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3 Concepts of Stress Analysis

3.1 Introduction

Here the concepts of stress analysis will be stated in a finite element context. That means that the primary
unknown will be the (generalized) displacements. All other items of interest will mainly depend on the
gradient of the displacements and therefore will be less accurate than the displacements. Stress analysis
covers several common special cases to be mentioned later. Here only two formulations will be considered
initially. They are the solid continuum form and the shell form. Both are offered in SW Simulation. They differ
in that the continuum form utilizes only displacement vectors, while the shell form utilizes displacement
vectors and infinitesimal rotation vectors at the element nodes.

As illustrated in Figure 3-1, the solid elements have three translational degrees of freedom (DOF) as nodal
unknowns, for a total of 12 or 30 DOF. The shell elements have three translational degrees of freedom as well
as three rotational degrees of freedom, for a total of 18 or 36 DOF. The difference in DOF types means that
moments or couples can only be applied directly to shell models. Solid elements require that couples be
indirectly applied by specifying a pair of equivalent pressure distributions, or an equivalent pair of equal and
opposite forces at two nodes on the body.

Shell node Solid node

Figure 3-1 Nodal degrees of freedom for frames and shells; solids and trusses

Stress transfer takes place within, and on, the boundaries of a solid body. The displacement vector, u, at any
point in the continuum body has the units of meters [m], and its components are the primary unknowns. The
components of displacement are usually called u, v, and w in the x, y, and z-directions, respectively. Therefore,
they imply the existence of each other, u <> (u, v, w). All the displacement components vary over space. As in
the heat transfer case (covered later), the gradients of those components are needed but only as an
intermediate quantity. The displacement gradients have the units of [m/m], or are considered dimensionless.
Unlike the heat transfer case where the gradient is used directly, in stress analysis the multiple components of
the displacement gradients are combined into alternate forms called strains. The strains have geometrical
interpretations that are summarized in Figure 3-2 for 1D and 2D geometry.

In 1D, the normal strain is just the ratio of the change in length over the original length, £, = 0u / dx. In 2D and
3D, both normal strains and shear strains exist. The normal strains involve only the part of the gradient terms
parallel to the displacement component. In 2D they are &,=0u / 0x and g, = Ov / dy. As seen in Figure 3-2 (b),
they would cause a change in volume, but not a change in shape of the rectangular differential element. A
shear strain causes a change in shape. The total angle change (from 90 degrees) is used as the engineering
definition of the shear strain. The shear strains involve a combination of the components of the gradient that
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are perpendicular to the displacement component. In 2D, the engineering shear strainisy = (du / dy + v /
0x), as seen in Figure 3-2(c). Strain has one component in 1D, three components in 2D, and six components in
3D. The 2D strains are commonly written as a column vector in finite element analysis, € = (e, ¢, y)T.
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Figure 3-2 Geometry of normal strain (a) 1D, (b) 2D, and (c) 2D shear strain

Stress is a measure of the force per unit area acting on a plane passing through the point of interest in a body.
The above geometrical data (the strains) will be multiplied by material properties to define a new physical
quantity, the stress, which is directly proportional to the strains. This is known as Hooke’s Law: o = E g, (see
Figure 3-3 ) where the square material matrix, E, contains the elastic modulus, and Poisson’s ratio of the
material. The 2D stresses are written as a corresponding column vector, 6 = (o, oy )", Unless stated
otherwise, the applications illustrated here are assume to be in the linear range of a material property.

The 2D and 3D stress components are shown in Figure 3-4. The normal and shear stresses represent the
normal force per unit area and the tangential forces per unit area, respectively. They have the units of
[N/mA2], or [Pa], but are usually given in [MPa]. The generalizations of the engineering strain definitions are
seen in Figure 3-5. The strain energy (or potential energy) stored in the differential material element is half
the scalar product of the stresses and the strains. Error estimates from stress studies are based on primarily
on the strain energy (or strain energy density).
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Figure 3-3 Hooke's Law for linear stress-strain, 0 =E €
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Figure 3-5 Graphical representations of 3D normal strains (a) and shear strains

