refined mesh gives new speed estimates in Figure 15-8. 

 
Figure 15-8 Revised speed for refined mesh at downstred dam point 

To see the velocity vectors, just select the SW Simulation heat flux vector plot, 
copy it, and re-label the color bar to display the units of m/day (with SnagIt, 
etc.).  As desired, the velocities are quite small through the soil.  The largest 
values occur where the water changes directions from down to up around the toe 
wall and at the downstream edge of the dam (see Figure 15-9).  The solution 
segments without the toe wall are seen in Figure 15-10 (using the same contour 
levels as above).  There a high water flow level under the entire base of the dam 
is observed. 
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Figure 15-9 Seepage velocity vectors at the toe wall tip 

 

 

 
Figure 15-10 Hydraulic head, speed and flow vectors without a toe wall 
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15.3 Potential Flow Around a Cylinder 
The flow of an inviscid fluid can be formulated in terms of either a velocity 
potential or a stream function.  The former works in both 2D and 3D 
implementations, so it is selected for this example.  The governing differential 
equation is 

ߩ ቆ
߲ଶ߮
ଶݔ߲ ൅

߲ଶ߮
ଶቇݕ߲ ൅ ܳሺݔ, ሻݕ ൌ  0 

where Q is a source or sink of mass flow per unit area, ρ is the mass density and 
φ is the velocity potential.  Therefore, potential flow can be solved with a heat 
transfer code by giving the inputs and outputs a different interpretation.  
Usually, Q = 0, and the density is constant so the equation reduces to the 
Laplace equation.  The velocity vector components are the gradient components 

of the potential:  ݑ ൌ డఝ
డ௫
ݒ   , ൌ డఝ

డ௬
.  The normal inlet or outlet flow is usually 

specified on the boundary as 

௡ݑ  ൌ ሬሬԦφ׏ · nሬԦ ൌ డఝ
డ௫
݊௫ ൅

డఝ
డ௬
݊௬. 

Consider the Irrotational flow of an ideal fluid around solid cylinder within a 
rectangular channel dimensioned.  The material property of thermal conductivity 
represents the mass density and is simply set to unity as given in that figure.  
The top and bottom edges and the cylinder boundaries default to no normal flow 
(insulated in the thermal sense).  The fluid enters at the left with a constant 
normal velocity of u=5 cm/sec (and ݊௫ ൌ െ1), and exits at the right with the 
same speed in order to conserve mass.  Only those two equal and opposite 
Neumann boundary conditions are required in theory to determine the value of 
the velocity potential to within an arbitrary constant.  In practice, due to machine 
accuracy slightly violating mass conservation, you must pick one point to assign 
an arbitrary value to the potential (to pick the arbitrary constant).  Here, use the 
top wall point centered over the cylinder and set the constant to zero. 

For potential flow, a velocity inward across a boundary is negative.  The sources 
must satisfy conservation of mass.  Since the length of the outlet is the same as 
the inlet only the sign changes at the right end outflow.  Those two flow loads 
are illustrated in Figure 15-11.  The mesh, in Figure 15-12, was controlled to be 
finer where the velocities are expected to change rapidly around the cylinder. 
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Figure 15-11 Inflow and outflow boundary restraint (cm/sec) 

 
Figure 15-12 Graded mesh around the cylinder 

The primary unknown, velocity potential, does not have a physical meaning but 
its value shown in Figure 15-13 confirms the expected anti-symmetric 
distribution.  The velocity magnitudes and vectors are given in Figure 15-14, 
respectively. 

Be alert for analogies that can extend the power and usefulness of your finite 
element software.  Many commercial systems offer specific input and output 
interfaces for the alternate disciplines, but the underlying numerical calculations 
are basically the same.  Minor exceptions are the torsional analogy and the 
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pressurized membrane analogy which both utilize the integral of the solution 
additional as partial output. 

