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2D Stress Analysis   (Draft 1, 10/10/06) 

 

Plane stress analysis 
 
Generally you will be forced to utilize the solid elements in CosmosWorks due to a 
complicated solid geometry.  To learn how to utilize local mesh control for the solid elements 
it is useful to review some two-dimensional (2D) problems employing the triangular elements.  
Historically, 2D analytic applications were developed to represent, or bound, some classic 
solid objects.  Those special cases include plane stress analysis, plane strain analysis, 
axisymmetric analysis, flat plate analysis, and general shell analysis.  After completing the 
following 2D approximation you should go back and solve the much larger 3D version of the 
problem and verify that you get essentially the same results for both the stresses and 
deflections. 
 
Plane stress analysis is the 2D stress state that is usually covered in undergraduate courses 
on mechanics of materials.  It is based on a thin flat object that is loaded, and supported in a 
single flat plane.  The stresses normal to the plane are zero (but not the strain).  There are 
two normal stresses and one shear stress component at each point (σx, σy, and τ).  The 
displacement vector has two translational components (u_x, and u_y).  Therefore, any load 
(point, line, or area) has two corresponding components.   
 
The CosmosWorks “shell” elements can be used for plane stress analysis.  However, only 
their in-plane, or “membrane”, behavior is utilized.  That means that only the elements in-
plane displacements are active and available to be restrained.  To create such a study you 
need to construct the 2D shape and extrude it with a constant thickness that is small 
compared to the other two dimensions of the part.  Then begin a mid-surface shell study. 
 
Before solid elements became easy to generate it was not unusual to model some shapes as 
2.5D.  That is, they were plane stress in nature but had regions of different constant 
thickness.  This concept can be useful in validating the results of a solid study if you have no 
analytic approximation to use.  Since the mid-surface shells extract their thickness 
automatically from the solid body you should use a mid-plane extrude when you are building 
such a part. 
 
One use of a plane stress model here is to illustrate the number of elements that are needed 
through the depth of a region, which is mainly in a state of bending, in order to capture a 
good approximation of the flexural stresses.  Elementary beam theory and 2D elasticity 
theory both show that the longitudinal normal stress (σx) varies linearly through the depth.  
For pure bending it is tension at one depth extreme, compression at the other, and zero at 
the center of its depth (also known as the neutral-axis).  When the bending is due, in part, to 
a transverse force then the shear stress (τ) is maximum at the neutral axis and zero at the top 
and bottom fibers.  For a rectangular cross-section the shear stress varies parabolically 
through the depth. 
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Since the element stresses are discontinuous at their interfaces, you will need at least three 
of the quadratic (6 node) triangles, or about five of the linear (3 node) triangles to get a 
reasonable spatial approximation of the parabolic shear stress.  This concept should guide 
you in applying mesh control through the depth of a region you expect, or find, to be in a state 
of bending.  This will be illustrated with a simple rectangular beam plane stress analysis.  
Consider a beam of rectangular cross-section with a thickness of t = 2 cm, a depth of h = 10 
cm, and a length of L = 100 cm.  Let a uniformly distributed downward vertical load of w = 
100 N/cm be applied at its top surface and let both ends be simply supported (i.e., have u_y = 
0 at the neutral axis) by a roller support.  In addition, both ends are subjected to equal 
moments that each displaces the beam center downwards.  The end moment has a value of 
M = 1.25e3 N-m. The material is aluminum 1060.  This is a problem where the stresses 
depend only on the geometry.  However, the deflections always depend on the material type.   
 

     
 

Figure 1   A simply supported beam with line load and end moments 
 
It should be clear that this problem is symmetrical about the vertical centerline (why that is 
true will be explained shortly should it not be clear).  Therefore, no more than half the beam 
needs to be considered (and half the load).  Select the right half.  The beam theory results 
should suggest that an even more simplified model would be valid due to anti-symmetry (if 
we assume half the line load acts on both the top and bottom faces).  The 3D flat face 
symmetry restraint was described earlier.  The 2D nature of this example provides insight into 
how to identify lines (or planes in 3D) of symmetry or anti-symmetry. 
 