3.2 Axial bar example

The simplest available stress example is an axial bar, shown in Figure 3-6, restrained at one end and subjected
to an axial load, P, at the other end and the weight is neglected. Let the length and area of the bar be denoted
by L, and A, respectively. lts material has an elastic modulus of E. The axial displacement, u (x), varies linearly
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from zero at the support to a maximum of 6 at the load point. Thatis, u (x) = x &/ L, so the axial strain is g, = du
/0x=06/L, which is a constant. Likewise, the axial stress is everywhere constant, 0 = E € = E 6/ L which in the
case simply reduces to o = P /A. Like many other more complicated problems, the stress here does not
depend on the material properties, but the displacement always does, § = PL/EA. You should always
carefully check both the deflections and stresses when validating a finite element solution.

Since the assumed displacement is linear here, any finite element model would give exact deflection and the
constant stress results. However, if the load had been the distributed bar weight the exact displacement
would be quadratic in x and the stress would be linear in x. Then, a quadratic element mesh would give exact
stresses and displacements everywhere, but a linear element mesh would not.

The elastic bar is often modeled as a linear spring. In introductory mechanics of materials the axial stiffness of
a bar is defined as k = E A /L, where the bar has a length of L, an area A, and is constructed of a material elastic
modulus of E. Then the above bar displacement can be written as § = P/k, like a linear spring.

E oc=P/A 6=PL/EA
Figure 3-6 A linearly elastic bar with an axial load

3.3 Structural mechanics

Modern structural analysis relies extensively on the finite element method. The most popular integral
formulation, based on the variational calculus of Euler, is the Principle of Minimum Total Potential Energy.
Basically, it states that the displacement field that satisfies the essential displacement boundary conditions and
minimizes the total potential energy is the one that corresponds to the state of static equilibrium. This implies
that displacements are our primary unknowns. They will be interpolated in space as will their derivatives, and
the strains. The total potential energy, I1, is the strain energy, U, of the structure minus the mechanical work,
W, done by the external forces. From introductory mechanics, the mechanical work, W, done by a force is the
scalar dot product of the force vector, F, and the displacement vector, u, at its point of application.

The well-known linear elastic spring will be reviewed to illustrate the concept of obtaining equilibrium
equations from an energy formulation. Consider a linear spring, of stiffness k, that has an applied force, F, at
the free (right) end, and is restrained from displacement at the other (left) end. The free end undergoes a
displacement of A. The work done by the single force is

W=A°F = A, F,=uF.
The spring stores potential energy due to its deformation (change in length). Here we call that strain energy.
That stored energy is given by
1

U= Eksz
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Therefore, the total potential energy for the loaded spring is

1 2
M= kA= A F,

The equation of equilibrium is obtained by minimizing this total potential energy with respect to the unknown
displacement, A,.. Thatis,

o _ 0= 2 kA E,
an, 2 F %
This simplifies to the common single scalar equation

kA =F,

which is the well-known equilibrium equation for a linear spring. This example was slightly simplified, since we
started with the condition that the left end of the spring had no displacement (an essential or Dirichlet
boundary condition). Next we will consider a spring where either end can be fixed or free to move. This will
require that you both minimize the total potential energy and impose the given displacement restraint.

E) Work: W=K-I_=>
j_/\/\/\/\/\ltﬂ? Energy: U=kA’/2
&QNNWIM {AF=[01 B2]
E.‘ _F: {F}T=[ F, F ]
L w= {A} {F}

Figure 3-7 The classic and general linear spring element

Now the spring model has two end displacements, 4; and 4,, and two associated axial forces, F; and F,. The
net deformation of the bar is 0= 4, - 4;. Denote the total vector of displacement components as

> _ A
5= @ = {1}
and the associated vector of forces as
5 _ F;
Fe = {g)
Then the mechanical work done on the spring is
W= {A} {F} =AF1+ M Fy
Then the spring's strain energy is
U= ;@) [k {8} = ;K 6%,
where the “spring stiffness matrix” is found to be
1 -1
L] =k [—1 1]'
The total potential energy, I1, becomes
T T
_ 1 T _ Tem _ k(D1 1 -1 {Al}_ {A1} {Fl}
n=1wyrmm- wre=Het L - B R

Note that each term has the units of energy, i.e. force times length. The matrix equations of equilibrium come
from satisfying the displacement restraint and the minimization of the total potential energy with respect to
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each and every displacement component. The minimization requires that the partial derivative of all the
displacements vanish:

om

on .
3(0) {0},0r67‘j— 0;, j=12.

