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§4 Theories of Failure

30 Introduction. If a ductile metal bar is subjected to a gradually
increasing axial tensile load causing only one principal stress on any
transverse section, the material, when the load reaches a certain value,
will begin to acquire inelastic (permanent) deformation.

In Art. 4 it was assumed that inelastic action after it had progressed
to a small (measurable) amount constituted structural damage to the
member and was designated as failure by general yielding; it was at-
tributed primarily to slip on planes through the crystalline grains of
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F1a. 44 Typical stress-strain diagram for ductile steel.

the metal. It was assumed also that the slip (yielding) was more
closely associated with shearing stress than with any other quantity, and
hence a limiting value of the shearing stress (the shearing elastic limit
or yield point) was considered to be the property of the material which
would limit the load-resisting capacity of a member made of ductile
material. There are, however, at least five other quantities or proper-
ties of the material that have been proposed and used in design as a
measure of the limiting resistance value or maximum utilizable strength
of the material when the beginning of yielding is the action that destroys
the load-resisting function of the member. Some of these theories are
used also to explain failure by fracture, as will be discussed later.

In Fig. 44 is shown a typical tensile stress-strain curve for a specimen
of ductile steel as obtained from a tension test. When the specimen
starts to yield, the following six quantities are reached simultaneously:

1. The principal stress (¢ = P/a) reaches the tensile elastic strength
(elastic limit or yield point) o, of the material.

2. The maximum shearing stress [t = 4(P/a)] reaches the shearing
elastic limit or yield point 7, of the material, . = %o,.
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3. The tensile strain e reaches the value e,.

4. The total strain energy w absorbed by the material per unit vol-
ume reaches the value w, = 3(¢.2/E).

5. The strain energy of distortion w; (energy accompanying change
in shape) absorbed by the material per unit volume reaches a value
wae = [(1 + u)/3E]s.”.

6. The octahedral shearing stress reaches the value rg. = (1/2/3)0.
= 0.47g,.

These six criteria of failure of a material are summarized in Table 1.

The six limiting values given in Table 1 occur simultaneously in a
tensile specimen, in which the state of stress is uniaxial, and hence it is
impossible to determine from a tension test which one of the quantities
is the cause of the beginning of inelastic action. If, however, the state
of stress is biaxial or triaxial, the foregoing six quantities will not occur
simultaneously, and it is a matter of considerable importance in design
as to which one of the quantities is assumed to limit the loads that can
be applied to a member without causing inelastic action. The six limit-
ing quantities as given in Table 1 suggest six theories of failure or six
different methods for using data obtained in the tension test to predict
inelastic action when the state of stress in the member is not uniaxial.
These theories of failure are discussed in the next article.

Before stating the theories of failure it may be well to recall (from
Chapter 1) that failure of load-resisting members, under static loading
as here considered, usually consists of one of two types of action, namely,
(a) inelastic deformation (yielding) or (b) brittle fracture, by which is
meant separation of the material without accompanying measurable
yielding. Which one of these two modes of failure occurs depends on
the inherent, internal characteristics and structure of the material, and
also on external conditions, such as temperature, state of stress, type of
loading, rate of loading, etc.; a stress-strain diagram for a material that
fails by truly brittle fracture under static loading is a straight line until
the breaking or fracture stress is reached. In such a failure the elastic
limit and the ultimate strength of the material are identical values. The
significance of any theory of failure will depend to a considerable extent
on which mode of failure occurs or is assumed to occur.

