Most of the information about the MODEL code is at http://www.owlnet.rice.edu/~mech517 under "MODEL Software" Information about control, data, notation include: Building_Your_MODEL.txt Data_Input_Order.txt Keyword_Control_Input.txt Required_Key.txt Boundary_condition_flag.txt Properties_Data.txt Extending_Sys_Constants.txt Getting_to_MODEL_Data.txt Application_Include_File.txt Notation_in_MODEL.txt Array_sizes.txt Element_node_order.txt Keywords_sorted.txt Plots_by_Subject.txt Reset_MODEL_Data.txt System_unit_numbers.txt Overview of Unix operation (excluding detailed outputs): step_by_step_104.txt step_by_step_202_08.txt Validation Examples: Descriptions, Source, Input, Output are at: http://www.owlnet.rice.edu/~mech517/Applications summaries are listed in files By_Example_Number.txt By_Subject.txt By_Exact_Case.txt, etc A few hundred Matlab plots scripts using MODEL output are in: ttp://www.owlnet.rice.edu/~mech517/public_html/Matlab_Plots with a few descriptive (and incomplete) *.txt files. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ For example, looking for validation problems related to torsion yields: MODEL CODE EXAMPLES BY EXAMPLE NUMBER ** (R) means exact results are in data remarks, (S) means discussed in Selected Solutions ------------------------------- ------- ------- -------- -------------------- Subject Example DataSet Exact_Case or Equation Number Numb(S) Number(I,R) Remark ------------------------------- ------- ------- -------- -------------------- Axial_or_torsional_bar_L2 136 01 R Nat_Freq_Spring_Mass Axial_or_torsional_bar_L2 136 02 R Time_Hist_Spring_Mass Axial_or_torsional_bar_L2 136 03 R Time_HistB_Spring_Mass Axial_or_torsional_bar_L2 136 04 R Twist_stepped_bar Axial_or_torsional_bar_L2 136 05 R Bar_torsional_nat_freq Axial_or_torsional_bar_GQ 137 01 R Time_Hist_Spring_Mass Axial_or_torsional_bar_GQ 137 02 R Drill_collar_lumped_L3 Axial_or_torsional_bar_GQ 137 03 R Drill_and_collar_L3 Eigenvalue_analysis 136 05 R Bar_torsional_nat_freq Torsion_Stress_Function 205 01 R Square_Bar_T6 ------------------------------- ------- ------- -------- -------------------- ** (I) means exact results in my_exact_inc file (R) means exact results are in data remarks, (S) means discussed in Selected Solutions Select example 137, data set 2. The input is m 137_02.dat title "Thomson drill string & collar" jacobi ! Full matrix general Jacobi eigensolution eigen_show 3 ! Number of eigen values & vectors to list eigen_root ! Report square root of eigenvalue nodes 7 ! Number of nodes in the mesh elems 3 ! Number of elements in the system dof 1 ! Number of unknowns per node el_nodes 3 ! Maximum number of nodes per element space 1 ! Solution space dimension gauss 3 ! Maximum number of quadrature points el_real 4 ! Number of real properties per element el_homo ! Element properties are homogeneous pt_masses ! Point (diagonal) masses will be input no_scp_ave ! Do NOT get superconvergent patch averages no_error_est ! Do NOT compute SCP