That represents the first stage system of algebraic equations of equilibrium for the elastic system:

K [ 1 —1] {A1} _ {Fl}

-1 11 (4 F)

These two symmetric equations do not yet reflect the presence of any essential boundary condition on the
displacements. Therefore, no unique solution exists for the two displacements due to applied forces (the axial
RBM has not been eliminated). Mathematically, this is clear because the square matrix has a zero determinate
and cannot be inverted. If all of the displacements are known, you can find the applied forces. For example, if
you had a rigid body translation of A;= A, = C where C is an arbitrary constant you clearly get F;= F,= 0. If you
stretch the spring by two equal and opposite displacements; 4,=-C, A, = C and the first row of the matrix
equations gives F;= -2 k C. The second row gives F, = 2 k C, which is equal and opposite to F;, as expected.
Usually, you know some of the displacements and some of the forces. Then you have to manipulate the matrix

equilibrium system to put it in the form of a standard linear algebraic system where a known square matrix
multiplied by a vector of unknowns is equal to a known vector: [A]{x} = {b}.

3.4 Equilibrium of restrained systems

Like the original spring problem, now assume the right force, F,, is known, and the left displacement, A, has a
given (restrained) value, say Agiven. Then, the above matrix equation represents two unique equilibrium
equations for two unknowns, the displacement A, and the reaction force F;. That makes this linear algebraic
system look strange because there are unknowns on both sides of the equals, “=". You could (but usually do
not) correct that by re-arranging the equation system (not done in practice). First, multiply the first column of
the stiffness matrix by the known Agven value and move it to the right side:

[0 Tt = -1 5 tgien

and then move the unknown reaction, F;, to the left side

[_01 _II(C] ki; - {1?'2 _{_l]i}Agiven-

Now you have the usual form of a linear system of equations where the right side is a known vector and the
left side is the product of a known square matrix times a vector of unknowns. Since both the energy
minimization and the displacement restraints have been combined you now have a unique set of equations for
the unknown displacements and the unknown restraint reactions. Inverting the 2 by 2 matrix gives the exact

wt= =l () asem)

(ot =l By
A2 B FZ/k+ Agiven

so that F;= -F; always, as expected. If Agven = 0, as originally stated, then the end displacement is A,= F, /k.
This sort of re-arrangement of the matrix terms is not done in practice because it destroys the symmetry of the
original equations. Algorithms for numerically solving such systems rely on symmetry to reduce both the
required storage size and the operations count. They are very important when solving thousands of equations.
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3.5 General equilibrium matrix partitions

The above small example gives insight to the most general form of the algebraic system resulting from only
minimizing the total potential energy: a singular matrix system with more unknowns than equations. That is
because there is not a unique equilibrium solution to the problem until you also apply the essential (Dirichlet)
boundary conditions on the displacements. The algebraic system can be written in a general partitioned matrix
form that more clearly defines what must be done to reduce the system to a solvable form by utilizing
essential boundary conditions.

For an elastic system of any size, the full, symmetric matrix equations obtained by minimizing the energy can
always be rearranged into the following partitioned matrix form:

i ) e = {7

Kgu Kg.g Ag Fu

where 4, represents the unknown nodal displacements, and 4, represents the given essential boundary values
(restraints, or fixtures) of the other displacements. The stiffness sub-matrices K, and K,q are square, whereas
Kug and K, are rectangular. In a finite element formulation all of the coefficients in the K matrices are known.
The resultant applied nodal loads are in sub-vector F; and the F, terms represent the unknown generalized
reactions forces associated with essential boundary conditions. This means that after the enforcement of the
essential boundary conditions the actual remaining unknowns are 4, and F,. Only then does the net number

of unknowns correspond to the number of equations. But, they must be re-arranged before all the remaining
unknowns can be computed.