 
Figure 15-13 Anti-symmetric velocity potential around the cylinder 

 
Figure 15-14 Velocity vectors with anti-symmetric boundary flows 
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2.5D solid, 158, 163 
3D mouse, 100, 102 
3D sketch, 169 
absolute temperature, 215 
acceleration vector, 54, 127 
additional parameters, 169 
adiabatic surface, 246 
air, 218, 236 
algebraic system, 13, 37, 40, 43, 175, 

177, 178, 180, 203, 217 
analogy, 282 
analytic stiffness, 37, 175 
angular acceleration, 24, 54, 63, 124, 

125, 135, 137, 139, 142 
angular velocity, 24, 54, 60, 124, 130 
anisotropic material, 1, 55, 221, 230 
anti-symmetry, 50, 65, 85, 107, 108, 

111, 117 
apply control, 71, 130, 240, 258 
apply corner treatment, 169, 181 
apply force/moment, 87, 117, 151 
apply torque, 151 
apply/edit beam, 170, 182 
aspect ratio, 18 
assembly of elements, 44 
assembly of parts, 7, 24, 238, 269 
axial bar, 34, 60 
axial stiffness, 44 
axial stress, 45, 173, 174, 184 
axis of rotation, 63, 124, 126 

axisymmetric thermal analysis, 262 
ball joint, 172 
beam, 85, 86, 90, 91, 106, 110, 118, 

166, 168, 175, 177, 179, 209, 211, 
268, 274 

beam alignment, 170 
beam deflection, 177 
beam moment, 177, 178 
beam shear, 177, 178 
beam slope, 175 
beam theory, 119 
beam-column, 168, 179 
bearing load, 53, 54, 67, 151 
bending stress, 26 
bi-axial stress, 159 
biharmonic equation, 282 
bimetallic strip, 269 
body force, 54, 130 
boiling, 218 
bolt, 53 
bonded beams, 268 
boundary options, 133 
brittle material, 59, 134, 203 
buckling, 21, 24, 122, 203, 205, 206, 

210 
buckling factor of safety, 206, 211 
buckling load factor, 204, 206, 210, 

211 
buckling mode, 204, 211, 212 
buckling restraints, 205 
cantilever beam, 85, 201, 207 
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centrifugal load, 24, 54, 63, 124, 127, 
128, 130, 134, 136, 151 

centripetal acceleration, 60 
chart options, 78, 88 
circular symmetry, 138 
coefficient of thermal expansion, 270 
color map, 134, 240 
combined stress, 184 
comma separated value format, 122 
component, 242 
compound bar, 43 
compression member, 170 
compression stress, 55 
computer aided stupidity, 222 
conductance, 219 
connection list, 5, 44 
connectors, 52, 150 
consequences, 48 
contact pressure, 219 
contact resistance, 218, 219 
contact/gaps, 271 
continuous color variation, 79 
convection, 215, 218, 227, 236, 239, 

251, 257, 264, 265, 282, 283 
coordinate system, 113, 154 
coordinate transformation, 56, 167, 

181, 230, 232 
Coriolis  acceleration, 124 
couple, 109, 116 
create mesh, 87, 172, 183, 189, 199 
CSV, 122, 173 
cubic beam element, 175 
custom material, 94, 231, 238, 256 
cutting plane, 102 
cyclic symmetry, 124, 136, 137, 138 

cylindrical coordinates, 132 
cylindrical section, 103 
D’Alembert’s principle, 127 
damping, 21, 195 
data sets, 5 
deep beam, 49 
default element size, 71 
defeature, 8 
define beam diagram, 187 
deformed shape, 65 
degrees of freedom, 32 
design insight plot, 78, 104 
determinant, 37, 38, 43 
diffusion equation, 282 
direction cosines, 167, 230 
Dirichlet boundary condition, 12, 36, 

282 
discontinuity, 27 
discrete contour, 88, 98, 131, 266 
displacement plot, 172, 173, 184, 190 
displacement report, 77 
displacement vector, 32 
display options, 78 
distorted element, 10 
distortional energy, 100, 133 
distributed load, 39, 175 
document properties, 94 
DOF, 32 
ductile material, 47, 57, 100, 121, 153, 

203 
dynamic analysis, 21 
edit definition, 78, 79, 88, 131, 132, 

156, 240, 242, 260, 261, 266 
effective stress, 47, 57, 65, 79, 121, 

134, 147, 156 
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eigenvalue, 57, 80, 194, 195 
eigenvector, 194, 210 
eighth symmetry, 93, 236 
elastic bar, 35, 38, 43, 44, 47, 167 
elastic modulus, 55 
elastic stability, 205 
elastic support, 52 
element assembly, 6, 41 
element integrals, 3 
element reactions, 38, 43, 44, 176, 177 
element transition rate, 97 
element type, 8, 25, 26, 48, 49, 110 
elliptical hole, 159 
encastre, 207 
end connection, 182 
end moment, 106 
end restraint constant, 205 
engineering judgment, 96, 221, 246 
environment, 48 
equilibrium, 38, 184 
equilibrium equations, 36, 41, 44 
equilibrium matrices, 42, 175 
equilibrium of restrained system, 40 
equivalent strain, 58 
error estimates, 33 
essential boundary condition, 12, 37, 