Symmetry and anti-symmetry restraints 
 
A process for identifying displacement restraints on planes of symmetry and anti symmetry 
will be outlined here.  Assume that the horizontal center line of the beam corresponds to the  
 

 
                    Anti-symmetric                                                             Symmetric 
 

Figure 2  Anti-symmetric (u = 0, v = ?), and symmetric (u = ?, v = 0) displacement states 
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dashed centerline of the anti-symmetric image at the left in Figure 2.  The question is, what, if  
any, restraint should be applied to the u or v displacement component on that line.  To 
resolve that question imagine two mirror image points, a and b, each a distance, ε, above and 
below the dashed line.  Note that both the upper and lower half portions are loaded 
downward in an identical fashion, and they have the same horizontal end supports, .  
Therefore, you expect va and vb to be equal, but have an unknown value (say va = vb = ?).  
Likewise, the horizontal load application is equal in magnitude, but of opposite sign in the 
upper and lower regions.  Therefore, you expect ub = - ua.  Now let the distance between the 
points go to zero (ε  0).  The limit gives v = va = vb = ?, so v is unknown and no restraint is 
applied to it.  The limit on the horizontal displacement gives u = ub = - ua  0, so the 
horizontal displacement can be restrained to zero if you with to use a half depth anti-
symmetric model.  Another way to say that is: on a line of anti-symmetry the tangential 
displacement component is restrained to zero. 
 
The vertical centerline symmetry can be justified in a similar way.  Imagine that the right 
image in Figure 2 is rotated 90 degrees clockwise so the dashed line is parallel to the beam 
vertical symmetry line.  Now u represents the displacement component tangent to the beam 
centerline (i.e., vertical).  The vertical loading on both sides is the same, as are the vertical 
end supports, so the vertical motion at a and b will be the same (say ua = ub = ?).  In the limit, 
as the two points approach each other u = ua = ub = ?, so the beam vertical centerline has an 
unknown tangential displacement and is not subject to a restraint.  Now consider the 
displacement normal to the beam vertical centerline (here v).  At any specified depth, the 
loadings and deflections in that direction are equal and opposite.  Therefore, in the limit as 
the two points approach each other u = ub = - ua  0, so the displacement component normal 
to the beam vertical centerline must vanish.  Another way to state that is: on a line of 
symmetry the normal displacement component is restrained to zero. 
 
Part loadings 
 
From the above arguments, the 2D approximation can be reduced to one-quarter of the 
original domain.  The other material is removed and replaced by the restraints that they 
impose on the portion that remains.  Now your attention can focus on the applied load states.  
The top (and bottom) line load can be replaced either with a total force on the top surface, or 
an equivalent pressure on the top surface, since CosmosWorks does not offer a load-per-
unit-length option.  Unfortunately, either requires a hand calculation that might introduce an 
error.  The less obvious question is how to apply the end moment(s). 
 
Since the general shell element has been force to lie in a flat plane, and have no loads 
normal to the plane, its two in-plane rotational dof will be identically zero.  However, the nodal 
rotations normal to the plane are still active (in the literature they are call drilling freedoms in 
2D studies).  That may make you think that you could apply a moment, Mz, at a node on the 
neutral axis of each end of the beam.  In theory, that should be possible, but in practice it 
works poorly (try it) and the end moment should be applied in a different fashion.  One easy 
way to apply a moment is to form a couple by applying equal positive and negative triangular 
pressures across the depth of the ends of the beam.  That approach works equally well for 
3D solids that do not have rotational degrees of freedom. 
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The maximum required pressure is related to the desired moment by simple static 
equilibrium.  The resultant horizontal force for a linear pressure variation from zero to pmax is 
F = A pmax / 2, where A is the corresponding rectangular area, A = t (h/2), so F = t h pmax / 4.  
That resultant force occurs at the centroid of the pressure loading, so its lever arm with 
respect to the neutral axis is d = 2(h/2)/3 = h/3 (for the top and bottom portions).  The pair of 
equal and opposite forces form a combined couple of Mz = F (2d) = t h2 pmax / 6.  Finally, the 
required maximum pressure is  

pmax = 6 Mz / t h2. 
 