31 Statement of Theories of Failure. The six main theories of
failure suggested in Table 1 for a material that is considered to fail by
yielding under static loading may be stated briefly as follows:

1. The maximum principal stress theory, often called Rankine’s theory,
states that inelastic action at any point in a material at which any state
of stress exists begins only when the maximum principal stress at the
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TABLE 1
Maximum Utilizable
Quantity as Obtained
Theory of Failure from Tension Test
1. Maximum Principal Stress o = P/a
f;% s {_J
P

2. Maximum Shearing Stress re = 3(P/a) = %o,

S i
3. Maximum Strain e = oo/E
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4. Total Strain Energy We = 2(os2/E)
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5. Strain;Energy of Distortion Wie = T
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% e % a.
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w = wy + Wy

6. Octahedral Shearing Stress rge = (NV/2/3)0s = 0.47¢,
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point reaches a value equal to the tensile (or compressive) elastic limit
or yield strength of the material as found in a simple tension (or com-
pression) test, regardless of the normal or shearing stresses that occur
on other planes through the point. Thus, according to this theory, if
the block in Fig. 46a reaches its elastic limit when subjected to the stress
o1, the elastic limit will still be o1 even if the block is subjected to the
stress oo (Fig. 46D) in addition to oy.

It will be observed that if ¢; and o are equal and of opposite sign,
shearing stresses r equal to ¢ will be developed on 45° diagonal planes
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as in Fig. 46c. A state of stress like that shown in Fig. 46¢ occurs in
a cylindrical bar subjected to pure torsion. Thus, if this theory is true
for all states of stress, the shearing elastic limit of the material must be
at least equal to the tensile elastic limit. But for all ductile metals ‘the
shearing elastic limit as found from the torsion test is much less than
the tensile elastic limit as found from the tension test. It is evident,
therefore, that the presence of relatively large shearing stresses at a
point causes limitations on the maximum principal stress theory which
will be discussed further in the next article. For brittle materials which
do not fail by yielding but fail by brittle fracture, the maximum principal
stress theory is considered to be reasonably satisfactory, although the
maximum strain theory is considered to be preferable.

2. The mazimum shearing stress theory, sometimes called Coulomb’s
theory, or Guest’s law, states that inelastic action at any point in a body
at which any state of stress exists begins only when the maximum shear-
ing stress on some plane through the point reaches a value equal to the
maximum shearing stress in a tension specimen when yielding starts.
This means that the shearing elastic limit must be not more than one-
half the tensile elastic limit, since the maximum shearing stress in a
tension specimen (on a 45° oblique plane) is one-half the maximum
tensile stress in the specimen.

The maximum shearing stress theory seems to be fairly well justified
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for ductile material and for the states of stress encountered in most
load-resisting members, that is, for states of stress in which relatively
large shearing stresses are developed However, for the state of stress
of pure shear in which the maximum amount of shear is developed, as
occurs in a torsion test, the shearing elastic limit of ductile metals is
found to vary somewhat but an average value is approximately 0.57 of
the tensile elastic limit (7, = 0.57¢,), and hence for such a state of stress
the maximum shearing stress theory errs (on the side of safety) by ap-
proximately 15 per cent.

In Art. 21 and Figs. 25¢, 25h, and 25¢, it is shown that maximum and
minimum principal stresses may be resolved into a state of pure shear
combined with equal tensions in all directions in the plane of these two
principal stresses. Thus it is assumed by this theory of failure that the
maximum shearing stresses alone produce inelastic action and that the
equal tensile stresses have no influence in starting inelastic action. If
the state of stress consists of triaxial tensile stresses of nearly equal
magnitude, shearing stresses would be very small and failure would be
by brittle fracture rather than by yielding, and hence the maximum
shearing stress theory would not be applicable.

3. The maximum strain theory, often called St. Venant’s theory,
states that inelastic acfion at a point in a body at which any state of
stress exists begins only when the maximum strain at the point reaches
a value equal to that which occurs when inelastic action begins in the
material under a uniaxial state of stress, as occurs in the specimen in
the tension test. This value, e, occurs simultaneously with the tensile
elastic limit o, of the material. Thuse, = ¢ e/ E.

