Chapter 9

GENERAL INTERPOLATION

9.1 Introduction

The previous sections have illustrated the heavy dependence of finite element
methods on both spatial interpolation and efficient integrations. In a one-dimensional
problem it does not make a great deal of difference if one selects a local or global
coordinate system for the interpolation equations, because the inter-element continuity
requirements are relatively easy to satisfy. That is not true in higher dimensions. To
obtain practical formulations it is almost essential to utilize local coordinate
interpolations. Doing this does require a small amount of additional work in relating the
derivatives in the two coordinate systems.

9.2 Unit Coordinate Interpolation

The use of unit coordinates have been previously mentioned in Chap. 4. Here some
of the procedures for deriving the interpolation functions in unit coordinates will be
presented. Consider the three-node triangular element shown in Fig. 9.2.1. The local
coordinates of its three nodes areQ)) (1,0), and (Q1), respectively. Once again we
wish to utilize polynomial functions for our interpolations. In two dimensions the
simplest complete polynomial has three constants. Thus, this linear function can be
related to the three nodal quantities of the element. Assume the polynomial for some
guantity,u, is defined as:

ué(r,s) = df +dsr +dss = P(r,s) d®. (9.1)

If it is valid everywhere in the element then it is valid at its nodes. Substituting the local
coordinates of a node into Eq. 9.1 gives an identity betweedf thied a nodal value af.
Establishing these identities at all three nodes gives
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H,+H, H,+ H,+H, =1

Figure 9.2.1 Isoparametric interpolation on a simplex triangle

u® = gd°. (9.2)
Iff the inverse exists, and it does here, this equation can be solved to yield
d® = glu® (9.3)
and
u®(r,s) = P(r,s) g u®=H(r, s)u®. (9.4)
Here
o1 0 00O
-1 - [O- U
g 0 1 1 OD (9.5)
-1 0 1
and
H,(r,s) =1 -r -s, H(r,s) =r , Hs(r,s) = s. (9.6)

By inspection, one can see that the sum of these functions at all points in the local domain
is unity. This is illustrated graphically at the bottom of Fig. 9.2.1. Typical coding for
these relations and their local derivatives are shown as subro@®h&BPE 3 T and
DERIV_3 T in Fig.9.2.2. Similarly, for the unit coordinate bilinear quadrilateral
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mapping from 0 <1(,s) < 1 one could assume that
u(r,s) = df +d5r +d§s+djgrs 9.7)

so that ol o0
g = El 1
ot 1
01 o

0 (9.8)

= B O O
o

and

SUBROUTINE SHAPE_3_T (S, T, H) N1
* *

l***************_* *******lz

*
I SHAPE FUNCTIONS FOR A THREE NODE UNIT TRIANGLE I3
|**************************'4
Use Precision_Module I'5
IMPLICIT NONE 1 6
REAL(DP), INTENT(IN) =S, T 17
REAL(DP), INTENT(OUT) :: H (3) 18
19
I S,T= LOCAL COORDINATES OF THE POINT 3 T 110
I'H SHAPE FUNCTIONS . 111
! NODAL COORDS 1-(0,0) 2-(2,0)0 3-(0,1) 1.2 oO. S 12
113
H (1)=1d0-S-T 114
H (2)=S 115
H@3)=T 116
END SUBROUTINE SHAPE 3 T 117
118
SUBROUTINE DERIV_3_T (S, T, DH) 119
| **************************|20
I LOCAL DERIVATIVES OF A THREE NODE UNIT TRIANGLE 121
! SEE SUBROUTINE SHAPE_3_T 122
| **************************|23
Use Precision_Module 124
IMPLICIT NONE 125
REAL(DP), INTENT(IN) =S, T 126
REAL(DP), INTENT(OUT) :: DH (2, 3) 127
128
' ST = LOCAL COORDINATES OF THE POINT 129
I DH(1,K) = DH(K)/DS 130
I DH(2,K) = DH(K)/DT 131
I NODAL COORDS ARE: 1-(0,0) 2-(1,0) 3-(0,1) 132
133
DH (1, 1)=—1d0 134
DH(1,2)=1d 135
DH(1,3)=0d 136
DH (2, 1)=—1d0 137
DH (2, 2) =0.d0 138
DH (2,3)=1.d0 139
END SUBROUTINE DERIV_3 T 140

Figure 9.2.2 Coding a linear unit coordinate triangle
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Hiy(r,s) =1 —-r —-s +rs

Hy, = r -rs

(9.9)
Hs = rs
H, = S -—IS.

However, for the quadrilateral it is more common to utilize the natural coordinates, as
shown in Fig. 9.2.3. In that coordinate systebhx a, b< + 1 so that

nl -1 -1 1

g = 51 1 -1 -1 B

B 1 1 1 1 0

o1 -1 1 10
and the alternate interpolation functions are

Hi(a,b) = (1+aa)(@+bb)/4, 1<i<4 (9.10)

where &, b;) are the local coordinates of node These four functions and their local
derivatives can be coded as shown in Fig. 9.2.3.

Note that up to this point we have utilized the local element coordinates for
interpolation. Doing so makes the geometry matgix,depend only on element type
instead of element number. If we use global coordinates then the geometric giagrix,
always dependent on the element numileer, For example, if Eq. 9.1 is written in
physical coordinates then

u(x,y) = di+dsx+d3y (9.11)
so when the identities are evaluated at each node the result is
01 x5 y; O
o =21 x5 y5 U (9.12)
O S g}
0ol X3 Y3 O
Inverting and simplifying the algebra gives the global coordinate equivalent of Eq. 9.6 for
a specific element :
HE(x,y) = (@S +bex+cty)/2A®, 1<i<3 (9.13)

where the algebraic constants are

e — e, e e, ,t e — e e e — e e
a; = X3¥3 = X3Ys bi=Y>-VYs Ci=X3 = X3
e — e, e e, ,t e — e e e — e e
a; = X3Y1 ~ X1Y3 >=Y3 ™Y1 Cy; = X{ = X3 (9.14)
e — e, e e, ,t e — e e e — e e
az = X1Ys = X3Y1 3=Y1 Y2 C3=X; = Xg

and A° is the area of the element, thatA§,= (a$ + a5 + a$)/ 2, or
A° = OXS(ys - ¥9) + X5(¥5 - vD) + x50 - v9) of 2.

