

Chapter 14


STABILIZED METHODS


14.1 Introduction


We hav e employed several weighted residual methods to formulate our finite
element solutions. Most of the time we have used the standard Galerkin method where
we multiply a residual error by a special weighting function. Recall that within an
element we assumed a spatial interpolation for the approximate solution as


(14.1)x ∈ Ωe : u(xx) = HH(xx) UUe =
j


Σ H j (xx) Ue
j


which in turn defines the residual error


(14.2)R (HH(x)) ≠ 0


The standard Galerkin method (sometimes called theBubnov-Galerkin)is said to be a
process that "makes the spatial approximation orthogonal to the residual error" by
requiring the weighed system to be


(14.3)∫Ω
Wj R(xx) dΩ = 0 j


where the weights are defined to be


(14.4)Wj (xx) ≡ H j (xx) ,


the element spatial interpolation associated with nodej .
The Galerkin method works well for elliptical differential equations. However, when


it was applied to other classes of differential equations it was often found to yield
"unstable" solutions, i.e., solutions that exhibit non-physical spatial oscillations.
Generally the standard Galerkin approach is seen to break down in problems with strong
boundary layer effects. The analytical approach to such problems is usually called
singular perturbation theory. Typically such problems have a data dependent coefficient
multiplying the highest derivative. In common special cases that coefficient approaches
zero and the nature of the equation changes because of the loss of the highest derivative
term. Alternatively, one can view it as a reduction in the number of boundary conditions
which causes a very rapid change in the solution (i.e., a boundary layer) near the region
of the "lost" boundary condition data. Some analysts divide the differential equation by
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the coefficient multiplying the highest derivative term and thereby create an increased
emphasis on the lower order derivative terms in the equation. One of the first studies to
successfully apply a new finite element theory "for second order problems with
significant first derivatives" was the use of thePetrov-Galerkinmethod by Christie, et al,
in 1976 [3]. Since then the Petrov-Galerkin methods [15, 25] have generally come to be
known as "stablized" formulations because they prevent the spatial oscillations and
sometimes yield nodally exact solutions where the classical Galerkin method would fail
badly. They are also very important because they allow equal order element interpolation
for mixed nodal variables, such as pressure and velocity, that otherwise would not be
possible.


14.2 Petrov-Galerkin Method


The Petrov-Galerkin method is assumed to be more general because it does not
restrict the weights to just the special case of the spatial distribution of the approximating
solution, but adds some additional terms to it:


(14.5)∫Ω
( Wj + ττ j P j ) R(xx) dΩ = 0 j


where the Pj denotes Pertov or "stabilization" terms [9, 23]. In Eq. (14.5) theττ j


multipiler was introduced to recognize that one would often need to account for the
difference in units betweenWj and Pj and to scale their relative importance in the
solution. Here we will refer to each suchττ term as a "stabilization parameter" [23, 24].
If we are going to allow the weighting of the residual error to be more general than the
classic Galerkin approach we are faced with selecting a rational for the additional
weights. Some methods have been tried and shown to work well for some classes of
equations, such as theadvective-diffusionequation [15]. Since advection means "to
carry along" it often occurs in modeling various transport phenomena. One of the
common applications is heat transfer with mass flow. That is usually referred to as a
convection-diffusion problem. For such problem classes the Petrov-Galerkin method is
often used to create "upwind elements" as one way to stabilize the
solution [2, 4, 5, 7, 10, 11, 16]. One can find many articles on those subjects, but most
employ linear elements and zero source terms. These simplifications may hide more
general concepts.


Consider a typical application such as convective-diffusive heat transfer governed by


(14.6)ρc(
∂φ
∂t


+ vv . ∇∇φ ) = ∇∇(KK∇∇φ ) + Q


wherevv denotes a given velocity vector field,Q is the volumetric source and the material
properties ρ, c, KK are the mass density, specific heat and thermal conductivities,
respectively. We select a generalized weight function


(14.7)w = (φ + p)


where p(x) is the new Petrov or stabilization term(s). Then we invoke the method of
weighted residuals:
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(14.8)
Ω
∫ (φ + p)[ρc(


∂φ
∂t


+ vv . ∇∇φ ) − ∇∇(KK∇∇φ ) − Q]dΩ = 0.


Usuallyφ (x) is taken as continuous across element boundaries and thus allows one
to employ integration by parts to yield the terms given earlier in the classical Galerkin
form. The Petrov term,p(x), may or may not be continuous across element boundaries.
Usually it is not continuous and we can not reduce the order of the derivatives in its
integrals. In either case, we can view this expanded integral form as


(14.9)[Classical Galerkin] + [Stablization Terms] = 0


where the stabilization term here is


(14.10)I s =
Ω
∫ p(x)[ρc(


∂φ
∂t


+ vv . ∇∇φ ) − ∇∇(KK∇∇φ ) − Q]dΩ


which is clearly zero for the exact solution. This is a typical example of a Petrov-
Galerkin approach. Note that unless integration by parts can be employed this term
retains the highest derivative found in the original equation. That would either increase
the interpolation inter-element continuity requirement, or restrict the integral evaluation
to each of the element domains rather that the full domain,Ω. The latter occurs, for
example, when one includes a least squares weight (partial derivative of the residual error
with respect to the unknowns) as a Petrov term [13]. This leads to a Galerkin/Least
Squares (GLS) stabilization process.


It should be noted that in most low order elements the second derivatives are zero
and thus the diffusion term is often omitted in the stabilization calculation. However, the
second derivatives can always be estimated using patch methods or other techniques
when using an iterative solution.


Since the Galerkin process works well in most cases, we review its properties and
seek a change in them that may better capture advective-diffusion type solutions. The
most common general form of the Petrov-Galerkin method is to pick the weights as


(14.11)Wj = hj + α F j


where the sum of the integrals of theF j is zero. Some authors, such as Kondo et al [16],
like to include additional terms in the summation in an effort to improve the numerical
accuracy, but others include different residuals to provide physical insight to the
stabilization terms [21].


Continuous Petrov Forms


Huebner and Thornton [12] present an example formulation where theF j (x) are
picked to be continuous across the element boundaries and thus they are able to apply
integration by parts, over the entire domain, to the new terms and retain the use ofC°
interpolation. Others have used similar approaches, such a element bubble functions, but
most applications involve functions that are discontinuous across the inter-element
boundaries.


Discontinuous Petrov Forms
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In most advection applications behavior in the streamline direction is usually more
important than in the perpendicular "cross-wind" direction. It is possible to bias the
Petrov weight by defining it to be the scalar result of the dot product of a unit vector,
nnv = − vv / ||vv||, in the upwind streamline direction (obtained from the velocity vectorvv)
and some other assumed vector function, sayGG(x):


(14.12)p(x) = nnv(x) . GG(x) .


This common special case is know as the Streamline Upwind Petrov-Galerkin
(SUPG) method [1, 10, 11, 13]. The vector function is usually taken as the gradient of the
solution,GG(x) = L∇∇φ (x), whereL is constant, with length dimension, introduced to keep
the units consistent with those ofφ . Since the gradient is usually discontinuous between
elements, we can not use integration by parts onp(x) over the solution domain.


The goal of the Streamline Upwind Petrov-Galerkin is to stabilize the solution by
adding information to include a bias on gradients in the flow direction. For a given
velocity v this is done by defining the SUPG weight function to be


(14.13)Wj (x) = H j (x) + α h ∇∇H j (x) . vv(x)


||v||
whereh is a measure of the element size, and from one-dimensional studiesα can be
related to the local element Peclet number so as to obtain optimal accuracy [1]. In terms
of the notation of Eq. (14.5), we would haveτ j = α h / ||vv||, andPj = v .∆∆H j . Tezduyar
and Osama [24] have giv en mathematical norm definitions for establishing both element
and nodalττ values. Other definitions ofτ will be considered later.