To apply this pressure distribution in CosmosWorks you must define a local coordinate 
system located at the neutral axis of the beam and use it to define a variable pressure.  
However, CosmosWorks non-uniform pressure data requires a pressure scale, pscale , times 
a non-dimensional function of a selected local coordinate system.  Here you will assume a 
pressure load linearly varying with local y placed at the neutral axis: p (y) = pscale * y (with y 
non-dimensional).  This must match pmax at y = h / 2, so 
 

 pscale  = 2 pmax / h = 12 Mz / t h3. 
 

Since it is often necessary to apply moments to solids in this fashion this moment loading will 
be checked independently against beam theory estimates before applying the line load. Here, 
pmax = 3.75e7 N/m2, pscale  = 7.5e8,  
 
CosmosWorks plane stress model 
 
The beam theory solution for a simply supported beam with a uniform load is well known, as 
is the solution for the loading by two end moments (called pure bending).  In both cases the 
maximum deflection occurs at the beam mid-span.  The two values are vmax = 5 w L4 / 384 EI, 
and vmax = M L2 / 8 EI, respectively.  Here the centerline deflection due only to the end 
moment is vmax = 1.36e-3 m.  For a linear analysis and the sum of these two values can be 
used to validate the centerline deflection.  Next, the one-quarter model, shown in Figure 3, 
will be built, restrained, and loaded.  A new static study is opened using a shell mesh defined 
by selecting the front face of the model, and its thickness is defined to be 0.02 m (Figure 4). 
 

 
 

Figure 3 
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Figure 4 
 
Since the stresses through the depth are going to be examined here, you should plan ahead 
and insert some split lines on the front surface to be used to list and/or graph selected stress 
and deflection components.  Here splits were inserted near the interior quarter points (Figure 
5) so, including the end lines five graphing sections will be available.  Having finished the 
geometric model the restraints and loads will be applied. 
 

    
 

Figure 5 
 

Edge restraints and loads 
 
Remember that shells defined by selected surfaces must have their restraints and loads 
applied directly to the edges of the selected surface.  First the symmetry and anti-symmetry 
restraints will be applied.  Since the shell mesh will be flat it is easy to use its edges to define 
directions for loads, or restraints.  In Figure 6, the zero horizontal (x) deflection is applied as a 
symmetry condition on the edge corresponding to the beam vertical centerline, and then as 
the anti-symmetry condition along the edge of the neutral axis. 
 
At the simply supported end it is necessary to assume how that support will be accomplished.  
Beam theory treats it as a point support, but in 2D or 3D that causes a false infinite stress at 
the point.  Another split line was introduced, in Figure 7, and about one-third of that end was  
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Figure 6 
 

 
 

Figure 7 
 
picked to provide the vertical restraint required.  This serves as a reminder that where, and 
how, parts are restrained is an assumption.  So it is wise to investigate more than one such 
assumption.  Software tutorials are intended to illustrate specific features of the software, and 
usually do not have the space for, or intention of, presenting the best engineering judgment.  
Immovable restraints are often used in tutorials, but they are unusual in real applications. 
 

Rigid body motion restraint 
 
Since a general shell element is being used in a plane stress application it still has the ability 
to translate normal to its plane and to rotate about the in-plane axes (x and y).  Those three 
rigid body motions must also be eliminated in any plane stress analysis.  That is done simply 
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by zeroing the z-translation along the top edge of the beam, as in Figure 8.  The combination 
of all the plane stress supports and the rigid body motion restraint is seen in Figure 9. 
 