These algebraic forms assume that the three local nodes are numbered counter-clockwise
from an arbitrarily selected corner. If the topology is defined in a clockwise order then
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SUBROUTINE SHAPE_4 Q (R, S, H) 11
|**************************|2
I SHAPE FUNCTIONS OF A 4 NODE PARAMETRIC QUAD 13
! IN NATURAL COORDINATES I 4
|**************************|5
Use Precision_Module 1 6
IMPLICIT NONE 17
REAL(DP), INTENT(IN) =R, S ! 8
REAL(DP), INTENT(OUT) H (4) 19
REAL(DP) T RP,RMSP S M 110
111
I (R,S) = APOINT IN THE NATURAL COORDS 4---3 112
I'H = LOCAL INTERPOLATION FUNCTIONS | | 113
I H(I) = 0.25d0*(1+R*R(1))*(1+S*S(1)) | | 114
I R(I) = LOCAL R-COORDINATE OF NODE | 1---2 115
| LOCAL COORDS, 1=(-1,-1)  3=(+1,+1) 116
117
RP=1d0O+R;R M=1d0-R 118
SP=1d0+S;S M=1d0-S 119
H (1) = 0.25d0*R_M*S_M 120
H (2) = 0.25d0*R_P*S_M 121
H (3) = 0.25d0*R_P*S_P 122
H (4) = 0.25d0*R_M*S_P 123
END SUBROUTINE SHAPE_4 Q 124
125
SUBROUTINE DERIV_4 Q (R, S, DELTA) 126
! k_Kk k_k k_k k_k k_k k_k k_k k_k k_k k_k k_*%x k_* k_% |27
I LOCAL DERIVATIVES OF THE SHAPE FUNCTIONS FOR AN 128
I PARAMETRIC QUADRILATERAL WITH FOUR NODES 129
! SEE SHAPE 4 Q 130
| **************************'31
Use Precision_Module 132
IMPLICIT NONE 133
REAL(DP), INTENT(IN) =R, S 134
REAL(DP), INTENT(OUT) DELTA (2, 4) 135
REAL(DP) RP,RMSPSM 136
137
| DELTA(1,!) = DH/DR 138
I DELTA(2,I) = DH/DS 139
I'H = LOCAL INTERPOLATION FUNCTIONS 140
I (R,S) = A POINT IN THE LOCAL COORDINATES 141
I HERE D(H(1))/DR = 0.25d0*R(1)*(1+S*S(l)), ETC. 142
143
RP=1d0o+R;R M=1d0-R 144
S_P::L.d0+S S M=1d0-S 145
DELTA (1, 1) = -0.25d0 * S_M 146
DELTA(1,2)= 0.25d0*S M 147
DELTA (1,3)= 0.25d0*S_P 148
DELTA (1, 4) =-0.25d0 * S_P 149
DELTA (2, 1) =-0.25d0 * R_M 150
DELTA (2,2)=-0.25d0 *R_P 151
DELTA (2,3)= 0.25d0*R_P 152
DELTA (2,4)= 0.25d0*R_M 153
END SUBROUTINE DERIV_4_Q 154
Figure 9.2.3 Coding a bi-linear quadrilateral
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Figure 9.2.4 Boundary curves through element nodes

the areaA°®, becomes negative.

It would be natural at this point to attempt to utilize a similar procedure to define the
four node quadrilateral in the same manner. For example, if Eq. 9.7 is written as

us(x,y) = df +dsx+dSy+d;xy. (9.15)

However, we now find that for a general quadrilateral the inverse of ngitmay not

exist. This means that the global coordinate interpolation is in general very sensitive to
the orientation of the element in global space. That is very undesirable. This important
disadvantage vanishes only when the element is a rectangle. This global form of
interpolation also yields an element that fails to satisfy the required interelement
continuity requirements. These difficulties are typical of those that are encountered in
two- and three-dimensions when global coordinate interpolation is utilized. Therefore, it
is most common to employ the local coordinate mode of interpolation. Doing so also
easily allows for the treatment of curvilinear elements. That is doneisoiparametric
elementshat will be mentioned later.

It is useful to illustrate the lack of continuity that develops in the global coordinate
form of the quadrilateral. First, consider the three-node triangular element and examine
the interface or boundary where two elements connect. Along the interface between the
two elements one has the geometric restriction that the edge is a straight line given by
y =m°x + n°. The general form of the global coordinate interpolation functions for the
triangle isu(x,y) = df + d5 x + d§y where theg; are element constants. Along the
typical interface this reduces to= d¢ + dSx + dS (mPx + n°), or simplyu = f; + f,x.

Clearly, this shows that the boundary displacement is a linear functign dihe two
constants,f;, could be uniquely determined by noting th#k;) = u; and u(x,) = u,.

Since those two quantities are common to both, elements the displacefrentyill be
continuous between the two elements. By way of comparison when the same substitution
is made in Eq.9.15 the resulting edge value for the quadrilateral element is
u = d+dSx+dS(mPx +nP) +dS x (mPx + n°), or simplyu = f, + f, x + f; x2. This
guadratic function cannot be uniquely defined by the two consiaarsdu, . Therefore,

it is not possible to jve that the displacements will be continuous between elements.
This is an undesirable feature of quadrilateral elements when formulated in global
coordinates. If the quadrilateral interpolation is given in local coordinates such as Eq. 9.9

4.3 Draft- 5/27/04 © 2004 J.E. Akin. All rights reserved.



236 J.E. Akin

or Eg.9.10, this problem does not occur. On the edged, Eg. 9.9 reduces to
u=f; + for. A similar result occurs on the edge=1. Likewise, for the other two
edgesu = f; + f,s. Thus, in local coordinates the element degenerates to a linear
function on any edge, and therefore will be uniquely defined by the two shared nodal
displacements. In other words, the local coordinate four node quadrilateral will be
compatible with elements of the same type and with the three-node triangle. The above
observations suggest that global coordinates could be utilized for the four-node element
only so long as it is a rectangle parallel to the global axes.

The extension of the unit coordinates to the three-dimensional tetrahedra illustrated
in Fig. 3.2.2 is straightforward. In the result given below

Hiy(r,s,f) = 1-r—-s—t Ho(r,s,t) = r
Hs(r,s,t) = s Hy(r,s,t) = t,

and comparing this to Egs. 9.6 and 4.11, we note that the 2-D and 1-D forms are
contained in the three-dimensional form. This concept was suggested by the topology
relations shown in Fig. 3.2.2. The unit coordinate interpolation is easily extended to
quadratic, cubic, or higher interpolation. The procedure employed to generate Eq. 9.6
can be employed. An alternate geometric approach can be utilized. We want to generate
an interpolation functionH;, that vanishes at theth node when # j. Such a function

can be obtained by taking the products of the equations of selected curves through the
nodes on the element. For example, kef(r,s) = C,I; I, where thel; are the
equations of the lines are shown in Fig. 9.2.4, and w@elie a constant chosen so that
Hi(ry, 1) = 1. Thisyields

Hy = (1-3r —3s+2r? +4rs + 25%).

Similarly, letting H,=C,I; '3 givesC,=4 and H, =4r(1-r —s). This type of
procedure is usually quite straightforward. However, there are times when there is not a
unique choice of products, and then care must be employed to select the proper products.
The resulting two-dimensional interpolation functions for the quadratic triangle are

Hy(r,s) =1 - 3r + 2r2 = 3s + 4rs + 2¢°

(9.16)

Ho(r,s) = - r + 2r2
Hiy(r,s) = - s + 28°
o(r9) (9.17)
H,(r,s) = 4r — 4r? — 4rs
Hs(r,s) = 4rs

He(r,s) = 4s — 4rs — 45,

Once again, it is possible to obtain the one-dimensional quadratic interpolation on a
typical edge by setting = 0. Figure 9.2.5 shows the shape of the typical interpolation
functions for a linear and quadratic triangular element.

Figure 9.2.6 illustrates the concept of Pascal’s triangle for representing the complete
polynomial terms in three dimensions. Beginning with the constant vertex (1), it can also
be thought of as as showing the polynomials that occur in the tetrahedron of linear,
guadratic, cubic, and quartic degree, respectively, and the relative location of the nodes on
the edges, faces, and interior of the tetrahedron. If onezsets$ then it can also show
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Linear Quadratic

Figure 9.2.5 Linear and quadratic triangle interpolation

z = 1 for 2-D
simplex elements

Figure 9.2.6 The 2-D Pascal triangles and the 3-D simplex family

the relative nodes and polynomials for the triangular elements of linear, quadratic, cubic,
and quartic degree from the left-most to the right-most triangles, respectively.