Here, for simplicity, it has been assumed that the equations have been numbered in a manner that places rows
associated with the given displacements (essential boundary conditions) at the end of the system equations.
The above matrix relations can be rewritten as two sets of matrix identities:

Koy Ay + Kyyhy= F,

Ky Ay + K F,.

99°9~

The first identity can be solved for the unknown displacements, A,,, by putting it in the standard linear
equation form by moving the known product KugAg to the right side. Most books on numerical analysis

assume that you have reduced the system to this smaller, nonsingular form (K,,,, ) before trying to solve the
system. Inverting the smaller non-singular square matrix yields the unique equilibrium displacement field:

_ -1
Ay= Ky ' (Fg — Kyghy).
The remaining reaction forces can then be recovered, if desired, from the second matrix identity:
F, = Kgu A, + KggAg.

In most applications, these reaction data have physical meanings that are important in their own right, or
useful in validating the solution. However, this part of the calculation is optional.

3.6 Structural Component Failure

Structural components can be determined to fail by various modes determined by buckling, deflection, natural
frequency, strain, or stress. Strain or stress failure criteria are different depending on whether they are
considered as brittle or ductile materials. The difference between brittle and ductile material behaviors is
determined by their response to a uniaxial stress-strain test, as in Figure 3-8. You need to know what class of
material is being used. SW Simulation, and most finite element systems, default to assuming a ductile material
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and display the distortional energy failure theory which is usually called the Von Mises stress, or effective
stress, even though it is actually a scalar. A brittle material requires the use of a higher factor of safety.
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Figure 3-8 Axial stress-strain experimental results

3.7 Factor of Safety

All aspects of a design have some degree of uncertainty, as does how the design will actually be utilized. For
all the reasons cited above, you must always employ a Factor of Safety (FOS). Some designers refer to it as the
factor of ignorance. Remember that a FOS of unity means that failure is eminent; it does not mean that a part
or assembly is safe. In practice you should try to justify 1 < FOS < 8. Several consistent approaches for
computing a FOS are given in mechanical design books [9]. They should be supplemented with the additional
uncertainties that come from a FEA. Many authors suggest that the factor of safety should be computed as
the product of terms that are all > 1. There is a factor for the certainty of the restraint location and type; the
certainty of the load region, type, and value; a material factor; a dynamic loading factor; a cyclic (fatigue) load
factor; and an additional factor if failure is likely to result in human injury. Various professional organizations
and standards organizations set minimum values for the factor of safety. For example, the standard for lifting
hoists and elevators require a minimum FOS of 4, because their failure would involve the clear risk of injuring
or killing people. As a guide, consider the FOS as a product of factors: FOS = []i-; Fx = FiF,F5 ... F,. Aset
of typical factors is given inTable 3-1.

Table 3-1 Factors to consider when evaluating a design (each > 1)

k Type Comments
1 Consequences Will loss be okay, critical or fatal
2 Environment Room-ambient or harsh chemicals present
3 Failure theory Is a part clearly brittle, ductile, or unknown
4 Fatigue Does the design experience more that ten cycles of use
5 Geometry of Part Not uncertain, if from a CAD system
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6 Geometry of Mesh Defeaturing can introduce errors. Element sizes and location
are important. Looking like the part is not enough.

7 Loading Are loads precise or do they come from wave action, etc.

8 Material data Is the material well known, or validated by tests

9 Reliability Must the reliability of the design be high

10 | Restraints Designs are greatly influenced by assumed supports

11 | Stresses Was stress concentration considered, or shock loads

3.8 Element Type Selection

Even with today’s advances in computing power you seem never to have enough computational resources to
solve all the problems that present themselves. Frequently solid elements are not the best choice for
computational efficiency. The analysts should learn when other element types can be valid or when they can
be utilized to validate a study carried out with a different element type. SW Simulation offers a small element
library that includes bars, trusses, beams, frames, thin plates and shells, thick plates and shells, and solid
elements. There are also special connector elements called rigid links or multipoint constraints.

The shells and solid elements are considered to be continuum elements. The plate elements are a special case
of flat shells with no initial curvature. Solid element formulations include the stresses in all directions. Shells
are a mathematical simplification of solids of special shape. Thin shells (like thin beams) do not consider the
stress in the direction perpendicular to the shell surface. Thick shells (like deep beams) do consider the
stresses through the thickness on the shell, in the direction normal to the middle surface, and account for
transverse shear deformations.