For example, according to this theory, inelastic action in the block of
Fig. 46a begins when o; becomes equal to o, since e, = o./E, but in
Fig. 41 ¢ = (01/E) — u(o2/E), and hence inelastic action does not be-
gin until o; becomes greater than o, since the strain in the direction of
o1 is decreased by the amount u(oz/E). Therefore, according to this
theory of failure, o; could be increased to a value somewhagt higher than
o, without causing yielding if the second normal stress oy is a tensile
stress, but if o5 is a compressive stress the maximum value of oy that
could be applied without causing yielding would be somewhat smaller
than o, (Fig. 46b).

The maximum strain theory of the breakdown of elastic action is an
improvement over the maximum principal stress theory, but, like the
latter theory, it usually is not applicable if the failure in elastic behavior
is by yielding; it is primarily applicable when the COIlCllthIlS are such
that failure occurs by brittle fracture.

4. The fotal energy theory, proposed by Beltrami and by Haigh, states
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that inelastic action at any point in a body due to any state of stress be-
gins only when the energy per unit volume absorbed at the point is equal
to the energy absorbed per unit volume by the material when subjected
to the elastic limit under a uniaxial state of stress, as occurs in a simple
tensile test. As shown by Eq. 51 and in Table 1 the value of this maxi-
mum energy per unit volume is w, = %(c,2/E). The expressions for
the total energy absorbed per unit volume for various states of stress
are given in Art. 28; according to the total energy theory none of these
expressions can exceed the value 3(o.2/E) without causing yielding to
start.

5. The energy of distortion theory, which grew out of the analytical
work of Huber, von Mises, and Hencky and out of the results of tests
by Bridgman on various materials showing that the material did not be-
come inelastic under a triaxial state of stress produced by very high
hydrostatic pressure, states that inelastic action at any point in a body
under any combination of stresses begins only when the strain energy of
distortion per unit volume absorbed at the point (see Art. 30) is equal
to the strain energy of distortion absorbed per unit volume at any point
in a bar stressed to the elastic limit under a state of uniaxial stress as
occurs in a simple tension (or compression) test. As shown by Eq. 63
and in Table 1, the value of this maximum strain energy of distortion
(energy absorbed in changing shape) as determined from the tension
test is wq, = [(1 + u)o2]/3E.

The maximum energy of distortion theory differs from the maximum
total energy theory as follows. In the maximum total energy theory it
is assumed that the entire strain energy is associated with the beginning
of inelastic action. However, tests of various materials under very
high hydrostatic stresses show that the materials could withstand, with-
out inelastic action taking place, strain energy values many times
greater than those obtained in the simple axial load compression test.
Hence, since in the hydrostatic tests the total strain energy is used in
producing volume changes only, it was proposed that the energy ab-
sorbed in changing volume has no effect in causing failure by yielding,
and that failure by inelastic action is associated only with energy ab-
sorbed in changing shape. It is assumed that if it were possible to make
tests of materials under a negative hydrostatic pressure, which would
create three equal tensile principal stresses, the same results as found for
three equal principal compressive stresses would be obtained; that is,
no yielding would take place, although fracture eventually would occur.
Since change of shape involves shearing stresses, the energy of distor-
tion theory is sometimes called (somewhat erroneously) the shear en-
ergy theory.




82 STRESSES AND STRAINS AT A POINT

In a state of stress in which the maximum amount of shear exists, as
in the state of pure shear shown in Fig. 46¢, the energy of volume change
is zero, because in Eq. 58 the average principal stress o,v¢ is equal to
zero, and therefore the total strain energy is used in distorting (chang-
ing the shape of) the unit volume. The expressions for the energy of
distortion per unit volume for various states of stress are given in Art.
29, and, according to this theory, none of these expressions can exceed
the value [(1 4 u)o.Z]/3E without causing the material to start to yield.