9.3 Natural Coordinates

The natural coordinate formulations for the interpolation functions can be generated
in a similar manner to that illustrated in Eq. 9.10. However, the inverse geometric matrix,
G™, may not exist. However, the most common functions have been known for several
years and will be presented here in two groups. They are generally denoted as
Lagrangian elements and as the Serendipity elements (see Tables 9.1 and 9.2). For the
four-node quadrilateral element both forms yield Eq. 9.10. This is known as the bi-linear
guadrilateral since it has linear interpolation on its edges and a bi-linear (incomplete
guadratic) interpolation on its interior. This element is easily extended to the tri-linear
hexahedra of Table 9.2. Its resulting interpolation functions are
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H (a,b,d = (1+aa)(l+bb)(@+cc)/8, (9.18)

for 1<i <8 where &, b, ¢ ) are the local coordinates of nodeOn a given face, e.g.,
c= * 1, these degenerate to the four functions in Eq. 9.10 and four zero terms. For
guadratic (or higher) edge interpolation, the Lagrangian and Serendipity elements are
different. The Serendipity interpolation functions for the corner quadratic nodes are

H (a,b) = (L+aa)(1+bb)(ag +bb - 1)/4, (9.19)
where 1< i < 4 and for the mid-side nodes
Hi(a,b) = a®(1-b)(L+aa)/2 + b*(1-a’)(1+bb)/2, 5<i<8.(9.20)

Other members of this family are listed in Tables 9.1 and 9.2. The two-dimensional
Lagrangian functions are obtained from the products of the one-dimensional equations.
The resulting quadratic functions are

Hi(a,b=(@%-a)(t®*-b)/4 Hg@ab=(@2+a)@@1-b?/2
Hya,b=(@*+a)(®’-b)/4 H(a,h=@1-a)(*+b)/2
Hi(a,b=(a®+a)(b®+b)/4  Hg@ab=(@2-a)@@1-b?/2
Hia, b =@ -a)(t®+b)/4  Heab=(1-ad(1-b)
Hs(a, b = (1 - a%) (b* - b)/ 2.

The typical shapes of these functions are shown in Fig. 9.3.1. The fukti{anb) is

referred to as &dubble functiorbecause it is zero on the boundary of the element and
looks like a soap bubble blown up over the element. Similar functions are commonly
used in hierarchical elements to be considered later. It is possible to mix the order of
interpolation on the edges of an element. Figure 9.3.2 illustrates the Serendipity
interpolation functions for quadrilateral elements that can be either linear, quadratic, or
cubic on any of its four sides. Such an element is often referred totramsition
element They can also be employed psadaptive elementsThose types of elements

are sketched in Fig. 9.3.3. From the previous figures one will note that the supplied
routines in the interpolation library generally start with the names SHAPE_ and DERIV_
and have the number of nodes and shape codes (L-line, T-triangle, Q-quadrilateral, H-
hexahedron, P-pyramid or tetrahedron, and W-wedge) appended to those names. The
class of elements shown in Fig. 9.3.3 are appended with the name L_Q_H because they
can be determined for any of the three shapes. For elements of degree four or higher one
needs to also include interior nodes for elements in Fig.9.3.3 to form complete
polynomials, or the rate of convergence will be decreased.

9.4 Isoparametric and Subparametric Elements

By introducing local coordinates to formulate the element interpolation functions
we were able to satisfy certain continuity requirements that could not be satisfied by
global coordinate interpolation. We will soon see that a useful by-product of this
approach is the ability to treat elements with curved edges. At this point there may be
some concern about how one relates the local coordinates to the global coordinates. This
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Linear Quadratic

Figure 9.3.1 Quadratic Serendipity quadrilateral interpolation

Topology: 4-1-7-3
I
8 10
I *R |
12 6
I I
1-5-9-2
If Cubic Side: i=5,9,or 610 or 711 or 812

Hi(r,s) = 1-s)(1+9ss)(L+rr;)9/32
Hi(r,s) = (L-r?)(1+9rr;)(1+ss)9/32

If Quadratic Side: i =5, 6, 7, or 8
Hi(r,s) = (L+1r,)(1-)/2
Hi(r,s) = (1+ss)(1-r?)/2
H =0 j=i+4
If Linear Side :
Hi =H,=0 j=i+4 k=i+8 1i=123o0r4
If Corners:i=1,2,3,4 H(r,s) = (P, +P,)(1+ss)/4

See subroutine SHAPE 4 12 Q

Orderof Side| P,, s=%21 | P, =1

Linear 1/2 1/2
Quadratic re; —1/2 ss —1/2
Cubic (@2-5)/8 | (9-5)/8

Figure 9.3.2 Linear to cubic transition quadrilateral

4.3 Draft- 5/27/04 © 2004 J.E. Akin. All rights reserved.



240

J.E. Akin

Table 9.1. Serendipity quadrilaterals in natural coordinates
Node Location Interpolation Functions Name
a; by Hi (a, b
+1 %1 (1+ag)(l+bb)/4 Q4
+1 +1 (1+aa)(1+bb)(ag +bb -1)/4 Q8
+1 0 (1+ag)(1-b)/2

0 =+1 (1+bb)@-a%)/2
+1 +1 (1+aa)(l+bb)[9(a®+b?)-10]/32 Q12
+1 +1/3  9(1+aa)(l-b?)(1+9bb)/32
+1/3 +1 9(1+bb ) (1-a% (1 +9aa )/ 32
+1 1 (1+aa)(1+bb)[4(a®-1)aa Q16

+4(b? - 1) bb +3aba b; ]/12

+1 0 2(1+aa)(b*-1)(b* - aa)/4

0 =+1 2(1+bb ) (@ -1)(@*-bb)/4
+1 +1/2  4(1+aa)(l-b?) (k> +bb)/3
+1/2 +1 4(1+bb)(1-a%)(a®+aa)/3

0 0 @ -1)(*-1)

Table 9.2. Serendipity hexahedra in natural coordinates
Node Location Interpolation Functions Name
8 b Hi(a, b,9
+1 +1 #1 (1+aa)(L+bb)@d+cc)/8 H8
+1 +1 +1 (1+aa)(Ll+bb)(L+cc)(ag +bb +cc -2)/8 H20
0 +1 +1 (1-a%)(@+bb)@+cc)/4
+1 0 *1 (1-b)(L+aa)@+cc)/4
+1 1 O (1-c®)(1+aa)(l+bb)/4
+1 +1 1 (1+aa)(1+bb)(1+cc) H32
[9(a%+b*+c?)-19]/64
+1/3 +1 +1 9(1-a)(1+9aa)(l+bb)@+cc)/64
+1 +1/3 +1 9(1-b*)(1+9bb)(1+aa)(l+cc)/64
+1 +1 +1/3 9(1-c)(1+9cc)(l+bb)@1+aa)l64
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oO—0—0—10—10°0 oO——0
[e] o
P(r, s) = P, (r) < - P.(r,s)
[e] o
r r r r
—> oO——o0——O0—» — o—————O0—>»

Figure 9.3.3 Blended quadrilaterals of different edge degrees

must be done since the governing integral is presented in global (physical) coordinates
and it involves derivatives with respect to the global coordinates. This can be
accomplished with the populeoparametric elementandsubparametrielements.
Isoparametric elements utilize a local coordinate system to formulate the element
matrices. The local coordinates, says, andt, are usually dimensionless and range
from O to 1, or from-1 to 1. The latter range is usually preferred since it is directly
compatible with the usual definition of abscissa utilized in numerical integration by
Gaussian quadratures. The elements are called isoparametric since the same (iso) local
coordinate parametric equations (interpolation functions) used to define any quantity of
interest within the elements are also utilized to define the global coordinates of any point
within the element in terms of the global spatial coordinates of the nodal points. If a
lower order polynomial is used to describe the geometry then it is cadldaparametric
element These are quite common when used with the newer hierarchical elements. Let
the global spatial coordinates again be denoted by, andz,. let the number of nodes
per element ben,. For simplicity, consider a single scalar quantity of interest, say
V(r,s,t). The value of this variable at any local pointq,t) within the element is
assumed to be defined by the values at rihenodal points of the elementV{,
1<i<n,), and a set of interpolation functionsi((r, s,t), 1<i <n,). Thatis,