Let h denote the typical thickness of a component while its typical length is denoted by L. The thickness to
length ratio, h/L, gives some guidance as to when a particular element type is valid for an analysis. When h/L is
large shear deformation is at its maximum importance and you should be using solid elements. Conversely,
when h/L is very small transverse shear deformation is not important and thin shell elements are probably the
most cost effective element choice. In the intermediate range of h/L the thick shell elements will be most cost
effective. The thick shells are extensions of thin shell elements that contain additional strain energy terms.

The overlapping h/L ranges for the three continuum element types are suggested in Figure 3-9. The thickness
of the lines suggests those regions where a particular element type is generally considered to be the preferred
element of choice. The overlapping ranges suggest where one type of element calculation can be used to
validate a calculated result obtained with a different element type. Validation calculations include the
different approaches to boundary conditions and loads required by different element formulations. They also
can indirectly check that a user actually understands how to utilize a finite element code.
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Figure 3-9 Overlapping valid ranges of element types

3.9 SW Simulation Fixture and Load Symbols

The symbols used in SW Simulation to represent a single translational and rotational DOF at a node are shown green in
Figure 3-10. The symbols for the corresponding forces and moment loadings are shown pink in that figure. Since finite
element solutions are based on work-energy relations, the above word “corresponding” means that their dot product
represents the mechanical work done at the point. When a model can involve either translations or rotations as DOF they
are often referred to as generalized displacements. The SW Simulation nodal symbols for the unknown generalized
displacement DOF’s for the solid nodes (top) and shell nodes are seen in Figure 3-11. You almost always must supply
enough restraints to prevent any model from undergoing a rigid body translation or rigid body rotation.

=\ (4 .\- )
"$

a o
Node of solid or truss element: Node of frame or shell element:
All three displacements are zero. All three displacements and all three

rotations are zero.

Figure 3-10 Fixed restraint symbols for solids (top) and shell nodes

For simplicity many finite element examples incorrectly apply complete restraints at a face, edge or node.
That is, they enforce an Immovable condition for solids or a Fixed condition for shells. Actually determining
the type of restraint, as well as where the part is restrained is often the most difficult part of an analysis. You
frequently encounter the common conditions of symmetry or anti-symmetry restraints. You should under
understand symmetry plane restraints for solids and shells.

B N &

Displacement Force Rotation Couple
Figure 3-11 Single component symbols for restraints (fixtures) and loads
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3.10 Symmetry DOF on a Plane

A plane of symmetry is flat and has mirror image geometry, material properties, loading, and restraints.
Symmetry restraints\i are very common for solids and for shells. Figure 3-12 shows that for both solids and
shells, the displacement perpendicular to the symmetry plane is zero. Shells have the additional condition that
the in-plane component of its rotation vector is zero. Of course, the flat symmetry plane conditions can be
stated in a different way. For a solid element translational displacements parallel to the symmetry plane are
allowed. For a shell element rotation is allowed about an axis perpendicular to the symmetry plane and its
translational displacements parallel to the symmetry plane are also allowed.

/_'l &u\/;

Node of a solid or truss element: Node of a frame or shell element:
Displacement normal to the symmetry plane is zero. Displacement normal to the symmetry plane and two
rotations parallel to it are zero.

Figure 3-12 Symmetry requires zero normal displacement, and zero in-plane rotation

3.11 Available Loading (Source) Options

Most finite element systems have a wide range of mechanical loads (or sources) that can be applied to points,
curves, surfaces, and volumes. The mechanical loading terminology used in SW Simulation is in Table 3-2.
Most of those loading options are utilized in later example applications.