6. The octahedral shearing stress theory gives the same results as does
the energy of distortion theory and hence may be called an equivalent
stress theory. The octahedral shearing stress as given by Eq. 33 can
be expressed in terms of the energy of distortion wg. This is done by
multiplying and dividing the right side of Eq. 33 by the quantity
vV (1 4+ w)/6E. Equation 33 then becomes

1 6E 1 '
T3 \/1 Fu \/ 6_;]#[(‘71 — 02)® + (03 — 03)° + (03 — 01)?] (67)

By referring to Eq. 60 it will be noted that Eq. 67 may be rewritten

rg = ¥V 6Ew,/(1 + ) (68)

where wy is the energy of distortion. But the criterion of failure accord-
ing to the maximum energy of distortion theory is that inelastic action
begins when w; becomes equal to wg. = [(1 + w)a?l/3E (see Eq. 61).
By substituting this value of w4, in Eq. 68, the octahedral shearing stress

is found to be
¢ = (\2/3)s, = 0470, (69)

It will be observed that the value of 7¢ as required by the maximum
energy of distortion theory in Eq. 69 is the same as the value given in
Eq. 27 for the octahedral shearing stress that occurs in the standard
tensile test. Thus an octahedral shearing stress theory may be stated
as follows: Inelastic action at any point in a body under any combina-
tion of stresses begins only when the octahedral shearing stress 7¢ be-
comes equal to 0.47¢,, where o, is the tensile elastic strength of the ma-
terial as determined from the standard tension test. The octahedral
shearing stress theory of failure makes it possible to apply the energy
of distortion theory of failure by dealing only with stresses instead of
dealing with energy directly; this procedure to some engineers seems
desirable because stress is a more familiar quantity in engineering design
than is energy.
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Another way of interpreting the effect of the octahedral stresses has
been given in Art. 24 and Figs. 34d, 34e, and 34f, where it was shown
that any state of stress consisting of three principal stresses may be re-
solved into two component states of stress: one component consists of
equal tensile (or compressive) stresses in all directions which does not
influence the starting of inelastic action, but which may produce frac-
ture, and the other component state of stress comprises the eight octa-
hedral shearing stresses which are assumed by this theory to be wholly
responsible for starting inelastic action.
~ 32 Significance of the theories of failure. In Art. 2 it was
pointed out that the rational procedure of design of a member requires
that the general mode of failure of the member under the assumed service
conditions be determined or assumed (failure usually is by yielding or by
fracture) and that a quantity (stress, strain, or energy, etc.) be chosen
which is considered to be associated with the failure. This means that
there is a maximum or critical value of the quantity selected which limits
the loads that can be applied to the member; furthermore, it was pointed
out that a suztable test of the material must be made for determining the
critical value; this value is frequently referred to as the maximum utiliz-
able strength of the material. It is important to understand how the
theories of failure fit into this picture.

For a given general mode of failure, each theory of failure, as stated
in Art. 31, names the (significant) quantity which is the cause of failure
when the value of the quantity reaches the critical value, and it also
states that a tension test is a suitable test for detelmlmng the crltlcal
or maximum value of this significant quantity.

It is important to note that if an appropriate or suitable test could al-
ways be selected so that the material would be subjected to the same
conditions of stress that it is subjected to in the actual member, there
would be no need for theories of failure. For example, in Table 1 the
maximum utilizable strength of a material as determined by each of the
several theories of failure is obtained from a tension test, and hence in
the design of any member in which the state of stress is uniaxial the
member would be given the same dimensions by all the theories of failure.
Similarly, if the maximum or limiting values of the various quantities
that are considered to be the cause of failure were obtained from a torsion
test of the material, any member of the same material subjected to a
state of stress of pure shear would be given the same dimensions by all
the theories of failure, since all the quantities assumed to cause failure
would reach their limiting values simultaneously.

If a theory of failure were correct under all conditions in which load-
resisting members are used, it would predict the nature of the quantity
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(stress, strain, or energy, etc.) and the limiting value thereof (as ob-
tained from a specified test) which would limit the load that could be
applied to the member without causing structural damage.