Vv(r,s,t) = %Hi(r,s,t) VE = H(r) V®, (9.21)
i=1

whereH is a row vector. Generalizing this concept, the global coordinates are defined
with a geometric interpolation, or blending, functi@, If it interpolates betweem,
geometric data points then it is subparametria,ik n,, isoparametric ifn, = n, so

G =H, and superparametric if, > n,,. Blending functions typically use geometric data
everywhere on the edge of the geometric element. The geometric interpolation, or
blending, is denoted asx(r,s,t)=Gx®, y=Gy®, and z=Gz°. Programming
considerations make it desirable to write the last three relations as a position row matrix,
R, written in a partitioned form

R(r,s,t) = G(r,s,) R® = G[x®y®Z°] (9.22)

where the last matrix simply contains the spatial coordinates ohthedal points
incident with the element. [& = H, it is an isoparametric element. To illustrate a typical
two-dimensional isoparametric element, consider a quadrilateral element with nodes at
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the four corners, as shown in Fig. 9.2.3. The global coordinates and local coordinates of
a typical corneri, are ;,V; ), and (;,s ), respectively. The following local coordinate
interpolation functions have been developed earlier for this element:

H;(r,s) = %(1+rri)(1+ss,), l<i<4.

We interpolate any variable, V, as OV: f
. Ov, O
V(s = Hns Ve =poHy H Hy HepD, O

0% 0

OV, O

Note that along an edge of the element=(x1 or s= £ 1), these interpolation
functions become linear and thus any of these three quantities can be uniquely defined by
the two corresponding nodal values on that edge. If the adjacent element is of the same
type (linear on the boundary), then these quantities will be continuous between elements
since their values are uniquely defined by the shared nodal values on that edge. Since the
variable of interesty, varies linearly on the edge of the element, it is called the linear
isoparametric quadrilateral although the interpolation functions are bilinear inside the
element. If the X, y) coordinates are also varying linearly witlor s on a side it means

this element has straight sides.

For future reference, note that if one can define the interpolation functions in terms
of the local coordinates then one can also define their partial derivatives with respect to
the local coordinate system. For example, the local derivatives of the interpolation
functions of the ativeelement are

OH. (r,s)/or =r,(L+ss)4, OH (r,s)/ds= s @+r1r;)4.

In three dimensionsn{ = 3), let the array containing the local derivatives of the
interpolation functions be denoted B{_H, a 3% n, matrix, where

0o 0O
O3y N O
0 0
O O
DL H(r,s,t) = Da_ Hpo=0.H. (9.23)
0% o
0 0
DEHD
oot O

Although x, y, and z can be defined in an isoparametric element in terms of the
local coordinatest;, s, andt, a unique inverse transformation is not needed. Thus, one
usually does not defire s, andt in terms ofx, y, andz. What one must have, however,
are the relations between derivatives in the two coordinate systems. From calculus, it is
known that the derivatives are related by daeobian From the chain rule of calculus
one can write, in general,

9 _ 00x 00y, 00z
or dxor dyadr 0dzor
with similar expressions fa/dsandd/at. In matrix form these identities become
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Do Qg @{ox dy 0zpOgo QO
Uor U Uar ar oar Ulgx U
O 0O 0O oo O
o O Oox o ozUO g O
O35 0= Ogg a—y 3s 005y O (9.24)
0%nog np¢ S 0SnY% o
O~0 0O 00 5 O
0% g %% 9 9z 50 §
ot o ot ot ot 000z O

where the square matrix is called tlacobian. Symbolically, one can write the
derivatives of a quantity, such &4r, s, t), which for convenience is written ¥¢Xx, Y, 2

in the global coordinate system, in the following mande¥. = J(r, s,t) a4V, whereJ

is the Jacobian matrix, and where the subsctipasd g have been introduced to denote
local and global derivatives, respectively. Similarly, the inverse relation is

0,V =J'9.V. (9.25)

Thus, to evaluate global and local derivatives, one must be able to establish the Jacobian,
J, of the geometric mapping and its inverset. In practical application, these two
guantities usually are evaluated numerically. Consider the first tednthiait relates the
geometric mappingdx/adr = d (Gx®)/ar = aG/ar x°. Similarly, for any component

in Eq. 9.220R/dr = (G R®)/ar . Repeating for all local directions, and noting that the

R® values are constant input coordinate data for the element, we find the identity that

10X Q Jdz[] Qo0 0

Oar or or D Opr ©O
0 O 0O

Hox 0 ozUO Ogp _ 0O
O3e a—z —SD:DG—SGDRe
0 O 0O 0
0 O 0O 0
09x 9y 0z5 [0 . §

Ogot ot ot ot O

or, in symbolic form, the evaluation of the definition of the Jacobian within a specific
element takes the form
Jé(r,s,t) = DL_G(r, s,t) R®. (9.26)

This numerically defines the Jacobian matdx,at a local point inside a typical
element in terms of the spatial coordinates of the element's n&feswhich is
referenced by the nan@OORDIn the subroutines, and the local derivativek, G, of
the geometric interpolation functions, Thus, at any pointr(s, t) of interest, such as a
numerical integration point, it is possible to define the values), o0, and the
determinant of the Jacobiady.| In practice, evaluation of the Jacobian is simply a matrix
product, such asAJ = MATMUL(DL_G,COORD. We usually will consider two-
dimensional problems. Then the Jacobian matrix is
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dox oy O
O3, 3 O
5= D6r or i
Oox oy U
n-—-— =2
DaS 0s 0

In general, the inverse Jacobian in two dimensions is
O ody  oyO

1 g s or U
gt = = where J| = X, Ys— Y Xs.

0
3] U _0X ax U
N 0s or 0
For future reference, note that by denoting { =)d( )/ar, etc. the determinant and
inverse of the three-dimensional Jacobian are
|‘J| = X|r (y,s Z,t - y,t Z,s) + X,s(y,t Z,r - y,r Z,t) + X,t (y,r Z,s - y,s Z,r)
and H (y,s Zy— Y Z,s) (y,t Z, — Y, Z,t) (y,r Zs—VYs Z,r) U
J_l = B(X,t Zs— Xs Z,t) (X,r Zy— Xt Z,r) (X,s Z, — X, Z,s) B/ |‘]|
D(X,s Yi~— Xt y,s) (X,t Yr = X y,t) (X,r Ys—Xs y,r) 0

Of course, one can in theory also establish the algebraic fodm Bbr simplicity
consider the three-node isoparametric triangle in two dimensions. From Eq. 9.6 we note
that the local derivatives @ are
Oog/or0_ O-1 1 0O
DL G = ga /3 = n! (9.27)
Thus, the element has constant local derivatives since no functions of the local
coordinates remain. Usually the local derivatives are also polynomial functions of the
local coordinates. Employing Eq. 9.26 for a specific T3 element:

Ox,  y; 0O

D— D 1 1
r=pLere=pr 1 %00 O
- o1 0 10 0
OXs Yz [

or simply
3€ = E(Xz = X1)  (Y2-Yi1) Be
Oz =x1) (Y3 = Y1)
which is also constant. The determinant of this2Jacobian matrix is
[3°] = (%o = X)® (Y3 = Y)° — (X3 = X1)° (Y2 — y2)° = 2A°,
which is twice the physical area of the element physical dor@4irfor the abvethree-
node triangle, the inverse relation is simply

L 5 (s -(yz-yl)ET _ 1 0b b
2A¢ D—(x3 - X) (X5 = Xq) 0 2A° HC; 3

(9.28)

=

0
. (9.29)
0
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For most other elements it is common to form these quantities numerically by
utilizing the numerical values &° given in the data. The use of the local coordinates in
effect represents a change of variables. In this sense the Jacobian has another important
function. The determinant of the Jacobiad|, |[relates differential changes in the two
coordinate systems, that is,

L =dx = |J|dr
da = dxdy = |J|drds
dv = dxdydz= |J|drdsdt

in one-, two-, and three-dimensional problems. When the local and physical spaces have
the same number of dimensions we can write this symbolicatlyds= |J|dO°.