40, 42, 44, 177, 245 
Euler buckling, 204, 206 
Excel, 122, 123 
exclude from analysis, 152 
external loads, 75, 76, 87, 130, 136, 

154, 171, 189, 210 
factor of safety, 12, 47, 81, 103, 134 
failure criterion, 14, 23, 47, 57, 80, 103, 

128, 133, 134, 156 

failure diagnostic, 17 
false infinite stress, 11, 30, 208 
fatigue, 22, 24 
FEA, 1 
features to mirror, 137 
field equation, 282 
fixed, 24, 29, 50, 51, 150, 182 
fixed geometry, 272 
fixtures, 51, 73, 87, 111, 112, 113, 128, 

129, 150, 199, 272 
flat plate, 144, 150 
flexural stress, 86, 89, 184 
flow/thermal effects, 271 
force, 24, 50, 54, 76, 147, 171, 189, 

214 
forced convection, 215, 218 
foundation stiffness, 53 
Fourier’s Law, 214, 242 
frame, 85, 167, 168, 181, 183, 184, 189 
frame element, 166, 179 
free body diagram, 147 
free convection, 215, 226, 228, 239, 

242, 264 
free vibration, 195 
fringe type, 101 
Galerkin method, 3 
gap, 80 
gather, 5, 43, 44 
general shell, 150 
geometric analysis, 16 
geometric error, 3, 6 
geometric stiffness, 180, 204 
geometrically non-linear, 278 
Gouraud shading, 98 
gravity, 24, 43, 45, 54, 60, 61, 151, 167 
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half-symmetry, 92, 247 
heat flow, 215, 222, 235, 244, 249 
heat flux, 214, 218, 220, 233, 234, 245, 

260 
heat power, 218 
heat transfer, 30 
hexahedral elements, 7 
hinge, 51, 150 
Hooke’s Law, 33, 45 
hoop stress, 93 
hydraulic head, 283, 285 
hydrostatic pressure, 154 
ideal fluid, 31, 289 
ill-conditioning, 166 
immovable, 50, 51, 88, 112, 151, 168, 

172, 199 
impeller, 137 
imported temperatures, 271 
include in analysis, 152 
infinite stress, 112 
infinitesimal rotation, 32 
initial condition, 193 
insert sketch, 68, 70, 111, 126, 198 
insulated surface, 233, 246, 257 
integral formulation, 3 
intensity, 57, 58, 121, 163 
interface, 219 
intermediate column, 206 
interpolation, 4, 27, 40, 177, 222 
iso clipping, 102 
isosurface, 102, 103 
isotropic, 55, 230 
joints, 171, 182 
kinematics, 124 
kinetic energy, 3 

large displacement, 13, 144, 180, 274, 
277 

lateral bracing, 212 
lateral buckling, 211 
least squares, 3 
lift off, 149 
line contour, 98, 247 
line load, 117 
line properties, 169 
linear bar, 38, 43 
linear elastic orthotropic, 231 
linear elastic spring, 35 
linear pressure, 114, 115 
linear triangle, 4 
link, 53 
list beam forces, 173 
list buckling mode factors, 211 
list displacements, 119 
list free body force, 147 
list reaction force, 117 
list results, 77, 82, 119, 222 
list selected, 61, 122, 241, 243, 249, 

266 
load case, 8 
load path, 78, 103 
load region, 48 
loads, 219 
local buckling, 209 
local coordinate system, 99, 109, 113, 

154 
local solution error, 9 
long column, 206 
lumped mass, 194 
mass density, 55 
mass matrix, 195 
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mate, 269 
material coordinate system, 55, 230, 

283 
material factor of safety, 209 
materially non-linear, 278 
matrix equations, 37 
matrix notation, 4 
matrix partitions, 40 
matrix sums, 42 
maximum normal stress, 103 
maximum principal stress, 80, 134, 135 
maximum shear stress, 57, 58, 103, 

119, 161, 163, 276 
mechanical properties, 56 
mechanics of materials, 45 
membrane shell, 25, 150 
membrane stress, 26, 146 
mesh control, 9, 65, 71, 73, 83, 84, 97, 