element error estimates example 137 ! Application source code example number remarks 10 ! Number of user remarks quit ! keyword input, remarks follow Thomson "Mech. Vib." 2-ed, Example 56.3 drill string & collar system, via L3 elem 1 *---(G_e, I_e, Rho_e, Q_e)---* 2, Element in x 1 2 3 4 5 6 7 Nodes Fixed *----*---*---*----*---*----* Free (1) (2) (3) J_collar I_pipe = 9.4e-4 ft^4, I_collar = 1.593e-2 ft^4 G_steel = 1.728e9 lb/ft^2, Rho_steel = 15.22 lb s^2 / ft^2 Lumped 120' collar J = rho * L_c * I_c = 29.3 lb ft s^2 L_drill = 5000 ft, Freq = 2.41, 7.93 rad/s (approximately) 1 1 0. ! node, bc_flag, x 2 0 833.3333 3 0 1666.6667 4 0 2500. 5 0 3333.3333 6 0 4166.6667 7 0 5000. 1 1 2 3 ! elem, 3 nodes 2 3 4 5 3 5 6 7 1 1 0. ! node, dof, essential value 1 1.728e9 9.4e-4 15.22 0.0 ! el: G_e, I_e, Rho_e, Q_e 7 1 29.3 ! J_collar ++++++++ The condensed output text file is: m 137_02.out TITLE: "Thomson drill string & collar" THE NEXT 10 LINES ARE USER REMARKS 1 Thomson "Mech. Vib." 2-ed, Example 56.3 2 drill string & collar system, via L3 elem 3 1 *---(G_e, I_e, Rho_e, Q_e)---* 2, Element in x 4 1 2 3 4 5 6 7 Nodes 5 Fixed *----*---*---*----*---*----* Free 6 (1) (2) (3) J_collar 7 I_pipe = 9.4e-4 ft^4, I_collar = 1.593e-2 ft^4 8 G_steel = 1.728e9 lb/ft^2, Rho_steel = 15.22 lb s^2 / ft^2 9 Lumped 120' collar J = rho * L_c * I_c = 29.3 lb ft s^2 10 L_drill = 5000 ft, Freq = 2.41, 7.93 rad/s (approximately) *** NODAL POINT DATA *** NODE, BC_FLAG, X-Coord, 1 1 0.0000 2 0 833.3333 3 0 1666.6667 4 0 2500.0000 5 0 3333.3333 6 0 4166.6667 7 0 5000.0000 ELEMENT TYPE NUMBER = 1 NUMBER OF NODES PER ELEMENT .......... 3 NUMBER OF QUADRATURE POINTS .......... 3 *** ELEMENT CONNECTIVITY DATA *** ELEMENT, 3 NODAL INCIDENCES. 1 1 2 3 2 3 4 5 3 5 6 7 *** CONSTRAINT EQUATION DATA *** CONSTRAINT TYPE_ONE: (PAR_1 @ NODE_1) = A_1. EQ. NO. NODE_1 PAR_1 A_1 1 1 1 0.00000E+00 *** ELEMENT PROPERTIES *** ELEMENT, 4 PROPERTY & REAL_VALUE PAIRS 1 1 1.728E+09 2 9.400E-04 3 1.522E+01 4 0.000E+00 *** INITIAL POINT MASSES DATA *** NODE PARAMETER MASS EQUATION 7 1 2.93000E+01 7 *** EIGEN ANALYSIS RESULTS *** 3 EIGENVALUE SQUARE ROOTS (LOW TO HIGH): 1 2.41978E+00 2 7.94452E+00 3 1.43431E+01 NOTE: SOLUTION RESULTS SAVED TO node_results_000.tmp 3 EIGENVECTORS (FROM LOWEST TO HIGHEST): 1 0.00000E+00 2.72063E-02 5.34417E-02 7.77678E-02 9.93187E-02 1.17321E-01 1.31137E-01 NOTE: SOLUTION RESULTS SAVED TO node_results_001.tmp 2 0.00000E+00 9.19261E-02 1.49683E-01 1.51507E-01 9.70162E-02 6.27246E-03 -8.68028E-02 NOTE: SOLUTION RESULTS SAVED TO node_results_002.tmp 3 0.00000E+00 -1.50405E-01 -1.32703E-01 3.00318E-02 1.59200E-01 1.14376E-01 -5.82852E-02 NOTE: SOLUTION RESULTS SAVED TO node_results_003.tmp ++++++++++++++++++++++++ The problem dependent source lines are: m 137.my_el_sq_inc ! .............................................................. ! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW *** ! .............................................................. ! Dynamic, Eigen, or Static axial or torsional response of a bar ! K*A U,xx + Rho*A U,tt + Q_e = 0, by numerical integration ! U = displacement, K = stiffness, A = area ! Rho = mass density, Q_e = source per unit length ! 1 *---(K_e, A_e, Rho_e, Q_e)---* LT_N, Axial element in x ! 1 *---(G_e, I_e, Rho_e, Q_e)---* LT_N, Torsional element in x REAL(DP) :: DL, DX_DN ! Length, Jacobian REAL(DP) :: K_e, A_e, Rho_e, Q_e ! properties INTEGER :: IQ ! Loops DL = ABS(COORD (LT_N, 1) - COORD (1, 1)) ! length K_e = GET_REAL_LP (1) ! elastic modulus; shear modulus A_e = GET_REAL_LP (2) ! area of bar; inertia of bar Rho_e = GET_REAL_LP (3) ! mass density Q_e = GET_REAL_LP (4) ! source per unit volume; 0 DX_DN = DL / 2. ! CONSTANT JACOBIAN E = K_e * A_e ! CONSTANT E CALL STORE_FLUX_POINT_COUNT ! Save LT_QP for post-processing DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES ! GET INTERPOLATION FUNCTIONS, AND X-COORD H = GET_H_AT_QP (IQ) XYZ = MATMUL (H, COORD) ! ISOPARAMETRIC ! LOCAL AND GLOBAL DERIVATIVES, B = DGH DLH = GET_DLH_AT_QP (IQ) DGH = DLH / DX_DN ! STIFFNESS AND MASS MATRICES S = S + MATMUL (TRANSPOSE(DGH), DGH) * WT (IQ) * DX_DN & * K_e * A_e EL_M = EL_M + OUTER_PRODUCT (H, H) * WT (IQ) * DX_DN & * Rho_e * A_e C = C + H * Q_e * WT (IQ) * DX_DN ! SOURCE VECTOR CALL STORE_FLUX_POINT_DATA (XYZ, E, B) ! for post-processing END DO ! QUADRATURE LOOP ! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS *** ++++++++++++++++ The brief description is: m 137.txt Application example summary text: EXAMPLE=137 Dynamic axial or torsional response of a linear bar Equation: K*A U,xx + Rho*A U,tt + Q_e = 0, U = displacement, K = stiffness, A = area Rho = mass density, Q_e = source per unit length 1 *---(K_e, A_e, Rho_e, Q_e)---* LT_N, Axial element in x 1 *---(G_e, I_e, Rho_e, Q_e)---* LT_N, Torsional element in x Prop: 1 2 3 4 DATA_SET = 01 Natural frequency of Biggs 4dof model Bigg's spring mass system, via L3 elem 1 *---(K_e, A_e, Rho_e, Q_e)---* 2, Element in x 1 k1 3 k2 5 k3 7 Fixed *----*---*---*----*---*----* Free 2 m3 4 m5 6 m7 k1=6000 k2=4000 k3=2000 m2=2 m3=1 m4=1 approximate massless bar with Rho << 1 DATA_SET = 02 drill string & collar system, via L3 elem 1 *---(G_e, I_e, Rho_e, Q_e)---* 2, Element in x 1 2 3 4 5 6 7 Nodes Fixed *----*---*---*----*---*----* Free (1) (2) (3) J_collar I_pipe = 9.4e-4 ft^4, I_collar = 1.593e-2 ft^4 G_steel = 1.728e9 lb/ft^2, Rho_steel = 15.22 lb s^2 / ft^2 Lumped 120' collar J = rho * L_c * I_c = 29.3 lb ft s^2 L_drill = 5000 ft, Freq = 2.41, 7.93 rad/s (approximately) DATA_SET = 03 drill string & collar system, via L3 elem 1 *---(G_e, I_e, Rho_e, Q_e)---* 2, Element in x 1 2 3 4 5 6 7 8 9 Nodes Fixed *----*----*----*----*----*----*-*-* Free (1) (2) (3) (4) I_pipe = 9.4e-4 ft^4, I_collar = 1.593e-2 ft^4 G_steel = 1.728e9 lb/ft^2, Rho_steel = 15.22 lb s^2 / ft^2 120' collar J = rho * L_c * I_c = 29.3 lb ft s^2 L_drill = 5000 ft, Freq = 2.41, 7.93 rad/s (approximately) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++