This, however, is too much to expect from a theory of failure when
consideration is given to the radical difference in the modes of failure
(ranging from incipient yielding to brittle fracture) and to the simplify-
ing conditions that are necessary to impose on a suitable test. In general,
we are limited, because of practical considerations, to one of two tests,
namely, the tension test or the torsion test

In interpreting the theories of failure a given general mode of failure
is understood to occur. The significance of the theories will here be
studied by assuming that failure occurs when inelastic strain (vielding)
starts and by comparing the limiting values of the significant quantities
stated in the theories, when the limiting values are obtained for each of
two states of stress. The first state of stress is a uniaxial stress as exists
in the tension test, and the second is a biaxial state of stress correspond-
ing to pure shear as exists in the torsion test.

In Table 2 is shown a comparison of the limiting value (maximum
utilizable strength of a material) as obtained, by each of the theories of

TABLE 2

CoMPARISON OF MAxIiMUM UTILIZABLE STRENGTHS OF A MATERIAL ACCORDING
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failure, from the tensile test (column 2) and from the torsion test
(column 3). These values should be equal if all theories are correct. The
relationships found by equating the two for each theory are given in
column 4.

The results from tests of many ductile metals show that the shearing
elastic limit (or yield strength) 7, found from the torsion test varies
from about 0.55 to 0.60 of the tensile yield strength o, found from the
tension test, an average value being about 0.57.

The results of Table 2, therefore, indicate that the energy of distor-
tion theory or its equivalent, the octahedral shearing stress theory, is
the most satisfactory theory of failure of a ductile metal under static
load for which the maximum utilizable value of the energy of distortion
or of the octahedral shearing stress is found from the tension test. How-
ever, the maximum shearing stress theory, under the same conditions
of stress, is also a reasonably satisfactory theory. It gives a value of the
maximum utilizable strength 7, of the material which is about 15 per
cent less than that given by the energy of distortion theory. Thus, it
gives values in design on the safe side. It is widely used for design of
ductile metals under conditions of static loading and of ordinary tem-
peratures in which creep is not of importance. It is also clear from
Table 2 that the theories of maximum principal stress and the maxi-
mum principal strain are applicable only when the maximum princi-
pal stress in the material is very large relative to the maximum shear-
ing stress at the same point so that the failure is by fracture rather than
by yielding.

The states of stress in the tension and torsion tests represent about as
wide a range of stress conditions as occurs in most engineering members
that fail by yielding under static loads. In the tension test omax/Tmax =
2, and in the torsion test omax/Tmax = 1. For some triaxial states of
Stress omax/Tmax 18 greater than 2, approaching infinity when the tri-
axial stresses are equal and of like sign, but failure then becomes one of
brittle fracture, if the stresses are tensile stresses.

For states of stress in which omax/7max lies between 2 and 1 as, for
example, in a cylindrical shaft subjected to a bending moment M and
a torsional moment 7 producing the state of stress shown in Figs. 47,
49, and 50, the results given by the various theories are shown in Fig.
47. The diameter d, which is just large enough to prevent inelastic ac-
tion in the shaft, is computed by each theory of failure, and these values
of d are then compared by obtaining the ratios of the various values of d
to the value d;, computed by the maximum shearing stress theory.

These ratios are obtained for combinations of 7' and M ranging from
M acting alone (T/M = 0) to T acting alone. (The combination for
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which T/M = «, or T acting alone, is shown by the horizontal lines
at the right side of the figure which are asymtotes for the curves indi-
cated by the arrows.) It will be noted that the maximum shearing stress
theory gives the largest diameter and the maximum normal stress theory
the smallest diameter for all ratios of 7' to M, except for T'/M = 0, where
all diameters are equal.
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Fic. 47 Comparison of theories of failure.