The integral definitions of the element matrices usually involve the global
derivatives of the quantity of interest. From Eq. 9.21 it is seen that the local derivatives of
V are related to the nodal parameters by

oovo oo 0o
|:| ar |:| Dar D
O O O O
Ogv O ] O
6_ = Da— H Ove,
0% 0o o 0
O O O O
oo o4O
0ot 0 not 0
or symbolically,
o, V(r,s,t) = DL_H(r,s,t) V°. (9.30)

To relate the global derivatives & to the nodal parameter¥,®, one substitutes the
above &pression, and the geometry mapping Jacobian into Eq. 9.25 to obtain

0,V = J'DL_HV® = d(r,s,1) Ve,

where -
d(r,s,t) = J(r,s,)*DL_H(r, s, 1). (9.31)

The matrixd is very important since it relates the global derivatives of the quantity of
interest to the quantity’s nodal values. Note that it depends on both the Jacobian of the
geometric mapping and the local derivatives of the solution interpolation functions. For
the sake of completeness, note tthatn be partitioned as

o o y O
O d, O O 3jx [
o _ O O----_-__ O
O O O 9 O

dir,s,) =g dy O=10 3y H 0= 0gH (9.32)

O ——_ o o % o
O O O O
o & oo %4 0O

0o 0z O

so that each row represents a derivative of the solution interpolation functions with
respect to a global coordinate direction. Sometimes it is desirable to compute and store
the rows ofd independently. In practice the matrix usually exists only in numerical
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form at selected points. Once again, it is simply a matrix product such as GLOBAL =
MATMUL (AJ_INV, DL_H), where GLOBAL represents the physical derivatives of the
parametric functiondH. For the linear triangleJ, DL_G, and d are all constant.
Substituting the results from Eqgs. 9.27 and 9.29 into 9.31 yields

ge = L Hv2mya) (ys—va) (yl-yz)ﬁ:igbl b, b3§_ (9.33)

2A° Eﬁxa —X) (Xi=Xs) (Xe—-X)pg 2A°C G G
As expected for a linear triangle, all the terms are constant. This element is usually
referred to as the Constant Strain Triangle (CST). For Poisson proBfemsl®.
Any finite element analysis ultimately leads to the evaluation of the integrals that
define the element and/or boundary segment matrices. The element m&trce€;’,
are usually defined by integrals of the symbolic form

111

Ie:J'J;J'Fe(X,y,Z)dxdydz = _J;_J;_J;ﬁe(r,s,t)DJe(r,s,t)Ddr ds dt . (9.34)

where F° is usually the sum of products of other matrices involving the element
interpolation functionsH, their derivativesd, and problem properties. In practice, on
would usually use numerical integration to obtain

"= i:qu W F(rL s t) 1950, s, 1) | (9.35)

wherefE® and U | are evaluated at each of thgintegration points, and wherg, (s ,t;)

andW,; denote the tabulated abscissae and weights, respectively. It should be noted that
this type of coding makes repeated calls to the interpolation functions to evaluate them at
the quadrature points. If the element type is constant, then the quadrature locations
would not change. Thus, these computations are repetitious. Since machines have larger
memories today, it would be more efficient to evaluate the interpolation functions and
their local derivatives once at each quadrature point and store those data for later use.
This is done by adding an additional subscript to those arrays that correspond to the
guadrature point number.

9.5 Hierarchical Interpolation

In Sec. 4.6 we introduced the typical hierarchical functions on line elements and let
the mid-point tangential derivatives from orderto ordern be denoted byn - n. The
exact same functions can be utilized on each edge of a two-dimensional or three-
dimensional hierarchical element. We will begin by considering quadrilateral elements,
or the quadrilateral faces of a solid element. To apply the previous one-dimensional
element to each edge of the element requires an arbitrary choice of which way(s) we
consider to the positive tangential direction. Our choice is to use the "right hand rule" so
that the tangential derivatives are taken counterclockwise around the element. In other
words, if we circle the fingers of our right hand in the direction of the tangential circuit,
our thumb points in the direction of the outward normal vector perpendicular to that face.

Usually a (sub-parametric) four node element will be used to describe the geometry
of the element. The element starts with the standard isoparametric form of four nodal
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values to begin the hierarchical approximation of the function. As needed, tangential
derivatives of the unknown solution are added as additional degrees of freedom. It is well
known that it is desirable to have complete polynomials included in the interpolation
polynomials. Thus, at some point it becomes necessary to add internal (bubble) functions
at the centroid of the element. There is more than one way to go about doing this. The
main question is does one want to use the function value at the centroid as a dof or just
its higher derivatives? The latter is simpler to automate if we use the Q4 element.

Since the hierarchical derivative interpolation functions are all zero at both ends of
their edge they will also be zero on their two adjoining edges of the quadrilateral. Thus,
to use these functions on the interior of the Q4 element we must multiply them by a
function that is unity on the edge where the hierarchical functions are defined and zero on
the opposite parallel edge. From the discussion of isoparametric elements it should be
clear that on each of the four sides (see Table 9.1) the necessary functions (in natural
coordinates, b) are

NO(b)=(1-b)/2, NOb)=1+b)/2
(9.36)
N@@=@1+a)/2, N@¥a@=@1-a)/2

respectively, whereN® denotes the interpolation normal to sidelf T; denotes the
hierarchical tangential interpolations on sideand nodej, then their net interior
contributions areH; (a,b) = NO T; . That is, the p-th degree edge interpolation
enrichments of the Q4 element are

Sidel b=-1) HWP(@bh=1(1-b)W,ya)
Side2 @=1) H® (a,b) =1 (1+a) W,(b)
Side3 bp=1) HS (a,b) = 3 (1+b) Wy(-a)
Side4 a=-1) HP@b=21(1-a) Wy(-b)

where theW (a) =[P, (a) - P,-(a)] 2p—-1, p=2. They are normalized such that
their p-th tangential derivative is unity. Note that there arg 4(1) such enrichments.
Likewise, there are§ - 2) (p - 3)/ 2 internal enrichments fop = 4. They occur at the
center (Q0) of the element. Their degrees of freedom are the cross-partial derivatives
0P2[/9al gbk, for j+k = p-2, and 1< j,k < p-3. The general form of the
internal (centroid) enrichments are a product of "bubble functions" and other functions

HO(a,b = (1-a%)(1-b°) Pyyj(@P;(b), j=0,1,....p-4, (9.38)

whereP; (a) is the Legendre polynomial of degre¢egiven in Eq. 3.25. The number of
internal degrees of freedom, are

(9.37)
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p | 4|5 6| 7| 8| 9| 10

n 1 2 3| 4 5 6 7

Total | 1 3 6| 10| 15 21 28

so that we see the number of internal terms corresponds to the number of coefficients in a
complete polynomial of degreep(- 3). Then terms for degree 4 to 10 are given in
Table 9.3. It can be shown that theoad combinations are equivalent to a complete
polynomial of degreep, plus the two monomial termaPb, ab’ for p=2. This
boundary and interior enrichment of the Q4 element is shown in Fig. 9.5.2. Phere
denotes the order of the edge polynommals the total number of degrees of freedom
(interpolation functions), and is the number of dof needed for a complete polynomial
form. For a quadrilateral we note that the total number of shape functions on any side is
n=p+1 for p=1, and the number of interior nodesrnis=(p-2)(p - 3)/2 for

p=4, and the total for the element 1% = (p—2)(p—3)/2+4p, or simply
n=(p>+3p+ 6)/2 for p>4. Note that the number of dof grows rapidly and by the
time p = 9 is reached the element has almost 15 times as many dof as it did originally.