  
 

Figure 8 
 

 
 

Figure 9 
 

Moment application as a non-uniform pressure 
 
A linear variation of equal and opposite pressures, relative to the neutral axis, can be used to 
apply a statically equivalent moment to a continuum body that does not have rotational 
degrees of freedom.  It also has the side benefit of matching the normal stress distribution in 
a beam subjected to a state of pure bending.  That usually requires the user to define a local 
coordinate system at the axis about which the moment acts.  In this case, it must be located 
at the neutral axis of the beam: 

1.  Select Insert Reference Geometry Coordinate System to open the Coordinate 
System panel. 

2. Right click one end of the neutral axis to set the origin of Coordinate System 1. 
3. If the y-axis is vertical pick OK, else pick part edges to orientate the y-axis (Figure 10). 
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Figure 10 
 
The application of the non-uniform pressure is applied at the front vertical edge at the simple 
support in the Pressure panel of Figure 11.  A unit pressure value is used to set the units 
and the magnitude is defined by multiplying that value by a non-dimensional polynomial of 
the spatial coordinates of a point, relative to local Coordinate System 1 defined above. 
  

 
 

Figure 11 
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Mesh and run the study 
 
Having completed the restraints and loads the default names in the manager menu have 
been changed (by slow double clicks) to reflect what they are intended to accomplish (left of 
Figure 12).  Also, the mesh has been designed to be crude so as to illustrate how mesh 
control is needed in regions of solids subjected to local bending. 
  

   
 

Figure 12 
 
Post-processing and result validation 
 
The maximum vertical deflection and the maximum horizontal fiber stress will be recovered 
and compared to a beam theory estimate in order to try to validate the FEA study.  For this 
simple geometry and pure bending moment the beam theory results should be much more 
accurate than is usually true.  As stated above, the maximum vertical deflection at the 
centerline is predicted by beam theory to be vmax = 1.36e-3 m.  The resultant displacement 
vectors are seen in Figure 13.  They are seen to become vertical at the centerline.  A probe  
 

 
 

 
 

 
Figure 13 
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displacement result at the bottom point of the vertical centerline line gives vFEA = 1.36e-3 m, 
which agrees to three significant figures with the elementary theory.  A detail view of the 
support region (bottom of Figure 13) shows that the displacement vectors close to the 
restraint are basically rotating about that support. 
 
For bending by end couples only, the elementary theory states that the horizontal fiber stress 
is constant along the length of the beam and is equal to the applied end pressure.  That is, 
the top fiber is predicted to be in compression with a stress value σx = pmax = 3.75e7 N/m2. 
That seems to agree with the contour range in Figure 14 and indeed, a stress probe there 
gives a value of σx = -3.77e7 N/m2.  Beam theory gives a linear variation, through the depth, 
from that maximum to zero at the neutral axis.  To compare with that, a graph of along the 
quarter point split line is given in Figure 15.  It shows that the seven nodes along the edges of 
the three quadratic elements have picked up the predicted linear graph quite well.  For the 
next load case of a full span line load the shear stress (that is zero here) will be parabolic and 
the corresponding graph will be less accurate for such a crude mesh. 
 

      
 

Figure 14 
 

 
 

Figure 15 
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Reaction recovery 
 
For this first load case, the only external applied load is the horizontal pressure 
distribution.  It caused a resultant external horizontal force that was shown above to 
be F=18,750 N.  You should expect the finite element reaction to be equal and 
opposite of that external resultant load.  Check that in the manager menu: 

1. Right click Results  List Reaction Force to open the panel with the reaction 
forces and moments. 

2. Examine the horizontal (x) reaction force and verify that its sum is -18,750 N. 
(The sum of the moments is often confusing because they are computed with 
respect to the origin of the global coordinate system, and most programs never 
mention that fact 

          
 

Figure 16 
 
To test your experience with CosmosWorks, you should now run this special case study as a 
full 3D solid subject to the same end pressures.  You will find this model was quite accurate.  
While planning 3D meshes you can get useful insights by running a 2D study like this.  Also, 
a 2D approximation can be a useful validation tool if no analytic results or experimental 
values are available.  They can also be easier to visualize.  Of course, many problems 
require a full 3D study but 1D or 2D studies along the way are educational. 
 