Figure 48 compares in another way the two most appropriate theories
of failure when the mode of failure is by yielding and when the state of
stress is the same as that considered in Fig. 47, and it also covers a range
in stress from opax/mmax = 2 (bending alone) t0 omax/Tmax = 1 (torsion
alone). The equations represented by these curves are found as follows:
For any combination of 7 and ¢, yielding starts according to the maxi-
mum shearing stress theory when

V(/22+ 2 =0,/2 or Al/o)+ (o/o): =1 (70)

Likewise, yielding starts according to the energy of distortion theory
when
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heory Other Factors To Be Considered. The theories of failure, however, do
where not take account of all the conditions that the engineer must consider in

the problem of failure, even of failure of ductile material subjected to
static loads at ordinary temperatures. In the theories as here stated it
is assumed that the failure occurs when inelastic action starts. In many
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AlGne F1a. 48 Comparison of two of the theories of failure.
- _ uses of load-resisting members some inelastic strain may occur without
\ destroying the usefulness of the member, and these inelastic strains
cause a readjustment of stresses which may permit an appreciable in-
crease in the loads on the member. This topic is discussed in Part V.
. Furthermore, if the theories are applied to a type of failure different
\eories | from that assumed in the above statement of the theories, a different
sate of \ type of test for determinirig the limiting values of the quantities con-
range ' sidered to be the cause of failure is required. For example, if the failure
orsion in a ductile material results from highly localized action in the material,
lows: i such as failure caused by many (repeated) applications of the load
maxi- | (fatigue failure), the test of the ductile material for determining the
‘ limiting value would not be a static tensile test in which a relatively large
amount of material is involved in the failure, but would be a series of
(70) repeated load (fatigue) tests in which localized action controls the failure.
theory The value obtained from such a test usually is the endurance limit, and

the limiting values required in the application of the various theories of
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failure would be expressed in terms of this endurance limit. This is
done in Chapter 12.

33 Application of theories of failure. Design formulas. As stated
in the preceding article, the dimensions that should be assigned to a
ductile member which is to be subjected to static loads depend on the
theory held concerning the cause of the breakdown of elastic action
(yielding). This fact is illustrated by Fig. 47 for a cylindrical shaft
which is subjected to a bending moment M and a torsional moment 7,
which produce the state of stress also shown in Fig. 47.

In obtaining design formulas it should be recalled from Art. 2 that
the main purpose of the member considered is to resist loads safely and
that the factor of safety N should be applied in such a way that the
design loads are increased to N times the loads that cause inelastic action
to start. )

Maximum Principal Stress Theory. The maximum principal stress
omax IUSt not exceed the tensile elastic strength o, (see Table 1). Under
these elastic conditions the loads are directly proportional to the stresses,
and hence N can be applied to o,. Thus the working value of the
principal stress is ¢./N, and the equation for design is

Omax — U'e/N (72)
For the state of stress considered here as shown in Fig. 47, Eq. 72 becomes
Cmax = %0' + %\/ o> + 47 = ¢,/N (73)

in which ¢ and 7 may be expressed in terms of the loads (M and T') acting
on the member.

Maximum Shearing Stress Theory. The maximum shearing stress
Tmax according to Eq. 10 is mmax = 5(0max — min). The value of mmax
must not exceed +¢, (see Table 1). The working value for the shearing
stress is, therefore, 3(o./N), and the design equation is

Tmax = %(‘Tmax = O'min) = %(Ue/N) (74)
For the state of stress shown in Fig. 47, Eq. 74 becomes
Tmax = % v 0'2 + 47'2 = %(ae/N) (75)

Maximum Strain Theory. The maximum strain ey.x is given by Eq.