At this point the reader should see that there is a very large number of alternate
forms of this same element. Consider the case where an error estimator has predicted the
need for a different polynomial order on each edge. This is call@dotropic
hierarchical p-enrichment For maximum value op = 8 there are a total of 32 possible
interpolation combinations, including the six uniform ones shown in Fig.9.5.2. 1t is
likely that future codes will take advantage of anisotropic enrichment, although very few
do so today. If one is going to use a nine node quadrilateral (Q9) to describe the
geometry then the same types of enrichments can be added to it. However, the Q4 form
would have better orthogonality behavior, that is, it would produce square matrices that
are more diagonally dominant. For triangular and tetrahedral elements one could
generate different interpolation orders on each edge, and in the interior, by utilizing the
enhancement procedures for Lagrangian elements to be described later. This is probably
easier to do in baracentric coordinates.

Since these elements have so much potential power they tend to be relatively large
in size, and/or distorted in shape, and small in number. That trend might begin to conflict
with the major appeal of finite elements: the ability to match complicated shapes. Thus,
the choice of describing the geometry (and it's Jacobian) by isoparametric, or sub-
parametric methods might be dropped in favor of other geometric modeling methods.
That is, the user may want to exactly match an ellipse or circle rather than approximate it
with a parametric curve. One way to do that is to emgiending functionsuch as
Coon’s functions to describe the geometry. To do this we use local analytical functions to
describe each physical coordinate on the edge of the element rather than 2, 3, or 4
discrete point values as we did with isoparametric elements in the previous sections. Let
(a, b) denote the quadrilateral’s natural coordinatelss (a, b) < 1. Consider only the
physical coordinate of any point in the element. Let the four corner valugsbef
denoted byX;. Number the sides in a CCW manner also starting from the first (LLH)
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Table 9.3. Quadrilateral hierarchical internal functions
W,(ab)=(1-a%)1-b*P,(@) P,(b), p=3
p m n | k
4 0 0 1 1
5 1 0 1 2
0 1 2 1
6 2 0 1 3
1 1 2 2
0 2 3 1
7 3 0 1 4
2 1 2 3
1 2 3 2
0 3 4 1
8 4 0 1 5
3 1 2 4
2 2 3 3
1 3 4 2
0 4 5 1
9 5 0 1 6
4 1 2 5
3 2 3 4
2 3 4 3
1 4 5 2
0 5 6 1
10 6 0 1 7
5 1 2 6
4 2 3 5
3 3 4 4
2 4 5 3
1 5 6 2
0 6 7 1
P, = Legendre polynomial of degrépdof = 8" / dal ab*
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p=1,n=4,c=3 p=2,n=8,c=6 p=3,n=12,c=10
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p=4,n=17,c=15 p=5n=23,¢c=21 p=6,n=30,c=28
p = degree, n = degrees of freedom, c = complete ploynomial
m
K Cross derivatives to order (i+j))=p-3, k<=i,j<=m

k—— ~ m Tangential derivatives from order k to m

® Function value

Figure 9.5.2 Hierarchical enrichments of the Q4 element

corner node. Lek; be a function of the tangential coordinate describingn sidej .
Then theCoon’s blending functiofor the x-component of the geometry is:

X(a, b) = [ Xl(a)(l - b) + Xz(b)(l + a) + Xg(a)(l + b) + X4(a)(l _ a)] /2
4

-3 x(1+ag)1+bb)/4 (9.39)
i=1

where &;, b, ) denote the local coordinates of théh corner. Since the term in brackets
includes each corner twice (e.gx;(1)=X,(-1)=X,), the last summation simply
subtracts off one full set of corner contributions.

The computational aspects of implementing the use of the tangential derivatives are
not trivial. That is due to the fact that when mutiple elements share an edge one must
decide which one is moving in "the" positive direction for that edge. One must establish
some heuristic rule on how to handle the sign conflicts that can develop among different
elements, or faces, on a common edge. Tlweduggested right hand rule means that
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edges share degrees of freedom, but view them as having opposite signs. These sign
conflicts must be accounted for during the element assembly process, or by invoking a
different rule when assigning equation numbers so that shared dof are always viewed as
having the same sign when viewed from any face or element on that edge. One could, for
example, take the tangential derivative to be acting from the end with the lowest node
number toward the end with the higher node number. One must plan for these difficulties
before developing a hierarchical program. However, the returns on such an investment of
effort is clearly worth it many times over.

9.6 Differential Geometry™

When the physical space is a higher dimension than the parametric space defining
the geometry then the geometric mapping is no longer one-to-one and it is necessary to
utilize the subject oflifferential geometry This is covered in texts on vector analysis or
calculus. It is also an introductory topic in most books on the mechanics of thin shell
structures. Here we cover most of the basic topics except for the detailed calculation of
surface curvatures. Every surface in a three-dimensional Cartesian coordinate system
(X, Y, 2 may also be expressed by a pair of independent parametric coordinateiaft
lie on the surface. In our geometric parametric form, we have defineddberdinate as

x(r,s) = G(r, s) x°. (9.40)

The y- andz-coordinates are defined similarly. The components opdiséion vectoto
a point on the surface

R(r,s) = x(r,9)i+y(r, )] +zr, 9k, (9.41)
wherei, |, k are the constant unit base vectors, could be written in array form as
RT =[x vy z] = G(r,s)[x®y® z°]. (9.42)

The local parameters,(s) constitute a system of curvilinear coordinates for points on the
physical surface. Equation 9.41 is called gaametric equatiorof a surface. If we
eliminate the parameters, €) from Eq. 9.41, we obtain the familiar implicit form of the
equation of a surfacef (x,y,2 =0. Likewise, any relation between and s, say

o(r,s) =0, represents a curve on the physical surface. In particular, if only one
parameter varies while the other is constant, then the curve on the surface is called a
parametric curve Thus, the surface can be completely defined by a doubly infinite set of
parametric curves, as shown in Fig. 9.6.1. We will often need the differential lengths,
differential areas, tangent vectors, etc. We begin with differential changes in position on

the surface. SincR = R(r, s), we have
dR = a_Rdr+a_Rds (943)
or 0s

where dR/ar and dR/ds are thetangent vectorsalong the parametric curves. The
physical distancedl, associated with such a change in position on the surface is found

from . .
(d?=dx® + dy? + dZ = dR * dR. (9.44)

This gives three contributions :
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Figure 9.6.1 Parametric surface coordinates

R orRU R oRrU R oRrU
() = O« 5o O + 2050+ GorHr ds+ G+ 5o
O 0 O O O O

In the common notation of differential geometry this is calledfitbefundamental form
of a surface, and is usually written as