105, 106, 119, 159, 183, 189, 198, 
199, 240, 257, 258, 273, 285 

mesh generation, 83, 130 
meshing failure, 17, 84 
mid-surface, 151 
mid-surface shell, 150, 160 
mirror plane, 137 
miter, 169, 181 
mode shape, 201, 211 
Mohr’s circle, 58 
moment equilibrium, 82 
MPC, 52 
MRESR, 56 
multipoint constraints, 52 
MWR, 3 
natural boundary condition, 246 
natural convection, 218 

natural frequency, 22, 166, 194 
Neumann boundary condition, 11, 282, 

283, 289 
neutral axis, 86, 89 
Newton’s law, 127, 193 
nodally exact, 175 
non-essential condition, 11 
non-homogeneous material, 1 
nonuniform distribution, 154 
nonuniform pressure, 110, 113 
normal displacement, 128, 136 
normal strain, 58 
normal stress, 119 
number of frequencies, 195 
offset surface, 152 
on cylindrical face, 51, 129, 151 
on flat face, 52, 151 
on spherical face, 151 
optimization, 22, 159 
orthotropic material, 24, 55, 230, 232, 

283 
orthotropic soil, 283 
out of plane displacement, 90 
P1, 57, 58, 100, 135 
P2, 57, 58 
P3, 57, 58 
p-adaptive, 222 
parameters, 258 
parametric modeler, 76 
part tree, 182 
partitioned matrix, 40 
pattern, 137 
perfect insulator, 215 
piecewise constant thickness, 160 
piecewise quadratic, 28 
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pierce point, 167 
pin, 53 
plan ahead, 65, 83 
planar surface, 152, 230 
plane of symmetry, 51 
plane stress, 25, 105, 208, 274 
plate element, 49 
point restraint, 80 
Poisson equation, 31 
Poisson’s ratio, 55, 62, 208 
polynomial coefficients, 154 
position slider, 102 
position vector, 28 
post-processing, 131, 172, 220, 240, 

258 
potential energy, 33 
potential flow, 30, 289 
power spectral density, 23 
pressure, 54, 75, 96 
pressure vessel design, 22 
preview, 154 
principal material directions, 230 
principal stresses, 57, 58 
Principle of Minimum Total Potential 

Energy, 35 
probability distribution, 11 
probe, 24, 133, 173, 184, 186, 191 
psd, 23 
quadratic bar, 39, 47, 63, 197 
quadratic element, 27, 35 
quadratic tetrahedron, 27 
quadratic triangle, 2, 6, 26, 27, 28 
quarter symmetry, 145, 152, 159, 236, 

272 
radial acceleration, 130 

radial displacement, 99, 141 
radial gradient, 30 
radial stress, 93 
radiation, 215 
radius of gyration, 205 
RBM, 67 
reaction, 38, 77, 173, 183 
reaction force, 41, 71 
reaction moment, 56 
reaction recovery, 116 
reactions, 13, 29, 56, 145, 147, 148, 

149, 245, 249 
rectangular matrix, 40 
rectangular plate, 144 
reduced matrix, 43 
reentrant corner, 8, 30 
reference geometry, 113, 126, 154, 231 
reference plane, 52, 74, 230 
reliability, 48 
remote load, 54, 151 
report option, 123 
restraint, 112, 272 
restraint location, 48 
results, 88, 90, 117, 147, 172, 173, 184, 

186, 190, 191, 200 
revolve extrude, 262 
RFRES, 56 
RFY, 173 
RFZ, 189 
rigid body motion, 50, 52, 62, 67, 74, 

95, 112, 153, 166, 195, 272 
rigid body rotation, 128 
rigid body translation, 37 
rigid link, 48, 53 
RMX, 189 
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Robin boundary condition, 282 
rod with convection, 227 
roller/slider, 52, 61, 151, 207 
RZ, 56 
Saint Venant’s Principle, 11 
scatter, 6, 44 
section clipping, 102 
seepage, 283 
select joints, 171, 189 
selected beams, 187 
selected entities, 73, 130, 257, 258, 