Table 3-2 Mechanical loads (sources) that apply to the active structural study

Load Type Description
Bearing Load Non-uniform bearing load on a cylindrical face
Centrifugal Force Radial centrifugal body forces for the angular velocity and/or tangential

body forces from the angular acceleration about an axis

Force Resultant force, or moment, at a vertex, curve, or surface
Gravity Gravity, or linear acceleration vector, body force loading
Pressure A pressure having normal and/or tangential components acting on a

selected surface

Remote Load / Allows loads or masses remote from the part to be applied to the part
Mass by treating the omitted material as rigid
Temperature Temperature change at selected curves, surfaces, or bodies (see

thermal studies for more realistic temperature transfers)

3.12 Available Material Inputs for Stress Studies

Most applications involve the use of isotropic (direction independent) materials. The available mechanical
properties for them in SW Simulation are listed in Table 3-3. It is becoming more common to have designs
utilizing anisotropic (direction dependent) materials. The most common special case of anisotropic materials is
the orthotropic material. Any anisotropic material has its properties input relative to the principal directions of
the material. That means you must construct the principal material directions reference plane or coordinate
axes before entering orthotropic data. Mechanical orthotropic properties are subject to some theoretical
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relationships that physically possible materials must satisfy (such as positive strain energy). Thus,
experimental material properties data may require adjustment before being accepted by SW Simulation.

Table 3-3 Isotropic mechanical properties

Symbol Label Item

E EX Elastic modulus (Young’s modulus)
v NUXY Poisson’s ratio

G GXY Shear modulus

p DENS Mass density

ot SIGXT Tensile strength (Ultimate stress)
Oc SIGXC Compression stress limit

oy SIGYLD Yield stress (yield strength)

o ALPX Coefficient of thermal expansion

Table 3-4 Orthotropic mechanical properties in principal material direction

Symbol Label Item

Ex EX Elastic modulus in material X direction

Ey EY Elastic modulus in material Y direction

E, EZ Elastic modulus in material Z-direction

Viy NUXY Poisson’s ratio in material XY directions
Vyz NUYZ Poisson’s ratio in material YZ directions
Vyz NUXZ Poisson’s ratio in material XZ directions
G,y GXY Shear modulus in material XY directions
G,, GYZ Shear modulus in material YZ directions

Gy, GXZ Shear modulus in material XZ directions

p DENS Mass density

Ot SIGXT Tensile strength (Ultimate stress)

Oc SIGXC Compression stress limit

Oy SIGYLD Yield stress (Yield strength)

Ox ALPX Thermal expansion coefficient in material X
Oy ALPY Thermal expansion coefficient in material Y
oz ALPZ Thermal expansion coefficient in material Z

Note: NUXY, NUYZ, and NUXZ are not independent

Parts can also be made from orthotropic materials (as shown later). However, their utilization is most
common in laminated materials (laminates) where they each ply layer has a controllable principal material
direction. The concept for constructing laminates from orthotropic material ply’s is shown in Figure.
Understanding the failure modes of laminates usually requires special study.

Draft 13.0. Copyright 2009. All rights reserved. 40



FEA Concepts: SW Simulation Overview J.E. Akin

Ply direction

Pyl | /

Ply 3 Laminate

Plv4 .
Figure 3-13 Example of a four-ply laminate material

3.13 Stress Study Outputs

A successful run of a study will create a large amount of additional output results that can be displayed and/or
listed in the post-processing phase. Displacements are the primary unknown in a SW Simulation stress study.
The available displacement vector components are cited in Table 3-5 and Table 3-6, along with the reactions
they create if the displacement is used as a restraint. The displacements can be plotted as vector displays, or
contour values. They can also be transformed to cylindrical or spherical components.

Table 3-5 Output results for solids, shells, and trusses

Symbol Label Item Symbol Label Item

U, UXx Displacement (X direction) | R, RFX Reaction force (X direction)

U, Uy Displacement (Y direction) R, RFY: Reaction force (Y direction)

U, uz Displacement (Z direction) | R, RFZ Reaction force (Z direction)

U, URES: Resultant displacement R, RFRES Resultant reaction force
magnitude magnitude

Table 3-6 Additional primary results for beams, plates, and shells

Symbol Label Item Symbol Label Item
0, RX Rotation (X direction) = M, RMX: Reaction moment (X direction)
0, RY Rotation (Y direction) | M, RMY Reaction moment (Y direction)
0, RZ Rotation (Z direction) = M, RMZ: Reaction moment (Z direction)
M, MRESR ' Resultant reaction moment
magnitude

The strains and stresses are computed from the displacements. The stress components available at an
element centroid or averaged at a node are given in Table 3-7. The six components listed on the left in that
table give the general stress at a point (i.e., a node or an element centroid). Those six values are illustrated on
the left of Figure 3-14. They can be used to compute the scalar von Mises failure criterion. They can also be
used to solve an eigenvalue problem for the principal normal stresses and their directions, which are shown on
the right of Figure 3-14. The maximum shear stress occurs on a plane whose normal is 45 degrees from the

direction of P1. The principal normal stresses can also be used to compute the scalar von Mises failure
criterion.