Recall that the element interpolations based on Lagrangian methods have the
property that at any point in space


(14.14)
j


Σ H j (xx) = 1


Likewise, any gradient in thexγ spatial direction of the above sum is the null vector


(14.15)
j


Σ
∂H j


∂xγ
(x) = 0γ


where typically 1≤ γ ≤ 3. Recall here that the units have changed by the introduction of
a length in the denominator due to taking a spatial derivative. For future reference
consider a scalar zero term created by dotting this summation with a unit vectornn(xx) in
the spacexx


(14.16)
γ
Σ 


 j
Σ


∂Nj


∂xγ




nnγ (xx) = 0


Typically, we wish to consider an upwind bias and use the velocity vector to define the
unit vector as


(14.17)nnγ =
vγ


|v|
and then the reference lengthh may be taken as some appropriate element distance.
Finally, we multiply the result by a constant 0≤ α ≤ 1 to indicate the relative amount of
"upwind" emphasis. From this we see that ifvv is constant
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(14.18)
j


Σα h∇∇H j
vv


||v||
= 0


so that


(14.19)
j


ΣWj (x) =
j


Σ H j (x) = 1


as in the standard Galerkin form. Typically,α is picked to give the optimal result for a
1-D solution. That optimal value is usually defined in a collocation sense in that it
exactly satisfies the PDE at a point in a uniform grid (for special choices ofQ). The
appearance ofh in the stabilization term, of Eq. (14.13), has lead several authors to
propose ways to evaluate the relevant element length to be employed. We will review
some of the methods in the next section and later relate them quantitatively to other
length measures related to turbulence modeling.


14.3 Geometric Measures of Element and Nodal Lengths forττ


The stabilization parameters,ττ , often involve definitions that require a local length
in the streamline direction related to the element size. Most researchers assume an
av erage value over the element [1] while others allow for different lengths (andττ values)
to be associated with each node of the element [24]. We will utilize 1-D and 2-D
elements to illustrate some of the available geometric constructions ofh. For advection-
diffusion problems formulated with 1-D linear elements it was shown that to obtain
nodally exact solutionsh was the element length andQ = 0 [1]. The same study showed
an extension to quadrilaterals as illustrated in Fig. 14.2.1. Since the stabilization term
was to be biased in the streamline direction it is commonly thought that the length
measure should also take into consideration the flow direction. It is denoted by the unit
vectorn in the figure. There the lengths of the element,AA andB, are established in the
local coordinate directions. They are dotted with the unit vector in the streamline
direction and the sum of the absolute value of the two distances is taken as the element
size. A similar process can be used for linear hexahedra [1, 10], and for linear
triangles [11]. These geometric approaches have been used in many stabilization studies
with linear elements. For higher degree element interpolations there are fewer
suggestions for geometric approaches to definingh [4, 6]. Here we will introduce some
approaches for higher order Lagrangian elements in 1-D, 2-D, and 3-D. These new
approaches could be extended to p-adaptive elements by using weights proportional to the
number of unknowns per node.


Rather than use local coordinate directions which depend on the element type, but
not its degree, one can always define geometric measures by beginning with the
collection of relative position vectors from the element centroid to each of its nodes. That
allows for various length projections in the streamline and cross-flow directions.


A geometric process similar to that of Brooks and Hughes [1] that establishes an
element value length is shown in Fig. 14.2.2. There vectors are established at each node
to create a relative nodal streamline directional distance from the element center. Those
nodal distances can be employed to define a maximum element distance by using the
absolute value of the most positive and negative nodal distances, as shown in 2c. An
av erage element measure can be obtained by averaging the positive (downwind) distances
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a )  Local coordinate vectors


n


V = V n


c)  Mean downwind distance


A


B


b


a


b) Streamline components


n
A


B


b


a


h_a


h_b


h = |h_a| + |h_b|


Figure 14.2.1 Classic quadrilateral element downwind distance


and averaging the negative (upwind) distances, as shown in 2d. Note that the number of
nodes considered to be downwind (and upwind) will vary with the direction ofn, but
there will always be at least one downwind node when defined in this way. The same
process works for all element types. The lengths for a linear triangular element are given
in Fig. 14.2.3


Being vector based this geometric process automatically extends to 3-D space. For
higher degree Lagrangian elements it allows for curvilinear shapes and indirectly
accounts for the change in degree of Lagrangian elements. To illustrate these definitions
for a quadratic element we begin in 1-D, in Fig. 14.2.4, where we compare linear and
quadratic line elements. One can consider nodal vector lengths, in 4c, or scalar nodal
distances, in 4d. For advective-diffusion in 1-D we use a stabilization parameter,ττ , based
on the element length,L, to obtain nodally exact solutions [1]. Codina, et al [4],
conducted a similar study for 1-D quadratic elements and showed that to obtain nodally
exact solutions theττ term for the center node is approximately half that of the end nodes.
For infinite Peclet numbers (pure advection) the center nodeττ is exactly half the two end
nodeττ values. Note that in Fig. 14.2.4d the center node measure is exactly half the end
node values.


As a final geometric example for higher degree elements consider the quadratic
quadrilateral element in Fig. 14.2.5. The generalization for the average downwind
distance vector to the element center,J, always depends on the number of upwind nodes
which will vary in turn with the direction of the streamline,n. Being based on an integer
value count that upwind average can show localized jumps asn changes direction.
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a )  "Radial"  position  vectors


n


V = V n


b )  Nodal  downwind  distances, NDD


A


B


C


D


[(C + D) - (A + B)] / 2


d )  Average rule length, AD


n


max


min


max - min


c)  Maximum rule length, MD


a


b


c


d


Figure 14.2.2 Quadrilateral element downwind distance options


a )  "Radial"  position  vectors


n


V = V n


b )  Nodal  downwind  distances, NDD


A


B


C


[ (A + B) / 2 - C ]


d )  Average rule length, AD


n


max - min


c)  Maximum rule length, MD


max


min


a


b


c


Figure 14.2.3 Triangular element downwind distance options
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n
A


B


a) Relative positions from center


b) Center downwind distance, - A


J = - A


B’ = B + J


A’ = A + J = 0


c) Nodal downwind vectors


d) Nodal downwind lengths


a = |A| + |J | = L


b = |B| + |J| = L


n
A


BC = 0


J = - A


B’ = B + J


C’ = C + J


A’ = 0


a = |A| + |J | = L


b = |B| + |J | = L


c = |C| + |J | = L / 2


Figure 14.2.4 Linear (left) and quadratic (right) line element measures


Alternatively, the vectorJ could be taken as the negative of the largest upwind vector at
the element nodes (− G in 5b)


14.4 Review of SUPG Concepts


There are numerous publications on the mathematics and application of the
SUPG of Brooks and Hughes [1]. Several arguments have been given to describe why
the stabilization method drastically improve the results of finite solutions of non-elliptical
problems. Here we will review some of the concepts but the main point of this chapter is
how we implement these methods when needed. We begin our review of some of the
interpretations of how these stabilization methods work with the usual approach of the
one-dimensional SUPG which has been proven to exactly satisfy the homogeneous form
(Q = 0) of Eq. (14.19) at all nodes in a uniform mesh for all Peclet numbers. Consider
the one-dimensional model equation


(14.20)u
∂φ
∂x


− k
∂2φ
∂x2


+ Q = 0, x∈] 0, L[


satisfying the boundary conditions of


(14.21)φ (0) = φ0 , φ (L) = φ L


whereu is the given flow velocity,k is the diffusivity coefficient, andQ is the internal
source per unit length. The solution forφ (x) is governed by the global Peclet number Pe
= uL/k, and the grid Peclet number,p = uh/(2k), whereh is the element size. ForQ = 0
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a )  "Radial"  position  vectors


n


V = V n


b )  Nodal  downwind  distances


c )  Average downwind  to  center d )  Adjusted downwind vectors


n


a


b


cd
e


f


g


h


A


B


CDE


F


G


H


J = - (D + E + F + G) / 4


A’ = A + J


B’ = B + J


C’
D’


E’


F’


G’ H’


Figure 14.2.5 Assigning quadratic quadrilateral nodal downwind vectors


and u and k constant, the exact solution forφ0 = 0 and φ L = 1 is giv en by


φ (x) = (1 − ePex / L)/(1 − ePe). The classic Galerkin method solutions of this problem
appear under-diffuse while most upwind methods appear over-diffuse.


Continuous Petrov Form


Only if FF in Eq. 14.11 is continuous then the element matrix forms can be written,
after integration by parts as the conduction or diffusion parts:


(14.22)SSe
k =


Le
∫


∂WWT


∂x
k


∂HH


∂x
dx


(14.23)=
Le
∫


∂HHT


∂x
k


∂HH


∂x
dx + α


Le
∫


∂FF


∂x
k


∂HH


∂x
dx


which matches the classical form only ifα = 0 or if FF is picked to force the last integral
to vanish. [12] Otherwise there will be an additional new diffusion contribution andSSe


k


will usually become unsymmetric. The source resultant is
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(14.24)CCe
Q =


Le
∫ WWTQdx =


Le
∫ HHTQdx + α


Le
∫ FFTQdx


which forQ ≠ 0, modifies the nodal distribution of the source resultant. We recall that for
any source distribution,Q(x), the sum of all the terms in the first integral ( ofHHTQ )
accounts for the total source effects. This means that the sum of all the terms from the
second integral involvesFF , must vanish. For a constantQ that means that the sum of the
FF terms must vanish. If we had known fluxes on the boundary they would be coupled to
WW (and thus toα FF if it is continuous) like the volumetric source matrices were.