Load case 2, the transverse line load 
 
Having validated the moment load case, the line load will be validated and then both load 
cases will be activated to obtain the results of the original problem statement.  First, go to the 
manager menu, right click on the moment pressure load and suppress it.  Next you open a 
new force case to account for the line load.  Recall that the line load totaled 10,000 N.  Since 
the part has been reduced to one-fourth through the use of symmetry and anti-symmetry you 
only need to distribute 2,500 N over this model.  There are two ways to do that for selected 
surface shell formulation of any plane stress problem.  They are to apply that total as either a 
line load, or to distribute it over the mesh face as a pressure (which is the better way).  Figure 
17 (left) shows the Apply Force approach.  That approach has been made less clear by the 



Page 12 of 18.  Copyright J.E. Akin.  All rights reserved. 

way the split lines were constructed.  The top of the beam has been split into four segments 
and this method applies a force per entity.  Therefore, a resultant force of 625 N per edge 
segment is specified.  Had the split lines not had equal spacing you would have to measure 
each of their lengths and go through this procedure four times (the pressure approach avoids 
that potential complication).. 
 

     
 

Figure 17 
 
With this second load case in place the study is simply run again with the same restraints and 
mesh.  Since this loading procedure was potentially confusing the first information recovered 
from the results file was the force reaction data, on the right in Figure 17.  Those data verify 
that the total vertical force on the quarter model was 2500 N, as desired.  Thus, only a series 
of quick spot checks of the results are carried out before moving on to the true problem 
where both load cases are activated. 
 
The beam theory validation result, for this line load, predicted a maximum vertical centerline 
deflection of vmax = 1.13e-3 m.  The plane stress maximum deflection was extracted: 

1. Right click in the manager menu Results List Displacements (see top of Figure 18) 
to open the Displacements List window. 

2. Under List Options select Absolute Max, OK. 
3. When the list appears note (bottom of Figure 18) that the maximum deflection is 

1.16e-3 m at the vertical centerline position.  That is very close to the initial estimate. 
The contoured magnitude is also given in that figure.  It again shows a rotational motion 
about the simple support end, and vertical translation at the beam centerline, as expected. 
 
The numerical value of the maximum horizontal fiber stress was listed in a similar manner.  
The maximum compression value, in Figure 19, of σx =-4.04e7 N/m2 compares well with the  
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Figure 18 
 

 

 
 

Figure 19 
 
simple beam theory value of -3.75e7 N/m2, being about a 7% difference.  Since the mesh is 
so crude the beam stress is probably the most accurate and the plane stress value will match 
it as a reasonably fine mesh is introduced.  The purpose of the crude mesh is to illustrate the 
need for mesh control is solids undergoing mainly flexural stresses.  To illustrate that point, 
Figure 20 presents the normal stress and shear stress, through the depth, at the L/4 and L/8 
positions.  Beam theory says the normal stress is linear while the shear stress is parabolic.  
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The beam theory shear stress should be zero at the top fiber and, for a rectangular cross-
section, has a maximum value at the neutral axis of 1.88e6 N/m2.  The detail graph values in 
Figure 21 shows a plane stress maximum shear of 1.84e6 N/m2 and a minimum of 0.3 e6 
N/m2.  That is quite good agreement, but it took six quadratic elements through the full depth 
to capture the shear.  The top parabolic segment is approximated by three linear segments.  
 