The von Mises effective stress is compared to the material yield stress for ductile materials. Failure is predicted
to occur (based on the distortional energy stored in the material) when the von Mises value reaches the yield
stress. The maximum shear stress is predicted to cause failure when it reaches half the yield stress. SW
Simulation uses the shear stress intensity which is also compared to the yield stress to determine failure
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(because it is twice the maximum shear stress). The first four values on the right side of Table 3-7 are often
represented graphically in mechanics as a 3D Mohr’s circle (seen in Figure 3-15).

Table 3-7: Nodal and element stress results

Symbol Label Item Symbol Label Item
Oy SX Normal stress parallel to x-axis = oy P1 1st principal normal stress
oy Sy Normal stress parallel to y-axis = o, P2 2nd principal normal stress
g, SZ Normal stress parallel to z-axis = o3 P3 3rd principal normal stress
Tuy TXY Shear in Y direction on plane T INT Stress intensity (P1-P3), twice
normal to x-axis the maximum shear stress
Twz TXZ Shear in Z direction on plane
normal to x-axis
Ty TYZ Shear in Z direction on plane Oum VON | von Mises stress (distortional
normal to z-axis energy failure criterion)
Y, sy
Ia
TVZ
TZY

Zz
Figure 3-14 The stress tensor (left) and its principal normal values
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Figure 3-15 The three-dimensional Mohr's circle of stress yield the principal stresses
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If desired, you can plot all three principal components at once. The three principal normal stresses at a node
or element center can be represented by an ellipsoid. The three radii of the ellipsoid represent the magnitudes
of the three principal normal stress components, P1, P2, and P3. The sign of the stresses (tension or
compression) are represented by arrows. The color code of the surface is based on the von Mises value at the
point, a scalar quantity. If one of the principal stresses is zero, the ellipsoid becomes a planar ellipse. If the
three principal stresses have the same magnitude, the ellipsoid becomes a sphere. In the case of simple
uniaxial tensile stress, the ellipsoid becomes a line.

Tension

Compression

Very small J
component  §

;\"* Compression
Tension

Figure 3-16 A principal stress ellipsoid colored by von Mises value

The available nodal output results in Table 3-7 are obtained by averaging the element values that surround the
node. You can also view them as constant values at the element centroids. That can give you insight to the
smoothness of the approximation. For brittle materials you can also be interested in the element strain
results. They are listed in Table 3-8. Table 3-9 shows that you can also view the element error estimate, ERR
which is used to direct adaptive solutions, and the contact pressure from an iterative contact analysis.
Additional outputs are available if you conduct an automated adaptive analysis to reduce the (mathematical)
error to a specific value, or to recover results from the developed pressure between contacting surfaces. They
are listed in Table 3-9.

Table 3-8 Element centroidal strain component results

Sym Label Item Sym  Label Item

&x EPSX Normal strain parallel to x- € El Normal principal strain (1st
axis principal direction)

£ EPSY Normal strain parallel to y- & E2 Normal principal strain
axis (2nd principal direction)

o EPSZ Normal strain parallel to z- € E3 Normal principal strain (3rd
axis principal direction)

Yy GMXY Shear strain in Y directionon & ESTRN Equivalent strain
plane normal to x-axis

Yxz GMXZ Shear strain in Z directionon | SED SEDENS Strain energy density (per
plane normal to x-axis unit volume)

Yyz GMYZ Shear strain in Z directionon | SE ENERGY Total strain energy
plane normal to y-axis
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Table 3-9 Additional element centroid stress related results
Label Item
ERR Element error measured in the strain energy norm
cpP Contract pressure developed on a contact surface

Draft 13.0. Copyright 2009. All rights reserved. 44