The new moving, or advection, contribution is the matrix


(14.25)SSe
u =


Le
∫ WWTu


∂HH


∂x
dx


which splits into


(14.26)SSe
u =


Le
∫ HHTu


∂HH


∂x
dx + α


Le
∫ FFTu


∂HH


∂x
dx


which is the standard non-symmetric form plus a new array depending onFF which in
general would also be non-symmetric. It is much more common to employ Petrov forms
that are discontinuous at the inter-element boundaries.


Discontinuous Petrov Forms


If, and only if, we consider a special case whereFF is proportional to the gradient of
the shape functionsHH (say FF = c∂HH / ∂x) will the new Petrov-Galerkin advection
contribution due tou be a symmetrical matrix and be almost identical to the standard
diffusion matrix;


(14.27)α
Le
∫ FFTu


∂HH


∂x
dx = α


Le
∫


∂HHT


∂x
cu


∂HH


∂x
dx.


Thus some people like to think of this common case as an element designed to increase
the numerical diffusion in a controlled fashion.


When the SUPG is applied to this problem for linear finite elements, it gives nodally
exact results by picking the optimal diffusion to add to the system. The SUPG is usually
demonstrated with the finite difference pattern it produces when elements are assembled
at a typical interior node of a uniform mesh [1]. Here we will take the different approach
and look directly at the element matrices that result if the residual vanishes on each
element. For the case ofQ = 0;


(14.28)





u


2







− 1


− 1


1


1







+
k


h







1


−1


−1


1







+
α uh


2h







1


−1


−1


1












φ = 0


where


(14.29)α = Coth (Pe)− 1/Pe


is the optimal upwind coefficient.


Draft − 6/10/02 © 2002 J.E. Akin. All rights reserved.







416 J. E. Akin


The first two matrices are the classical Galerkin advection and diffusion matrices,
and the third square matrix is viewed as the added SUPG diffusion necessary for nodally
exact solutions. While the third term is intended to emphasize the added diffusion, its
units suggest that it could be added to the first matrix for the classical advection term. If
we do that and apply the Petrov-Galerkin to a constant source term,Q, then we see an
alternate view of the element matrices (when node 2 is downwind) is


(14.30)





u


2







(−1 + α )


(−1 − α )


(1 − α )


(1 + α )







+
k


h







1


−1


−1


1

















φ1


φ2







=
hQ


2







(1 − α )


1 + α )







which serves as a clear reminder that the Petrov-Galerkin method also significantly
influences the resultant-source vector. A system assembled from these element matrices
gives the nodally exact result for anyα . Two common special cases are easily observed;
α → 1 (Pe→ ∞) for the maximum upwind correction


(14.31)





2u


2







0


−1


0


1







+
k


h







1


−1


−1


1

















φ1


φ2







=
2hQ


2







0


1







This lets us think of the upwinding effects as a strong weighing the upwind rows of the
element source and the advection matrices rather than modifying the diffusion. This
gives some insight into why, for large Peclet numbers, the upwind method of Rice and
Schnipke [18] (and its degenerate form by Shemirani and Jambunathan [20] ), which
deletes the upwind rows of the convection matrix, works so well for low-order multi-
dimensional elements forQ = 0 (and Pe→ ∞).


However, we are interested in a general process for higher order (e.g., p-adaptive)
elements, so we will consider the change from Eq. (14.27) when a quadratic line element
is employed with nodes 2 and 3 being downwind. We make the common assumption that
α is a single scalar term. Again we view the diffusion matrix as unchanged from the
standard Galerkin form (with zero row and column sums), where node 2 is the interior
node:


(14.32)SSk =
k


3h








7


−8


1


−8


16


−8


1


−8


7








but the source vector due toQ has an additional term


(14.33)CCQ =
Qh


6









1


4


1









+
α QH


6









−6


0


6









=
Qh


6









1 − 6α
4


1 + 6α









.


From this we see that the upwinding has a strong effect on the "corner" sources but no
effect on the interior (and, thus, another downwind) node. Of course, the total source
contributed (Qh) is still accounted for at all values ofα (and Pe) since the sum of the
coefficients multiplying it is unity.


The standard advection matrix for this quadratic element is the Galerkin form (with
zero row sums)
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(14.34)SSa =
u


6








−3


−4


1


4


0


−4


−1


4


3








and the SUPG correction is obtained by usingk = α uh/ 2 in SSk ( from Eq. (14.25)). The
combined upwind element matrices for the SUPG method are


(14.35)









u


6









(7α − 3)


(−4 − 8α )


(1 + α )


(4 − 8α )


16α
(−4 − 8α )


(α − 1)


(4 − 8α )


(3 + 7α )








+
k


3h








7


−8


1


−8


16


−8


1


−8


7















φ =
Qh


6









1 − 6α
4


1 + 6α









which is the classic Galerkin form whenα = 0. From Eq. (14.28) we see that for higher
order elements, the upwinding effects on advection and source terms are not as simple as
the effect ofα in Eq. (14.23) may have implied. For maximum upwinding (α = 1) this
becomes


(14.36)








u


6








4


−12


2


−4


16


−12


0


−4


10








+
k


3h








7


−8


1


−8


16


−8


1


−8


7














φ =
Qh


6









−5


4


7









The above single element basedα term for the quadratic element no longer gives
exact results at the nodes, even forQ = 0. To accomplish that Codina,et al. [4] have
shown that a nodal based approached may be needed with one upwind constant,α , for
the two "corner" nodes and a second,β for the interior node. They show the constants to
be


(14.37)


β = (coth (Pe/2)− 2/Pe)/2,


α =
(3 + 3 Peβ ) tanh (Pe)− (3Pe+ Pe2β )


(2 − 3β tanh(Pe))Pe2


which gives aβ that is about half ofα for most Pe, andβ → α / 2 for Pe→ ∞. Their
form from an element matrix viewpoint is


(14.38)








u


6








(7α − 3)


( − 4 − 8β )


(1 + α )


(4 − 8α )


16β
(−4 − 8α )


(α − 1)


(4 − 8β )


(3 + 7α )








+ SSk








φ = CCQ


which, compared to Eq. (14.35), reduces the upwind effect on the interior node. If we use
the gross approximation thatβ = α /2 (which is exact for Pe→ ∞), we get


(14.39)SSa ≈
u


6








(7α − 3)


4(−1 − α )


(1 + α )


(4 − 8α )


8α
(−4 − 8α )


(α − 1)


4(1 − α )


(3 + 7α )








which has zero row sums, but not zero column sums. In the limit of Pe→ ∞, this gives
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(14.40)SSa =
u


6








4


−8


2


−4


8


−12


0


0


10








which again significantly differs from the Galerkin form of Eq. (14.27) and the single
element basedα form given in Eq. (14.29). This short review of SUPG concepts
suggests that the extension to higher order elements may, in general, benefit from
different upwind coefficients for corner nodes, edge nodes, and internal nodes.


14.5 One-dimensional Example


The application of the SUPG for linear line elements is, as expected, the most
common way to illustrate the process. There are aspects of the computation that are
obtained by inspection that require little extra programming in general. It is clear that the
reference length to be used in calculating the Peclet number is simply the length of the
element. Likewise, the gradient of the solution, andH, in the x-direction is also the
gradient in the direction tangent to the streamline. Finally, since the second derivatives of
such approximations are zero (unless iterative results are used) one avoids having to bring
into the analysis the consistent information on second derivatives that occur in the SUPG
theory.