(d)? = Edr? + 2F dr ds+ G d¢’ (9.45)

where IR IR IR IR IR IR
=« F=——, G=—+— (9.46)

or or or 0s s 0s

are called the firdslundamental magnitudgsr metric tensor) of the surface. For future
reference we will use this notation to note that the magnitudes of the surface tangent
vectors are

oR oR
|E =VE, |E =VG.
Of course, these magnitudes can be expressed in terms of the parametric derivatives
of the surface coordinates,(y, 2. For example, from Eq. 9.46,
F o Ox0x dyoy 0707
or 0s Or ds Or 0s
can be evaluated for an isoparametric surface by utilizing Eq. 9.42. Define a parametric

(9.47)
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surface gradient array given by

O0ox dy 0z O
O3 aF a3 U
or or or
g="U 0 (9.48)
Oax o9y o9z O
00— = —=— 0
nos 0s 0s

The rows contain the components of the tangent vectors along the paranatdes
curves, respectively. In the notation of Eq. 9.26, this becomes

— — e — [ O0ye y,e -e O
o(r,s) = [0, R]=DL_GR D6| G(r,s) DDX y©z = (9.49)

In other words, the surface gradient array at any point is the product of the parametric
function derivatives evaluated at that point and the array of nodal data for the element of
interest. Themetric array m, is the product of the surface gradient and its transpose

m = ggT - E (X,Zr + y,2r + Z,Zr) (X,I'X,52+ y,l’zy,S +22,TZ,S)E (950)
D(X,rx,s + y,ry,s + Z,rz,s) (X,s + y,s + Z,s) ]

where the subscripts denote partial derivatives with respect to the parametric coordinates.
Comparing this relation with Eqg. 9.46 we note that

E F
=0 g 9.51
M=0r GO (9:51)

contains the fundamental magnitudes of the surface. This surface metric has a
determinant that is always positive. It is denoted in differential geometry as

Im| = H? = EG-F? > 0. (9.52)

We can degenerate the differential length measure in Eq. 9.44 to the common special
case where we are moving along a parametric curve, thldat#s0 or ds= 0. In the first
case of = constant we have @1)*> = G ds* whered| is a physical differential length on
the surface ands is a differential change in the parametric surface. Tdlen VG ds
and likewise, for the parametric curse= constant, dl = VE dr. The quantities/G and
VE are known as thd.ame parameters They convert differential changes in the
parametric coordinates to differential lengths on the surface when moving on a parametric
curve. From Fig. 9.6.1 we note that the vector tangent to the parametric cuands
are 0R/ar and oR/ds, respectively. While the isoparametric coordinates may be
orthogonal, they generally will be non-orthogonal when displayed as parametric curves
on the physical surface. The anglbetween the parametric curves on the surface can be
found by using these tangent vectors and the definition of the dot product. Thus,
F = 0R/or - 9R/ds = VEVG Cosé and the angle at any point comes from

Coso = (9.53)

VEVG
Therefore, we see that the parametric curves form an orthogonal curvilinear coordinate
system on the physical surface only wier 0. Only in that case does Eq. 9.44 reduce

to the orthogonal formd{)?> = E dr’> + G ds. The calculations of the most general
relations between local parametric derivatives and global derivatives are shown in
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Fig. 9.6.1. Later we will utilize the function PARM_GEOM_METRIC when computing
fluxes or pressures on curved surfaces or edges.

Denote the parametric curve tangent vectori,asalf{/ar andt, = oR/ds. We
have seen that the differential lengths in these two directions on the surfa&edirand

VG ds In a vector form, those lengths aredr andt, ds, and they are separated by the
angled. The corresponding differential surface area of the surface parallelogram is

FUNCTION PARM_GEOM_METRIC (DL_G, GEOMETRY) RESULT (FFM ROOT) 1
|****************************** 2
I FUNDAMENTAL MAGNITUDE FROM PARAMETRIC TO GEOMETRIC SPACE 13
!****************************** |4
USE Elem_Type_Data ! for LT_GEOM, LT_PARM I 5
USE System_Constants ! for DP, N_SPACE 1 6
IMPLICIT NONE 17
REAL(DP), INTENT(IN) :: DL_G (LT_PARM, LT_GEOM) | 8
REAL(DP), INTENT(IN) :: GEOMETRY (LT_ GEOM, N_SPACE) 19
REAL(DP) :: FFM, FFM_ROOT ! first fundamental form data 110
111
! Automatic arrays 112
REAL(DP) :: METRIC (LT_PARM, LT_PARM) 113
REAL(DP) :: P_GRAD (LT_PARM, N_SPACE) ! Tangent vectors 114
115
I GEOMETRY = COORDINATES OF THE ELEMENT'S GEOMETRIC NODES 116
I DL_G = LOCAL DERIVATIVES OF THE GEOMETRIC SHAPE FUNCTIONS 17
I FFM = DET(A), D_PHYSICAL = FFM * D_PARAMETRIC 118
| LT_GEOM = NUMBER OF NODES DEFINING THE GEOMETRY 119
I LT_PARM = DIMENSION OF PARAMETRIC SPACE FOR ELEMENT TYPE 120
I METRIC = 1-ST FUNDAMENTAL MAGNITUDE (METRIC MATRIX) 121
I P GRAD = PARAMETRIC DERIVATIVES OF PHYSICAL SPACE 122
123
I ESTABLISH PARAMETRIC GRADIENTS 124
P_GRAD = MATMUL (DL_G, GEOMETRY) ! Tangent vectors 125
126
I FORM METRIC MATRIX 127
METRIC = MATMUL (P_GRAD, TRANSPOSE (P_GRAD)) 128
129
I COMPUTE DETERMINANT OF METRIC MATRIX 130
SELECT CASE (LT_PARM) ! size of parametric space 131
CASE (1) ; FFM = METRIC (1, 1) 132
CASE (2) ; FFM = METRIC (1, 1) * METRIC (2, 2) & 133
- METRIC (1, 2) * METRIC (2, 1) 134
CASE (3) ; FFM = METRIC(1,1)*( METRIC(2,2)*METRIC(3,3) & 135
- METRIC(3,2*METRIC(2,3)) & 36
+ METRIC(1,2)*(-METRIC(2,1)*METRIC(3,3) & 137
+ METRIC(3,1)*METRIC(2,3)) & !38
+ METRIC(1,3)*( METRIC(2,1)*METRIC(3,2) & !39
- METRIC(3,1)*METRIC(2,2)) 140
CASE DEFAULT ; STOP 'INVALID LT_PARM, P_GRAD_METRIC’ 141
END SELECT ! LT_PARM 142
FFM_ROOT = SQRT (FFM) I CONVERT TO METRIC MEASURE 143
END FUNCTION PARM_GEOM_METRIC 144
Figure 9.7.1 Computing the general metric tensor
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dS = (VE dr) (WG dsSing) = VEVG Singdr ds.
By substituting the relation between Gdand the surface metric, this simplifies to
dS = EGSin26 dr’ds® = EG(1 - Cos?6) dr?ds’
dS = (EG - F?) dr?ds?,

or simply
dS = VH dr ds. (9.54)

We also note that this calculation can be expressed as a vector cross product of the
tangent vectors :
dSN = t, xt drds

where N is a vector normal to the surface. We also note thahtimal vectorhas a
magnitude of
IN| = [T, x| = H. (9.55)

Sometimes it is useful to note that the componenks afe

N = (y,r Zs~ Ys Z,r) |A + (X,r Zs~ Xs Z,r) JA + (X,r Ys ™ Xs y,r) |2
We often want the unit vecta, normql to the surface. ltis
p= o Xl (9.56)
H |, x T4
9.7 Mass Properties

Mass properties and geometric properties are often needed in a design process.
These computations provide a useful check on the model, and may also lead to reducing
more complicated calculations by identifying geometrically equivalent elements. To
illustrate the concept consider the following area, centroid, and inertia terms for a two-
dimensional general curvilinear isoparametric element:

A = J’A12 da, AX = IA xlda, Ay = J'Aylda (9.60)
| = IAyzda, — 1y = IAxy da, L, = J’szda, Ly = L+ 1y
From the parallel axis theorem we know that
I = b= VPA, Ty = Ly + X YA, Ty = 1y, =XPA, T, = T +1,.