263, 264, 272 
self-equilibrating, 92 
settings, 88, 133, 169, 181 
shaft, 39, 181 
shear modulus, 53, 55, 205 
shear strain, 33, 58 
shear stress, 119, 276 
shear stress intensity, 58 
sheet metal, 150 
shell, 25, 51, 150 
shell bottom, 26 
shell definition, 150 
shell element, 109 
shell loads, 152 
shell thickness, 110, 153 
shell top, 26 
SHM, 193 
shock load, 48 
short edge, 16, 84 
significant figures, 11, 29, 245 
simple harmonic motion, 193 
simplex element, 25 
simply supported beam, 106 
singular matrix, 42 

singularity, 30 
slenderness ratio, 206 
sliver face, 84 
slow double click, 182 
small deflection, 144 
S-N curve, 22 
soil, 54 
soil permeabilities, 283 
solid stress analysis, 85 
space frame, 47, 166, 181 
space truss, 166, 173 
specific heat, 215, 216 
specific weight, 44 
spherical section, 103 
split line, 65, 68, 69, 70, 83, 84, 111, 

112, 117, 122, 152, 157, 198, 222 
split part, 65 
spot weld, 53 
spring, 53 
spring element, 36 
spring stiffness matrix, 36 
spring-damper, 52 
spring-mass system, 193 
square tube, 168, 169, 181 
standards, 181 
statically equivalent, 12, 113 
statically indeterminate, 181 
steady state, 216 
steam, 218 
Stefan-Boltzmann constant, 215 
stiffness matrix, 195 
strain energy, 33, 56, 58 
strain energy density, 33 
strains, 21, 23, 33, 56, 203 
stress analysis, 32 
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stress concentration, 8, 48, 93, 159 
stress concentration factor, 159 
stress plot, 88, 186, 191 
stress tensor, 80 
stress vector, 100 
structural instability, 203 
structural mechanics, 35 
structural member, 169, 181 
support displacement, 181 
support stiffness, 53 
surface extrude, 152 
SX, 57 
SY, 57 
symmetric beam theory, 86 
symmetric displacements, 107 
symmetric matrix, 40 
symmetry plane, 51, 272 
tangential displacement, 136 
TEMP, 220, 241, 259, 260, 266 
temperature, 24, 151, 214, 218, 220, 

233, 238, 240, 241, 256, 258, 260, 
263, 264, 265, 266, 271, 283 

temperature gradient, 214, 220 
tetrahedral element, 7, 25 
thermal conductivity, 216, 245 
thermal equilibrium, 235 
thermal expansion, 39, 55, 175 
thermal load, 38, 178, 238, 256, 257, 

263, 265, 268, 274 
thermal moment, 175 
thermal plot, 240, 242, 266 
thermal properties, 216 
thermal reaction, 220, 222 
thermal stiffness, 232 
thermal stress analysis, 268 

thermal study, 54 
thermal-structural analogy, 214 
thick shell, 49, 201 
thick walled cylinder, 93 
tile horizontally, 269 
time history, 195 
torsion, 39, 168, 181 
torsional stiffness, 39 
torsional stress, 184 
total heat flow, 243 
transformation matrix, 181, 230 
transient heat transfer, 215 
transverse shear, 184 
truss, 166, 167, 168, 169, 172, 174 
two force member, 166 
ultimate stress, 55, 204 
undeformed part, 98 
uniform temperature, 271 
unique solution, 37 
units, 127, 130, 153, 154, 199, 240, 242 
unsymmetrical beam, 90 
update, 122, 241, 243, 266 
URES, 56, 132, 133, 172, 184, 190, 

210, 274 
use reference geometry, 111, 151, 153, 

182, 183 
UX, 56 
UY, 56, 274 
UZ, 56, 190, 274, 278 
validation, 90, 92, 99, 100, 115, 117, 

118, 119, 161, 176, 196, 244, 262, 
271 

variable pressure, 154 
variable thickness, 151 
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vector plot options, 79, 99, 132, 135, 
155, 173, 249 

velocity potential, 31 
velocity vector, 31 
vibration analysis, 193 
virtual wall, 52 
voltage, 283 
volumetric heat generation, 216 
von Mises, 47, 57, 58, 89, 103, 128, 

134, 147, 161, 163, 276 
wake up, 69, 70 
water, 218 
water tank, 152 

weight, 44 
weight density, 128 
weldments, 169, 181 
what-if, 77 
wiggles, 237, 276, 277 
Winkler foundation, 52 
wireframe model, 102 
worst case, 192 
worst stress, 184 
yield strength, 153 
yield stress, 55, 57, 65, 71, 79, 122, 

127, 134, 147, 153, 156, 203 
zee-section, 85 

 