For very high Peclet numbers the governing equation needs to be modeled
analytically with what is known as "singular perturbation theory". Usually such problems
involve a parameter (here 1/Pe) associated with the highest order derivative in the
differential equation. As that parameter approaches zero one has essentially a lower order
differential equation with more boundary conditions than the reduced equation requires.
In other words a thin "boundary layer" develops in a part of the solution domain near the
redundant boundary condition and the solution must change very rapidly in that small
region as it tries to satisfy the original higher order derivative terms. When such a
problem is approximated by a classic Galerkin finite element solution a least squares
spatial response develops to try to capture the very sharp gradients in thin boundary layer.
While it may do that, it over shoots the spatial solution in the region adjacent to the
boundary layer and gives huge errors, or physically impossible results, as it oscillates
about the true solution in the main domain that is reasonably modeled by the lower order
differential equation. This type of behavior should not come as a surprise since we have
changed to a new class of differential equation that is unlike the elliptical one used in
most of our examples. Here the system is parabolic in nature and a polynomial
approximation may not be the best choice for our finite element model. Since the
response is basically exponential in nature near the boundary layer we should consider
using exponential interpolation functions or adding new terms to our solutions to
accurately dampen out the incorrect responses. The SUPG approach does the latter. The
non-polynomial interpolations would also work, but tend to be expensive to compute and
sensitive to the word length of the computer employed.


We begin with a classic Galerkin solution in one-dimension with no source term and
where the diffusion term,k, is decreased to makePe= 100. A ten element model based
on linear interpolation is shown in Fig. 14.4.1 along with the exact solution (dashed line).
Is is easily seen that the effect of the sharp boundary layer has propagated back into the
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full domain and gives a very inaccurate result. By way of comparison, the addition of the
SUPG terms give the result in Fig. 14.4.2. The improvement is drastic, with the SUPG
giving numerical results that are essentially exact at the nodes. If one reviews the error
estimate for the Galerkin result (see Fig. 14.4.3) it is tempting to simply try to make the
elements smaller near the boundary layer. Howev er, that does not give much
improvement (as seen in Fig. 14.4.4) and a much finer mesh would be required to attempt
to get reasonable accuracy and thus the SUPG modifications are much more cost
effective.


The one-dimensional source code, in Fig. 14.4.5, illustrates typical considerations of
SUPG methods. This version is designed to let the student switch from the standard
Galerkin to SUPG by supplying the keywordsupg in the input file. In the one-
dimensional case we know that the fluid velocity is constant and acts over the full length
of the element. Thus, one can select to compute the upwind parameters outside the
element numerical integration loop. They are illustrated in lines 46 to 51. Other changes
that relate to the SUPG selection occur between lines 70 to 91. The consistent SUPG
method introduces second derivates of the interpolation functions. They may or may not
be zero. Lines 72 through 78 address their inclusion, as do lines 84 and 85, even though
most programmers choose to omit them. If we neglect the second derivative question we
always have to append new matrices to the element source vector and square matrix. The
main difference in the element matrices, lines 89 through 91, compared top previous
examples is that we have both the interpolations forW and H appearing in the matrix
products instead of justH. Note that the physical derivatives ofH in the x-direction,
DGH(1, : ) is actually a derivative taken tangent to the fluid streamline so the term
u * DGH(1, : ) in line 91 is related to the speed of the flow times the gradient of the
unknown along the streamline. Also remember that line 91 makes the square matrix non-
symmetric. The data file for this example is in Fig. 14.4.6. The exact solution to be
compared with (case 18) is identified in line 3 while its use is invoked in lines 19 and 20.
It requires the global Peclet number and that is supplied as miscellaneous data as the last
line (52) and is not used anywhere in the application source code of Fig. 14.4.5.


14.6 Generalizing to Higher Dimensions


Here we will outline the generalization of the previous process to a single
implementation that can handle 1-D, 2-D, 3-D, or axisymmetric domains for any element
in the MODEL library. Generalizing the SUPG method requires much more data to
describe the velocity field and required items along the streamline directions. The current
version allows the choice of four different definitions ofτ . Thus the example program is
quite a bit longer but is easily broken into four conceptual tasks.
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Figure 14.4.1 Galerkin solution for Pe = 100
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Figure 14.4.2 SUPG solution for Pe = 100
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Figure 14.4.3 Galerkin energy error norm estimate
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Figure 14.4.4 Revised mesh Galerkin solution for Pe = 100
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[ 1] ! ...........................................................
[ 2] ! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ***
[ 3] ! ...........................................................
[ 4] ! Define any new array or variable types, then give statements
[ 5] !  (Library example number 112)
[ 6] !  Galerkin or SUPG 1-d Advection-Diffusion Problem
[ 7] !  u * dp/dx - d(k * dp/dx)/dx = Q, assume u, k, Q constant
[ 8] !
[ 9] ! u  = GET_REAL_LP (1) ! velocity
[ 10] ! k = GET_REAL_LP (2) ! conductivity
[ 11] ! Q = GET_REAL_LP (3) ! source per unit length
[ 12] ! SUPG = global logical flag ! F=Galerkin (default), T=SUPG
[ 13]
[ 14] ! LT_N = number of nodes for this element type
[ 15] ! MISC_FX = number of integer miscellaneous properties
[ 16] ! N_LP_FLO = number of real element properties
[ 17] ! W = Petrov weight, DGW its global derivative
[ 18]
[ 19] REAL(DP) :: W (LT_N), DGW (1, LT_N) ! SUPG & deriv
[ 20] REAL(DP) :: D2GH (1, LT_N) ! SUPG, zero ?
[ 21] REAL(DP) :: DL, DX_DR, DL_A ! Length, Jacobian
[ 22] REAL(DP) :: u, k, Q ! input data
[ 23] REAL(DP) :: Pe, ALPHA, COTH ! Peclet data, L2
[ 24] INTEGER :: IQ ! Loops
[ 25] REAL(DP), SAVE :: Pe_max ! debugging
[ 26]
[ 27]
[ 28] DL = COORD (LT_N, 1) - COORD (1, 1) ! Element length
[ 29] DX_DR = DL / 2. ! constant Jacobian
[ 30] DL_A = DL / (LT_N - 1) ! SUPG length
[ 31]
[ 32] ! DATA READS AND SAVES
[ 33] u = GET_REAL_LP (1) ! velocity
[ 34] k = GET_REAL_LP (2) ; E = k ! conductivity
[ 35] Q = 0.d0 ; IF ( N_LP_FLO > 2 ) Q = GET_REAL_LP (3) ! source
[ 36] E = k  ! constitutive
[ 37]
[ 38] IF ( IE = = 1 ) THEN ! FIRST ELEMENT, ONE TIME ACTIONS
[ 39] Pe_max = 0.d0 ! initialize
[ 40]
[ 41] IF ( .NOT. SUPG ) THEN ! echo choice
[ 42] PRINT *,’NOTE: Galerkin method’ ! default
[ 43] ELSE ; PRINT *,’NOTE: SUPG method’ ; END IF ! supg
[ 44] END IF ! FIRST ELEMENT
[ 45]
[ 46] ! SUPG TERMS (ASSUMING L2 ELEMENT), ? Bias for L3, L4 ?
[ 47] Pe = ABS(u) * DL / k ! Grid Peclet
[ 48] IF ( Pe > Pe_max ) Pe_max = Pe ! for debug
[ 49] COTH = COSH (Pe/2) / SINH (Pe/2) ! Optimal SUPG
[ 50] ALPHA = ABS (COTH) - 1.d0 / ABS (Pe/2) ! Optimal SUPG L2
[ 51] ALPHA = SIGN (ALPHA, u) ! abs(ALPHA)*sign of u