39 . .
€max = (Ul/E) - #(0'2/E) - “(03/E)

where o, o2, and o3 are the principal stresses, o; having the largest
numerical value. Since ey, must not exceed e, = o./E (see Table 1),
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its working value is ¢,/N, and the equation for design is

emax = (01/E) — u(oz/E) — plos/E) = (e/N) = (1/E)(so/N) (76)

In Eq. 76 the working value of strain is equal to 1/E times the working
value of the stress, and, if the factor 1/E which is common to both sides
of the equation is cancelled out, the design equation reduces to

o1 — uog — pog = 0¢/N (77)
For the state of stress shown in Fig. 47 and for 4 = 14, Eq. 77 becomes
3o + ~g—'\/o'2 + 472 = ¢,/N (78)

Mazximum Total Energy Theory. According to this theory, inelastic
action begins when the total energy per unit volume w has the value
w, = 3(0,2/E), which is the total energy absorbed per unit volume at
the elastic strength of the material in a standard tension specimen. The
foregoing statement as applied to a state of triaxial stress is, from Eq. 57,

2

O¢

1 1

W=z [0 + 02° + 03° — 2u(o102 + 0203 + 0301)] = w, = 27 (79)
If the loads are proportional to the stresses, the energy w, as given by
Eq. 79, is a function of the loads to the second power. Hence, the factor
of safety N must be applied (see Art. 2) to the quantity +/w in order
to limit the load to 1/N times the loads which will cause inelastic action
to begin. Therefore, in Eq. 79 the square root of both sides of the
equation is taken, and then the factor of safety N is applied. Thus

\/_1_ [012 + 09° + 03 — 2u(o102 + o203 + o301)] = e

2F ' N
)
- NN\2E

If the factor V' 1/2E, which is common to both sides of the equation,
is cancelled out, the design equation reduces to

Vo + 05% + 032 — 2u(o10s + 0203 + 0301) = 0o/N (81)
For the state of stress as shown by Fig. 47, Eq. 81 becomes
Vo2 4+ 2(1 + w)7® = oo/N (82)

Maximum Energy of Distortion Theory. In this theory inelastic action
is assumed to begin when the energy of distortion per unit volume,
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wg, becomes equal to the value wg. = [(1 + w)o.2]/3E, which is the
energy of distortion per unit volume absorbed at the elastic strength of
the material in a standard tensile specimen. This theory of failure is
applied to a statée of triaxial stress by using the expression for wg given
in Eq. 60. The design equation then may be written

14
Wy = & (61 — 02)% + (02 — a3)® + (03 — 1)l
6E
1

3E

The square root of both sides of Eq. 83 is taken, and then the factor of
safety is applied, for the same reason given in the foregoing treatment
of the total energy. Thus

1+ Wee
\/ Mo = o0 (o2~ 00)* + (o3 — )] =
1 e
3E N

This equation may be simplified by canceling out the common factor
(1 + u)/3E leading to the design equation

V(o1 — 02)* + (02 — 03)° + (05 —a)?] = o/N  (85)
For a state of stress as shown by Fig. 47, Eq. 85 reduces to

Vie? 4 372 = ¢,/N (86)

Mazximum Octahedral Shearing Stress Theory. In this theory of failure,
inelastic action is assumed to begin when the shearing stress on the octa-
hedral planes (planes making equal angles with the planes on which the
three principal stresses act) becomes equal to the value 7g. = 4/20./3,
which is the value of the octahedral stress occurring at the elastic
strength of the material in a standard tensile specimen. When there
are three principal stresses, the octahedral shearing stress is given by
Eq. 26. Thus the design equation is

1 e
. 3 \/(01 —09)2 + (02 — 03)? + (03 — 01)® = 3N (87)
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For the state of stress as shown in Fig. 47, Eq. 87 reduces to

V2 V2 o,

TGrmax = T ‘\’/0'2 + 37'2 = ? N (88)

or simply
Ve + 372 = ¢,/N (89)

which is the same as Eq. 86.

Illustrative Problems

Problem 35. A cylindrical shaft made of steel for which the tensile elastic strength
(yield strength) is ¢, = 100,000 lb per sq in. is subjected to static loads consisting of
a bending moment M = 100,000 lb-in. and a torsional moment 7' = 300,000 Ib-in.
as indicated in Fig. 47. Assume that for steel E = 30 X 10%, u = 0.25. Determine
the diameter d which the shaft must have for a factor of safety of 2.