 

 
                                 L / 4                                                                 L / 8 
 

Figure 20 
 
 

   
 

Figure 21 
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Alternate line load option 
Before leaving this single load case the alternate method for applying the effect of the line 
load is mentioned.  Basically it is applied as a pressure parallel to the flat face of the entire 
plane stress model (that is, it is actually a shear stress traction in the vertical direction).  To 
compute the necessary shear stress the quarter model load (2,500 N) was divided by the part 
face area (h L/2 = 0.025 m2) and entered are the pressure value tangent to the reference 
geometry, as shown in Figure 22.  This approach gave the exact same results as those in the 
previous section.  This load approach as suppressed for the final combined loading. 
 

 
 

Figure 22 
 

Combined load cases 
 
Having validated each of the two load cases they are combined by un-suppressing the end 
moment condition (Figure 23 left) and running the study again with the same mesh.  Here, 
the two sets of peak deflections and stresses simply add because it is a linear analysis.  A  
 

     
 

Figure 23 
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quick spot check verifies the expected results.  The reaction force components were verified 
(Figure 23 right) before listing the maximum deflection and fiber stress (Figure 24). 
 

 

 
 

Figure 24 
 

What remains to be done is to examine the likely failure criteria that could be applied to this 
material.  They include the Von Mises effective stress, the maximum principle shear stress, 
and the maximum principle normal stress.  The Von Mises contour values are shown at the 
top of Figure 25, twice the maximum shear stress (the stress intensity) is given in the middle 
of that figure while the bottom displays the maximum principle stress (P3).  Actually, P3 is 
compressive here but it corresponds to the mirror image tension on the bottom fiber of the 
actual beam. 
 
All three need to be compared to the yield point stress of 2.8e7 N/m2.  The arrow in the top 
part of the figure highlights where that falls on the color bar.  All of the criteria exceed that 
value, so the part will have to be revised.  At this point failure is determined even before a 
Factor of Safety (FOS) has been assigned.  For ductile materials, the common values for the 
FOS range from 1.3 to 5, or more [1].  Assume a FOS = 3.  The current design is a factor of 
about 3.3 over the yield stress.  Combining that with the FOS means that the stresses need 
to be reduced by about a factor of 10. 
 
The cross-sectional moment of inertia, I = t h3 /12, is proportional to the thickness, t, so 
doubling the thickness cuts the deflections and stresses in half.  Changing the depth, h, is 
more effective for bending loads.  It reduces the deflection by 1/ h3 and the stresses by a 
factor of 1/(2 h2).  The desired reduction of stresses could be obtained by increasing the 
depth by a factor of 2.25. 
 
The above discussion assumed that buckling has been eliminated by a buckling eigen-
analysis.  Since buckling is usually sudden and catastrophic it would require a much higher 
FOS.  Very high precision machines are usually governed by deflection limits.  That case is 
not considered here.  

 

Advanced output options 
 

There are times when the software will not provide the graphical output you desire.  For 
example, you may wish to graph the plane stress deflection against experimentally measured 
deflections.  The CosmosWorks List Selected feature for any contoured value allows the data 
on selected edges, split lines, or surfaces to be saved to a file in a comma separated value 
format (*.csv).  Such a file can be opened in an Excel spreadsheet, or Matlab, to be plotted 
and/or combined with other data.  To illustrate the point, when the beam deflection values 
were contoured the bottom edge was selected to place its deflections in a table. 
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Figure 25 
 

Then the Report Options display was used to Save those data (node number, deflection 
value, and x-, y-, z-coordinates) to a named file (Figure 26).  Next, the data were opened in 
Excel, sorted by x-coordinate, and graphed as deflection versus position (Figure 27).  You 
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could add experimental deflection values to the same file and add a second curve for 
comparison purposes. 

 

 
 

 
 

Figure 26 
 

 
 

Figure 27 
 

References 
 
[1]  R.L. Norton, Machine Design; An Intergrated Approach, Prentice Hall, 1996. 
 
[2]  E.P. Popov, Engineering Mechanics of Solids, Prentice Hall, 1990. 