Figure 14.4.5(cont.) One-dimensional SUPG source code
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[ 52]
[ 53] ! ------- ELEMENT MATRICES FORMATION ----------
[ 54] CALL STORE_FLUX_POINT_COUNT ! Save LT_QP FOR SCP
[ 55]
[ 56] DO IQ = 1, LT_QP ! LOOP OVER QUADRATURES, S, C zeroed
[ 57]
[ 58] ! GET TRIAL INTERPOLATION FUNCTIONS, AND X-COORD
[ 59] H = GET_H_AT_QP (IQ) ! SOLUTION INTERPOLATION
[ 60] XYZ = MATMUL (H, COORD) ! ISOPARAMETRIC
[ 61]
[ 62] ! LOCAL AND GLOBAL FIRST DERIVATIVES
[ 63] DLH = GET_DLH_AT_QP (IQ) ! LOCAL DERIVATIVE
[ 64] DGH = DLH / DX_DR ! PHYSICAL DERIVATIVE
[ 65]
[ 66] ! *** SELECT STANDARD GALERKIN OR SUPG ***
[ 67] IF ( .NOT. SUPG ) THEN ! Galerkin
[ 68] W = H ; DGW (1, :) = DGH (1, :)
[ 69]
[ 70] ELSE ! SUPG Method
[ 71] ! LOCAL AND GLOBAL SECOND DERIVATIVES (FOR N_SPACE == 1)
[ 72] SELECT CASE (LT_N) ! ELEMENT LIBRARY CHECK
[ 73] CASE (2) ; D2LH = 0.d0
[ 74] CASE (3) ; CALL DERIV2_3_L (PT (1, IQ), D2LH (1, :))
[ 75] CASE (4) ; CALL DERIV2_4_L (PT (1, IQ), D2LH (1, :))
[ 76] CASE DEFAULT ; STOP ’NO SECOND DERIVATIVE IN LIBRARY’
[ 77] END SELECT
[ 78] D2GH = D2LH / DX_DR**2 ! PHYSICAL SECOND DERIVATIVE
[ 79]
[ 80] ! SUPG WEIGHTINGS, NOTE SECOND DERIVATIVE IN DGW
[ 81] W = H  + ALPHA * DGH (1, :)*DL_A*0.5d0
[ 82] DGW (1, :) = DGH (1, :) + ALPHA * D2GH (1, :)*DL_A*0.5d0
[ 83] ! PRE-INSERT SECOND DERIVATIVE RESIDUAL, IF ANY
[ 84] IF ( LT_N > 2 ) S = S + k * ALPHA * DL_A * WT (IQ) &
[ 85] * DX_DR * OUTER_PRODUCT (DGH (1, :), D2GH (1, :))
[ 86] END IF ! Method option
[ 87]
[ 88] ! MATRICES: SOURCE, CONDUCTION & ADVECTION
[ 89] C = C + Q * W * WT(IQ) * DX_DR ! SOURCE
[ 90] S = S + ( k * MATMUL (TRANSPOSE(DGH), DGH) &
[ 91] + u * OUTER_PRODUCT (W, DGH(1,:) )) * WT (IQ) * DX_DR
[ 92]
[ 93] !--> SAVE COORDS, E, DERIVATIVE MATRIX FOR POST PROCESSING
[ 94] CALL STORE_FLUX_POINT_DATA (XYZ, E, DGH)
[ 95] END DO ! QUADRATURE
[ 96] IF ( IE == N_ELEMS ) PRINT *,’Maximum element Pe = ’, PE_max
[ 97] ! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS ***


Figure 14.4.5 One-dimensional SUPG source code


For higher dimensional problems we can form a single element based upwind length
measure by evaluating the velocity at the element center to form nodal distances, such as
in Figs. 14.2.2b and 3b, and then convert them to a single length as illustrated in
Figs. 14.2.2c and 3c. Denote that length ashgeom. Along the streamline we could use the
1-D optimal length scaling,α opt, based on the local element Peclet number (at the center)
to compute a corresponding stabilization term:


τ geom = α opt hgeom / 2 ||u|| .
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[ 1] title "SUPG Advection-Diffusion, Pe=100"
[ 2] example 112 ! Application source code library number
[ 3] exact_case 18 ! Analytic solution for list_exact, etc
[ 4] bar_chart ! Include bar chart printing in output
[ 5] b_rows 1 ! Number of rows in the B (operator) matrix
[ 6] dof 1 ! Number of unknowns per node
[ 7] el_nodes 2 ! Maximum number of nodes per element
[ 8] elems 10 ! Number of elements in the system
[ 9] gauss 4 ! Maximum number of quadrature points
[10] nodes 11 ! Number of nodes in the mesh
[11] line_el ! Major elements are line elements
[12] space 1 ! Solution space dimension
[13] el_homo ! Element properties are homogeneous
[14] el_real 3 ! Number of real properties per element
[15] supg ! Use streamline upwind Petrov-Galerkin method
[16] reals 1 ! Number of miscellaneous real properties
[17] pt_list ! List the answers at each node point
[18] remarks 5 ! Number of user remarks, e.g. property names
[19] list_exact ! List given exact answers at nodes, etc
[20] list_exact_flux ! List given exact fluxes at nodes, etc
[21] unsymmetric ! Unsymmetric skyline storage is used
[22] end ! Terminate control, remarks follow
[23] 1 u * dp/dx - d(k * dp/dx)/dx = Q, assume u, k, Q constant
[24] 2 for Pe * u,x + u,xx = 0, u(0) = 1, u(1) = 0, Pe=u/k, Q=0
[25] 3 Exact u(x) = (EXP(Pe * X) - EXP (Pe))/(1.d0 - EXP (Pe))
[26] 4 For Pe >> 1 we loose u,xx and the second required EBC
[27] 5 except for a small boundary layer near that EBC
[28] 1 1 0. ! node, bc_flag, x
[29] 2 0 0.1
[30] 3 0 0.2
[31] 4 0 0.3
[32] 5 0 0.4
[33] 6 0 0.5
[34] 7 0 0.6
[35] 8 0 0.7
[36] 9 0 0.8
[37] 10 0 0.9
[38] 11 1 1.0 ! end nodes
[39] 1 1 2 ! elem, n1, n2
[40] 2 2 3
[41] 3 3 4
[42] 4 4 5
[43] 5 5 6
[44] 6 6 7
[45] 7 7 8
[46] 8 8 9
[47] 9 9 10
[48] 10 10 11 ! end elements
[49] 1 1 1.0 ! node, dof, bc_value
[50] 11 1 0.0 ! node, dof, bc_value
[51] 1 1.0 0.01 0.0 ! u, k, Q
[52] 100. ! Misc real: Pe for exact solution use


Figure 14.4.6 Data for 1-D SUPG test


Those same nodal distances can also be averaged over the element volume and the total
number of nodes by using their interpolations over the element to define another upwind
length,hvol:
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hvol =
j


Σ
Le
∫ H j hj


j
Σ


Le
∫ H j


which likewise defines a stabilization parameterτ vol. These two geometric definitions of
element lengths andτ ’s will be extended with two additional definitions here that come
from more mathematical justifications. Tezduyar and Park [22] defined an alternate
geometric length. It is known ashugn since it comes from the dot product ofu and the
gradient of the generalized element interpolation functions,N. For our scalar variable
examples it is:


hugn = 2 ||u|| 
 j
Σ |u .∇∇H j |





−1


.


They define the corresponding advection dominated flow stabilization parameter to be


τ ugn = hugn / 2 ||u||


and a similar form for stabilizing the least squares incompressiblity constraint in Navier-
Stokes flows.


More recently Tezduyar and Osama [24] suggested aτ parameter based on scaling
the Galerkin and stabilization matrices to be of the same order in each element. Thus
they use the ratios of two matrix norms to establish the stabilization parameters for
advection, diffusion, and transient dominated regions. Since the resultingτ involves the
ratio of the norms of two matrices it has been found to be relatively insensitive to the
method chosen to evaluate a matrix norm. Here we will use the norm to be the square
root of the sum of the squares of all the terms in the matrix.


Note from Eq. 14.8 that the Galerkin contribution will produce three square
matrices. They come from transient, advection, and diffusion dominated terms. A
discontinuous Petrov stabilization term would also contribute similar terms but usually
linear elements are employed so the second derivative contribution is zero in that case.
The setting ofτ by a matrix norm method is an attempt to assure that the Galerkin and
Pertov terms are of the same order of magnitude, relative to the effect that is dominating
the flow. For advective dominated flow the definition of theτ norm given by the ratio
norms of the two matrices arising from thevv . ∇∇φ terms:


τ norm =


||
Le
∫ HHT vv .∇∇H dx||


||
Le
∫ vv .∇∇HT vv .∇∇H dx||
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[ 1]! ..............................................................
[ 2]! *** ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS FOLLOW ***
[ 3]! ..............................................................
[ 4]! Advection-Diffusion Equations: 1-D, 2-D, 3-D, Axisymmetric
[ 5]
[ 6]! u * Del P - Del ( E Del P) + r P - Q = 0
[ 7]! VIA NUMERICALLY INTEGRATED ELEMENTS
[ 8]
[ 9]! MISCELLANEOUS REAL PROPERTIES: (1) = diffusity
[ 10]! (2) = SOURCE, Q, (optional, defaults to 0)
[ 11]! (3) = r, (optional, defaults to 0)
[ 12]! (4) = THICKNESS (optional, defaults to 1 or radius)
[ 13]! NOTE: u is defined via subroutine VELOCITY_AT_POINT
[ 14]
[ 15] REAL(DP) :: CONST, DET, DET_WT, THICK ! integration
[ 16] REAL(DP) :: SOURCE, RATE ! data: Q & r
[ 17] INTEGER :: IP ! counter
[ 18]
[ 19]! Required upwind items
[ 20] REAL(DP) :: CENTER (N_SPACE) ! average of nodes
[ 21] REAL(DP) :: U (N_SPACE) ! Velocity vector
[ 22] REAL(DP) :: UNIT_V (N_SPACE), SPEED ! unit vector, speed
[ 23] REAL(DP) :: U_DGH (LT_N) ! streamline gradient
[ 24] REAL(DP) :: D2GH (N_2_DER, LT_N) ! 2nd deriv of H
[ 25] REAL(DP) :: E_UP, E_CROSS ! Diffusion up & cross
[ 26] REAL(DP) :: VISCOSITY ! in E
[ 27] REAL(DP) :: TAU ! stabilize term
[ 28]
[ 29]! Stabilization matrix notations
[ 30] REAL(DP) :: S_M (LT_FREE, LT_FREE) ! SUPG sq matrix
[ 31] REAL(DP) :: S_C (LT_FREE, LT_FREE) ! SUPG sq matrix
[ 32] REAL(DP) :: S_K (LT_FREE, LT_FREE) ! SUPG sq matrix
[ 33] REAL(DP) :: S_K_BAR (LT_FREE, LT_FREE) ! SUPG sq matrix
[ 34] REAL(DP) :: S_R_BAR (LT_FREE, LT_FREE) ! SUPG sq matrix
[ 35] REAL(DP) :: S_UP (LT_FREE, LT_FREE) ! SUPG sq matrix
[ 36] REAL(DP) :: C_UP (LT_FREE) ! SUPG column matrix
[ 37]
[ 38]! Optional geometric upwind items
[ 39] REAL(DP) :: RADIAL (LT_N, N_SPACE) ! relative positions
[ 40] REAL(DP) :: DOWN (LT_N) ! downwind wrt center
[ 41] REAL(DP) :: DOWN_NODAL (LT_N) ! downwind total
[ 42] REAL(DP) :: GEOM_H, VOL_H ! element DW lengths
[ 43] REAL(DP) :: GEOM_TAU, VOL_TAU ! element Tau values
[ 44] REAL(DP) :: PECLET, ALPHA ! Re Peclet number
[ 45] LOGICAL :: IS_DOWNWIND (LT_N) ! true if downwind node
[ 46]
[ 47]! Optional norm based upwind items
[ 48] REAL(DP) :: ONE_PT (LT_PARM), ONE_WT ! 1 pt rule
[ 49] REAL(DP) :: UGN_TAU ! ugn
[ 50] REAL(DP) :: S1_TAU, NORM_C, NORM_K_BAR ! norms
[ 51]
[ 52] S_ M = 0 ; S_C = 0 ; S_K = 0 ! Initialize element
[ 53]


Figure 14.5.1a Storage for general advection-diffusion
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[ 54]!--> DEFINE ELEMENT PROPERTIES
[ 55] RAT E = 0 ; SOURCE = 0 ; THICK = 1 ; VISCOSITY = 1 ! initialize
[ 56] IF ( REALS > 0 ) VISCOSITY = GET_REAL_MISC (1) ! constant diffusity
[ 57] IF ( REALS > 1 ) SOURCE = GET_REAL_MISC (2) ! constant Q
[ 58] IF ( REALS > 2 ) RATE = GET_REAL_MISC (3) ! constant r
[ 59] IF ( REALS > 3 ) THICK = GET_REAL_MISC (4) ! constant thickness
[ 60]
[ 61] CENTER = SUM ( COORD, DIM=1 ) / LT_N ! center point
[ 62] CALL APPLICATION_E_MATRIX (IE, CENTER, E) ! constitutive law
[ 63]
[ 64] IF ( SUPG ) THEN ! Streamline Upwind Petrov-Galerkin additions
[ 65]
[ 66]! INITIALIZE STABILIZATION ARRAYS
[ 67] S_UP = 0.d0 ; C_UP = 0.d0 ; H_INTG = 0.d0
[ 68] S_K_BAR = 0.d0 ; S_R_BAR = 0.d0
[ 69]
[ 70]! GET CENTER VELOCITY AND DIFFUSION
[ 71] CALL VELOCITY_AT_POINT (CENTER, U, UNIT_V, SPEED) ! velocity
[ 72]
[ 73]! GET DIFFUSION ALONG STREAMLINE
[ 74] CALL DIFFUSION_UPWIND (E, UNIT_V, E_UP, E_CROSS) ! transform
[ 75]
[ 76] IF ( TAU_GEOM .OR. TAU_VOL ) THEN
[ 77] CALL GET_RADIALS_FROM_CENTER (CENTER, RADIAL)
[ 78] CALL GET_DOWNWIND_LOGIC (RADIAL, UNIT_V, DOWN, IS_DOWNWIND)
[ 79] CALL GET_MAX_DOWNWIND_DIST (DOWN, DOWN_NODAL)
[ 80] END IF
[ 81]
[ 82] IF ( TAU_GEOM ) THEN
[ 83] GEOM_H = ABS (MINVAL (DOWN)) + MAXVAL (DOWN)
[ 84] PECLET = 0.5d0 * SPEED * GEOM_H / E_UP
[ 85] CALL PECLET_OPTIMAL_RULE (PECLET, ALPHA)
[ 86] GEOM_TAU = 0.5d0 * GEOM_H * ALPHA / SPEED
[ 87] END IF ! Tau_geom
[ 88]
[ 89] IF ( TAU_UGN ) THEN
[ 90] CALL GET_ONE_PT_RULE (ONE_PT, ONE_WT) ! local point
[ 91] CALL SCALAR_DERIVS (ONE_PT, DLH) ! deriv of H
[ 92] AJ = MATMUL (DLH, COORD) ! Jacobian, J
[ 93] CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE) ! Inverse of J
[ 94] DGH = MATMUL (AJ_INV, DLH) ! Del H
[ 95] U_DGH = MATMUL (U, DGH) ! u dot Del H
[ 96] UGN_TAU = 1.d0 / SUM ( ABS (U_DGH) ) ! Tau ugn value
[ 97] END IF ! Tau_ugn
[ 98]
[ 99] END IF ! Initialize upwinding
[100]
[101]! STORE NUMBER OF POINTS FOR FLUX CALCULATIONS
[102] CALL STORE_FLUX_POINT_COUNT ! Save LT_QP
[103]


Figure 14.6.1b Computations at element center
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[104]!--> NUMERICAL INTEGRATION LOOP
[105] DO IP = 1, LT_QP
[106] H = GET_H_AT_QP (IP) ! EVALUATE INTERPOLATION FUNCTIONS
[107] XYZ = MATMUL (H, COORD) ! FIND GLOBAL COORD, ISOPARAMETRIC
[108] DLH = GET_DLH_AT_QP (IP) ! FIND LOCAL DERIVATIVES
[109] AJ = MATMUL (DLH, COORD) ! FIND JACOBIAN AT THE PT
[110]
[111]! FORM INVERSE AND DETERMINATE OF JACOBIAN
[112] CALL INVERT_JACOBIAN (AJ, AJ_INV, DET, N_SPACE)
[113] IF ( AXISYMMETRIC ) THICK = TWO_PI * XYZ (1) ! via axisymmetric
[114] CONST = DET * WT(IP) * THICK ! local measure
[115] H_INTG = H_INTG + H * CONST ! H integral
[116]
[117]! EVALUATE GLOBAL DERIVATIVES, DGH == B
[118] DGH = MATMUL (AJ_INV, DLH) ! Physical gradient H
[119]! Note: D2GH assumed zero here ! 2nd Derivs H
[120] B = DGH ! copy DGH into B
[121]
[122]! VARIABLE VOLUMETRIC SOURCE, via keyword use_exact_source
[123]! Defaults to file my_exact_source_inc if no exact_case key
[124] IF ( USE_EXACT_SOURCE ) CALL & ! analytic Q
[125] SELECT_EXACT_SOURCE (XYZ, SOURCE) ! via exact_case key
[126]
[127]! GALERKIN SOURCE TERM
[128] C = C + CONST * SOURCE * H ! source resultant
[129]
[130]! DIFFUSION SQUARE MATRIX
[131] S_K = S_K + CONST * MATMUL ((MATMUL (TRANSPOSE (B), E)), B)
[132]
[133]! ADD RATE SQUARE MATRIX from -r*U
[134] S_M = S_M + RATE * OUTER_PRODUCT (H, H) * CONST
[135]
[136]! IGNORE SQUARE MATRIX FROM 2nd DERIVATIVES, INITIALLY
[137]
[138]! SET STREAMLINE DIRECTION (AND DEFAULT IF SPEED = 0)
[139] CALL VELOCITY_AT_POINT (XYZ, U, UNIT_V, SPEED)
[140]
[141]! ADVECTION SQUARE MATRIX -V*Grad_U
[142] U_DGH = MATMUL (U, DGH) ! vel dot grad H
[143] S_C = S_C + OUTER_PRODUCT (H, U_DGH) * CONST ! no upwind
[144]
[145] IF ( SUPG ) THEN ! UPWIND AT QP
[146]
[147]! GET DIFFUSION ALONG STREAMLINE, E_UP, FROM E TENSOR
[148] CALL DIFFUSION_UPWIND (E, UNIT_V, E_UP, E_CROSS)
[149]
[150]! FORM STABILIZATION ARRAYS (LESS Tau SCALE)
[151] C_UP = C_UP + SOURCE * U_DGH * CONST
[152] S_K_BAR = S_K_BAR + OUTER_PRODUCT (U_DGH, U_DGH) * CONST
[153] ! - 2nd deriv, & variable E, now neglected
[154] S_R_BAR = S_R_BAR + OUTER_PRODUCT (U_DGH, H) * RATE * CONST
[155] END IF ! SUPG VARIABLE UPWIND
[156]
[157]!--> SAVE COORDS, E AND DERIVATIVE MATRIX, FOR POST PROCESSING
[158] CALL STORE_FLUX_POINT_DATA (XYZ, (E * THICK), B)
[159]
[160] END DO ! for integration