Solution. The four steps in the rational procedure in design as outlined in Art. 2
(Chapter 1) will guide the solution. The failure results from yielding; therefore, in
accordance with the discussion in Art. 32, the energy of distortion theory of failure,
or its equivalent, the octahedral shearing stress theory, should give the most satis-
factory results. The use of the shearing stress theory also can be justified, as giving
conservative values. Both theories will be used.

MAXIMUM SHEARING STRESS THEORY. The design equation according to this theory
of failure is (see Eq. 75)

rmax = 3V + 422 = 1,/N = L(o,/N)
in which ¢ = Me¢/I = 32M /xd®, and r = Tc/J = 16T /xd®. Thus
(16/7d)V M? + T2 = Y(o,/N)
(1,600,000/7d%) V(1)2 + (3) = 1(100,000/2) = 25,000
Hence d = 4.01 in.

OCTAHEDRAL SHEARING STRESS THEORY. The design equation according to this
theory is (see Eq. 89 or the same equation as obtained by the energy of distortion

theory, Eq. 86)
(16/xd®) V 4M?* 4+ 3T? = o./N
(1,600,000/7d%) V' 4(1)2 + 3(3)* = 50,000
Hence d = 3.83 in.

Thus a diameter not less than 3.83 in. would be justified for strength.

Problem 36. A cylindrical bar of cast iron is subjected to a bending moment of
M = 10,000 lb-in. and a torsional moment of 7' = 30,000 lb-in., as shown in Fig. 47.
Assume that for cast iron ¢, = 30,000 Ib per sq in., E = 15 X 105 and x = 0.25.
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Determine the minimum diameter the bar should have, based on a factor of safety
of 3.

Solution. The four steps in a rational design procedure as outlined in Art. 2
(Chapter 1) are involved in the solution. The bar will fail by brittle fracture. There-
fore, in accordance with the discussion in Art. 31, the maximum principal stress
theory and the maximum principal strain theory are the most satisfactory theories.
Both theories will be used in the solution.

MAXIMUM PRINCIPAL STRESS THEORY. The design formula (Eq. 73) is

Omax = %0‘ + %'\/02 + 472 = ¢,/N

in which o = Mc/I = 32M /xd? and 1 = Te/J = 16T /xd?

Thus (82M /xd®) + 1V (32M /xd®)? + 4(16T /xd®)? = 0./3
1(32/xd®)(M + V' M? + T?) = 10,000
(160,000/xd®)[1 + V(1) + (3)2] = 10,000
xd® = 16 X 4.16 = 66.56
Hence d = 2.77 in.

MAXIMUM PRINCIPAL STRAIN THEORY. According to this theory of failure the de-
sign formula is (see Eq. 78)

€max — (‘Tl/E) - #(0'2/E) = €g
or %o’ —+ %\/0'2 4 472 = ¢,/N
Hence (32/rd®(EM + 3V M? + T?) = 30,000/3

(320,000/xd®[2 X 1 4+ 3V(1)? + (3)2] = 10,000
md® = 75.2
Hence d = 2.88 in.

Thus, if fracture occurs because the strain reaches a limiting value, the shaft
should have a diameter of 2.88 in. in order to prevent the shaft from fracturing when
the loads on the shaft are three times the actual loads. The maximum strain theory
seems to fit the small amount of test data that are availlable somewhat better than
does the maximum principal stress theory.

Problems

37. A pressure P of 10,000 1b on the crank pin of the crank shaft in Fig. 49 is re-
quired to turn the shaft at constant speed. The crank shaft is made of ductile steel
having a tensile (and compressive) elastic limit or yield strength of 40,000 Ib per sq
in. as found from a tension (or compression) test. Assume that E = 30 X 10% and
u = 0.25. Calculate the diameter of the shaft based on a factor of safety of 2. In

the so.
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