Figure 14.6.1c Numerical integration of advection-diffusion items
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[161]
[162] S = S_K + S_M + S_C ! if no upwinding
[163]
[164] IF ( TAU_VOL ) THEN ! integral average downwind dist
[165] VOL_H = DOT_PRODUCT (H_INTG, DOWN_NODAL) &
[166] / SUM (H_INTG) / LT_N ! integral average
[167] PECLET = 0.5d0 * SPEED * VOL_H / E_UP
[168] CALL PECLET_OPTIMAL_RULE (PECLET, ALPHA)
[169] VOL_TAU = 0.5d0 * VOL_H * ALPHA / SPEED
[170] END IF ! Tau geom
[171]
[172] IF ( SUPG ) THEN ! STABILIZE SOLUTION, DEFAULT TO S1
[173] NORM_C = SQRT ( SUM ( S_C **2 ) ) ! 2 norm
[174] NORM_K_BAR = SQRT ( SUM ( S_K_BAR **2 ) ) ! 2 norm
[175] S1_TAU = NORM_C / NORM_K_BAR ! norm method
[176]
[177] IF ( TAU_GEOM ) THEN ! keywords supg and tau_geom
[178] TAU = GEOM_TAU
[179] ELSEIF ( TAU_UGN ) THEN ! keywords supg and tau_ugn
[180] TAU = UGN_TAU
[181] ELSEIF ( TAU_VOL ) THEN ! keywords supg and tau_vol
[182] TAU = VOL_TAU
[183] ELSEIF ( TAU_S1 ) THEN ! keywords supg and tau_norm
[184] TAU = S1_TAU
[185] ELSE ! keyword supg only
[186] TAU = S1_TAU
[187] END IF ! user selection
[188]
[189]! FORM SUPG ADDITIONS FOR AN ELEMENT BASED TAU
[190] C = C + C_UP * TAU
[191] S_UP = (S_K_BAR + S_R_BAR) * TAU
[192] S = S +  S_UP
[193] END IF ! SUPG
[194]! *** END ELEM_SQ_MATRIX PROBLEM DEPENDENT STATEMENTS ***


Figure 14.6.1d Final selection ofτ and SUPG stabilizations


# UPWIND_WORD ! REMARKS [DEFAULT]
supg ! Use streamline upwind Petrov-Galerkin method [F]
tau_geom ! use Akin geometry method for SUPG Tau [F]
tau_norm ! use Tezduyar norm method for SUPG Tau [T]
tau_ugn ! use Tezduyar UGN method for SUPG Tau [F]
tau_vol ! use Akin volume method for SUPG Tau [F]


Figure 14.6.2 New control options for stabilized solutions


14.7 Two-dimensional Examples


The extension of SUPG methods two higher dimensions is relatively clear but there
are choices to be made on the most cost effective way to get the effective Peclet number.
This may involve elements where the velocity is clearly constant in a element, or it may
have significant changes over an element (as in a high degree p-method formulation).
Some logical options will be considered after some typical numerical results are
presented. We will begin using only the classic linear triangular element (T3) and
consider higher degree elements in later examples. A common test case is where a fluid
enters the lower left edge of a rectangle and exits at the lower right edge as shown in
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Fig. 14.7.1. The boundary condition on the unknown is that it varies rapidly from zero to
two along the inflow boundary and is zero at the impervious sides. Along the inflow edge
(of the negative x-axis) the given value isT = 1 + tanh((2 *x + 1) * 10) for x = [−1, 0].
The outflow and interior values are to be determined. For an infinite Peclet number (no
diffusion) the outflow values should be the mirror images of the input curve. The
velocity components areu = 2y (1 − x2) and v = − 2 x (1 − y2) which means that for
relatively large elements both the magnitude and direction of the velocity may change
significantly within the element. This velocity field is maximum at the origin, zero on
three sides, and is clockwise about the origin.


An initially uniform mesh of linear, T3, triangular elements is selected as shown in
Fig. 14.7.1 along with essential boundary condition flags at the nodes, and a typical low
velocity Galerkin solution. That mesh was designed so that the same nodes can be used
to form a similar mesh made with quadratic, T6, triangles, or the corresponding Q4 or Q9
quadrilateral elements. When the local Peclet numbers are low a  reasonable Galerkin
solution can be obtained without stabilization, as illustrated in Fig. 14.7.1. But if one
increases the maximum Peclet number the a unstable Galerkin solution results as seen in
Fig. 14.7.2. Retaining the same data but stabilizing the solution (simply by adding
control keywordsupg to the input) renders a drastically improved solution whose front
and back views are seen in Figs. 14.7.3. respectively. Applying the four stabilization
choices gives the inlet and outlet solutions (fory = 0), and the solution profiles alone the
mid-plane (x = 0) as shoen in Figs. 14.7.4 and 5, respectively.
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Figure 14.7.1 Smith-Hutton test, initial T3 mesh, and low Pe Galerkin solution


Draft − 6/10/02 © 2002 J.E. Akin. All rights reserved.







432 J. E. Akin


−1


−0.5


0


0.5


1


0


0.2


0.4


0.6


0.8


1


−0.5


0


0.5


1


1.5


2


X


FEA Solution Component_1: 400 Elements, 231 Nodes, (3 per Element)


Y


C
om


po
ne


nt
 1


 (
m


ax
 =


 2
, m


in
 =


 −
0.


53
89


4)


−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1


−0.2


0


0.2


0.4


0.6


0.8


1


1.2


X


Y


FE New Element Sizes: 400 Elements, 231 Nodes (3 per element)


Figure 14.7.2 A very high Pe Galerkin T3 solution and suggested mesh
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Figure 14.7.3 A very high Pe SUPG T3 solution (front and back)
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Figure 14.7.4 Initial inlet (x ≤ 0) and outlet values fory = 0


Figure 14.7.5 Initial mid-plane (x = 0) values


Draft − 6/10/02 © 2002 J.E. Akin. All rights reserved.







Finite Elements, Stabilized Methods 435


−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1


−0.2


0


0.2


0.4


0.6


0.8


1


1.2


X


Y


FE New Element Sizes: 400 Elements, 231 Nodes (3 per element)


−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1


−0.4


−0.2


0


0.2


0.4


0.6


0.8


1


1.2


1.4


X


Y


FE Mesh; 728 Elements, 398 Nodes with BC or MPC Noted


SUPG method 
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Figure 14.7.9 Typical Galerkin Q4 solution and mesh refinement suggestion
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Figure 14.7.10 The Q4 result and new mesh estimate fromτ vol
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Figure 14.7.11 The Q4 result and new mesh estimate fromτ geom
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Employing the element error estimators suggests that the current element sizes
should be scaled as shown in Fig.14.7.6. Supplying those guidelines for element
densities to an automatic mesh generator yield a second mesh, in the same figure, and
whose new solution surface is displayed in Fig. 14.7.7. This is a typical example of how
stabilized solutions are essential for non-elliptical differential equations.


As a second stabilization example consider a common test problem called the
Cosine Hill. It assumes almost pure advection (k = 1e− 8) using a counterclockwise
circular velocity field centered on a square, with−1/2 ≤ x, y ≤ 1/2. The fluid speed
proportional to the radial distance from the center of the square. As shown in Fig. 14.7.8,
the initial mesh hasφ = 0 on the boundary of the square. On the interior line atx = 0
and y ≤ 0 it varies asφ = Sin (π (1− 2y)). In this case the source term,Q, is zero. For
pure advection, the solution surface should circle back on its self with no change. That is,
in the limit we should see a zero value of∂φ / ∂x as the solution approachesx = 0 from
x < 0. Typical Galerkin solutions would have very large oscillations as they approach
x = 0.


The initial Q4 element mesh, in Fig. 14.7.8, has been chosen so that it is uniform
and so that without changing the nodal count or locations one can employ a mesh for Q4,
Q9, Q16, T3, T6, or T10 elements. This allows one to compare linear, quadratic, and
cubic elements. In addition, all of these meshes yield nodal results that can be projected
to a common Q4 mesh for visual comparisons. This mesh can be refine uniformly to
retain this feature, or if one uses an error estimator new non-uniform meshs can be
developed. The results depend on the element degree, the choice ofτ , and the relative
element sizes and locations. Thus, it is well suited for parametric studies of those
variables. Many such studies have been carried out but space here limits us to a few
examples.


A typical Galerkin solution result is shown in Fig.14.7.9 along with the estimated
required mesh refinement. One could continually refine the mesh in this fashion and
possibly obtain a useful Galerkin solution, but it is more more cost effective to employ a
stabilization method.


Figure 14.7.10 shows an initial solution using Q4 elements and theτ vol choice. The
arrow indicates a lack of smoothness common to most of the solutions. Note that the
vertical axis of these plots gives the minimum and maximum function value found
anywhere in the mesh. That allows some extra comparisons of the various surface plots
to follow which at first glance look very similar when projected onto a common reference
surface. This solution yielded error estimates that suggested a new non-uniform mesh
with local element sizes also shown there. Note that the new sizes are not symmetrically
spaced and refine the region nearx = 0 − more. The corresponding figures forτ geom,
τ ugn, andτ norm, using the Q4 elements, are given in Figs. 14.7.11 to 13, respectively.


We will illustrate the other linear through cubic elements, that can use the same
nodes, by applying theτ norm to the initial mesh only. We begin with the Q9 and Q16
elements. The Q9 solution results are shown in Fig. 14.7.14 and those for the Q16
elements are in Fig. 14.7.15. These are cude meshes even though the polynomial degree
is higher. The corresponding first suggested mesh revisions are given in Fig. 14.7.16, but
one probably needs even smaller sizes (which can be done via control keywords). The
corresponding linear through cubic T3, T6, and T10 triangular family element results and
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Figure 14.7.12 The Q4 result and new mesh estimate fromτ ugn
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Figure 14.7.13 The Q4 result and new mesh estimate fromτ norm
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Figure 14.7.14 Quadratic Q9 results forτ norm, normal, wireframe, projected
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Figure 14.7.15 Cubic Q16 results forτ norm, wireframe, projected
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Figure 14.7.16 Initial suggested refinements for Q9, Q16 withτ norm
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Figure 14.7.17 Linear T3 triangle results and sizes forτ norm
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suggested mesh refinements are given in Fig. 14.7.17 to 19, respectively.
The higher order element solutions shown here are based on the common practice of


omitting the second order derivatives of the interpolation functions. All four choices for
τ seem to give similar results here for a problem with no source term. One can apply the
same grid spacing for meshes with Serendipity quadratic, Q8, and cubic, Q12,
quadrilaterals. However, fewer nodes and equations are used since they do not have
interior nodes. Considering that effect they seem to perform equally well in this test
without a source term.


Since stabilization methods should also be tested on problems with source terms the
final example will consider a problem with a constant source term distributed over a
square, with the function having essential boundary values of zero on all four edges, and
having a constant diagonal flow with a unit velocity. For very high advection rates the
solution is pushed into the corner atx = y = 1/2 and the rapidly drops to zero through a
sharp boundary layer along the linesx = 1/2 andy = 1/2. Again a uniform initial mesh
is selected so that the same set of nodes can be employed in meshes that use different
element types taken from the linear through cubic degree elements in list of T3 or T6 or
T10 or Q4 or Q9 or Q16 elements. All of these give results that can be projected onto a
common Q4 mesh to simplify visual comparisons. The initial mesh was chosen to be
relatively crude and consisted of a 18× 18 grid of square Q4 linear elements.


A repeatedly refined mesh of Q4 elements was employed to obtain a fine scale
reference solution to which other results will be compared. Tw o views of that solution
are given in Fig. 14.7.20. Its maximum solution value is 5.14. The fourτ definitions
given earlier were employed for the initial 18× 18 Q4 mesh. The initial solution value
contours for the reference solution, classic Galerkin, and the fourτ stabilization
definitions are given in Fig. 14.7.21. The peak solution values (included in the captions)
are 5.14, 5.76, 4.87, 4.70, 4.99, and 5.65, respectively. When a source term is present, as
here, we see that theτ vol choice is like the Galerkin solution and significantly overshoots
the true result by more than 10 %. The other three stabilization parameter definitions
under estimate the peak value by about 5 %.


Next we will employ the same number of nodes and Q4 elements but bias the mesh
toward the expected boundary layer as illustrated in Fig. 14.7.22. The boundary region
of the four stabilized models, using this mesh, are given in Fig. 14.7.23 (to the same
scale). The maximum solution values forτ norm, τ ugn, τ geom, andτ vol are now 4.92, 4.86,
5.07, and 5.24 respectively (compared to the much finer reference solution value of 5.14).
In the initial meshτ was a single constant over the full domain. Now since the element
sizes are changing each element has a differentτ value. One might expect that the
stabilization terms will be highest in the boundary layer. That is not the case as can be
seen from the fourτ contour plots in Fig. 14.7.24. The peakτ values for each definition
vary significantly. Forτ norm, τ ugn, τ geom, and τ vol the peak element values are 0.0383,
0.0542, 0.0346, and 0.0018, respectively. These peakτ values occur near the largest
elements in the lower left corner region. The minimum values occur at the smallest
element and are 0.0058, 0.0081, 0.0011, and 0.0000, rescectively. When quadratic and
cubic elements are utilized the solution improves but the distribution ofτ remains about
the same in shape. Their peak solution values are closer to the reference solution. The
same is not true for the Serendipity Q8 and Q12 elements which yield strabge results near
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Figure 14.7.24 Distribution of the Q4 element values ofτ norm, τ ugn, τ geom, τ vol
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Figure 14.7.25 Unstable Galerkin Q4 solution withk / 10
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the two far corners off the main diagonal of flow.
Using mesh refinements guided by the error estimator all solutions approach the


same value. Even with the above biased mesh the Galerkin solution becomes very
unstable if the local Peclet number is increased as seen in Fig. 14.7.25.


Theτ norm andτ geom can be extended to define a nodal basisτ set that define variable
values at the quadrature points. They giv e results similar to the above approaches that
hold τ constant in each element. However, theτ norm approach requires iteration. That is
not a major problem since iterative solvers are often used in finite element analysis,
especially for Navier-Stokes solvers.


14.8 Exercises


1. A model equation with a non-uniform source and a boundary layer nearx = 1 is
−u′′ + k u′ = Q when k > > 1 andu(0) = 0 = u(1). Obtain a finite element solution
when the source per unit length is defined as:


a) Q = 3 k x2 so thatu(x) = x3 + A x2 + B x + C(ekx − 1)/(ek − 1) where A = 3/k,
B = 6/k2, andC = − (1 + A + B).


b) Q = 3 k x2 + 2 k π Cos(2π x) + 4π 2 Sin(2π x) so u(x) is the above expression
plusSin(2π x).


Note that in both cases the total applied source isk. Use k = 1 and k = 60 to see
solutions without and with a boundary layer, respectively. (Fork = 60 these two exact
solutions correspond toexact_case28 and 29 in MODEL, respectively.)


2. A one-dimensional problem with boundary layer atx = 1 is


−ku′′(x) + u′(x) = 1, 0 ≤ x ≤ 1


with the boundary conditions ofu(0) = 0 = u(1). Obtain finite element solutions for
k = 0. 1 andk = 0. 01 and compare them to the exact result of


u(x) = x − exp[(x − 1) / k] − exp[−1 / k] / 1 − exp[−1 / k].
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