The corresponding two general inertia tensor definitions are
lij :IV(Xkadij_Xi XJ)dV, _IU = lij_()_(k)_(kaij_)_(i )_(J)V (961)

wherex; are the components of the position vector of a point in volvhandg; is the
Kronecker delta. Typically, elements that have the same area, and inertia tensor, relative
to the element centroid will have the same square matrix integral if the properties do not
depend of physical coordinates,(y) .

We want to illustrate these calculations in a finite element context for a two-
dimensional geometry. For the parametric form in local coordinats$ (
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x(r,s) = G(r, s) x®, y(r,s) = G(r,9s)y°®
1=G(r,s)1 =2 H(r,s
i
wherel is a vector of unity terms. Then theoale measures become
INE 1TJ’eGTGdA1 = 1" M°1
A
whereM € is thought of as the element measure (or mass) matrix
A% x® = 1T M®x°, Atye = 1T Mey® (9.62)
|§X:XeT Mexe, _Igy:XeT Meye’ I)?y:yeT Meye.
The measure matrix is defined as:
Me = IEGTGda: [ e clde (9.63)
A O

whereo denotes any non-dimensional parent domain (triangular or squaréj| amthg
Jacobian of the transformation fram AS. For any straight sided triangular element it
has a constant value a¥®|=2A°. Likewise, for a straight rectangular element or
parallelogram elemendq is again constant. For a one-to-one geometric mapping, we
always have the relation that

A® = J’Aeda: ID|Je|d|:|

so that wherd® is constantA® = |J°| O0,,, and where herel, is the measure (volume) of

the non-dimensional parent domain. For example, for the unit coordinate triangle we
have O, :% so that we getA® = (2Ae)(%), as expected. The calculation of the mass
properties of each element and the total analysis domain is a data checking feature.

9.8 Interpolation Error

Here we will briefly outline some elementary error concepts in two-dimensions.
From the Taylor expansion of a functian,at a point &, y) in two-dimensions:

0 du ou O
ux+h, y+k) = ux,yy+ogh—x,y+k—(X¥y 0O
0 0X ay

2 2 2 . (9.64)
0 U
N 1Dh20u+2hkau +k26um+---

21 5 ox? ox ay 0y*

The objective here is to show that if the third term is neglected, then the relations for a
linear interpolation triangle are obtained. That is, we will find that the third term is
proportional to the error between the true solution and the interpolated solutions.
Consider a linear triangle whose maximum length intkeandy —directions aréh and

k, respectively. Let the three node numbers, given in CCW ordey,jbandm. Employ

Eq. 9.64 to estimate the nodal valuggnduy, in terms ofu; :
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O odu ou 0
uj = U + X &(Xi: yi)+yma_(xi1 Yi) D
0 y 0
The value ofdu(x;, y;)/dx can be found by multiplying the first relation gy, and
subtracting the product gf and the second relation. The result is
ou 1
5 (50 %) = o x U (Y = Ym) + Un (% = ¥) U (Ym = )
where A is the area of the triangle. In a similar manner, if we compute this derivative at
the other two nodes, we obtain

ou ou ou
a_X(Xj1 yj) = G_X(Xm’ Ym) = &(Xi’ Yi).

That is,du/ dx is a constant in the triangle. Likewisiu/ay is a constant. We will see
later that a linear interpolation triangle has constant derivatives. Thus, these common
elements will represent the first two terms in Eqg. 9.64. Thus, the element error is
proportional to the third term:
0, , 0%u d%u , 0°u [

EO Dh e + 2hk 3% dy + k 3y2 O (9.65)
where u is the exact solution, and and k measure the element size in theand y
directions.

Once again, we would find that these second derivatives are related to the strain and
stress gradients. If the strains (eg.~ aulax) are constant, then the error is small or
zero. Before leaving these error comments, note that Eq. 9.65 could also be expressed in
terms of the ratiok/h). This is a measure of the relative shape of the element, and it is
often called theaspect ratio. For an equilateral element, this ratio would be near unity.
However, for a long narrow triangle, it could be quite large. Generally, it is best to keep
the aspect ratio near unity (say <5).

9.9 Element Distortion®

The effects of distorting various types of elements can be serious, and most codes
do not adequately validate data in this respect. As an example, consider a quadratic
isoparametric line element. As shown in Fig. 9.9.1, let the three nodes be located in
physical &) space at points @h, andh, whereh is the element length, andcOa < 1 is
a location constant. The element is defined in a local unit space wkese<Q. The
relation betweernx andsis easily shown to be

X(s) = h(4a-1)s+h(2-4a) s
and the two coordinates have derivatives related by
ox/ds = h(4a - 1)+ 4h(1 - 2a) s.

The Jacobian of the transformatiah, is the inverse relation; that ig,= ds/dx. The
integrals required to evaluate the element matrices utilize this Jacobian. The
mathematical principles require thhbe positive definite. Distortion of the elements can
causeJ to go to zero or become negative. This possibility is easily seen in the present
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b) Variable Jacobian maps
Figure 9.9.1 Constant and variable Jacobian elements

1-D example. If one locates the interigr51/2) node at the standard midpoint position,
then a=1/2 so thatdx/ds=h and J is constant throughout the element. Such an
element is generally well formulated. However, if the interior node is distorted to any
other position, the Jacobian will not be constant and the accuracy of the element may
suffer. Generally, there will be points whede / ds goes to zero, so that the stiffness
becomes singular due to division by zero. For slightly distorted elements, say
0.4 <a<0.6, the singular points lie outside the element domain. As the distortion
increases, the singularitiesome to the element boundary, e.ga,=1/4 or a=3/4.
Eventually, the distortions cause singularities afside the element. Such situations can
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cause poor stiffness matrices and very bad stress estimates, unless the true solution has
the same singularity, as they do in linear fracture mechanics. In that special case these
distorted elements are known as the quarter point element.

The effects of distortions of two- or three-dimensional elements are similar. For
example, the edge of a quadratic element may have the non-corner node displaced in a
similar way, or it may be moved normal to the line between the corners. Similar analytic
singularities can be developed for such elements. However, the presence of singularities
due to element distortions can easily be checked by numerical experiments. Several such
analytic and numerical studies have led to useful criteria for checking the element
geometry for undesirable effects. For example, envision a typical two- or three-
dimensional quadratic element with a curved edgella# the cord length of that edge,

D the normal displacement of the mid-side node on that edgey #mel angle between
the corner tangent and the cord line. Suggested ranges for linear elliptical problems are:

warningrange: 17 < D/L < 1/3, a < 30°
error range : 13 < D/L, a = 53.

These values are obtained when only one edge is considered. If more than one edge of a
single element causes a warning state, then the warnings should be considered more
serious. Other parameters influence the seriousness of element distortioR.beed
measure of the aspect ratio, thatRsis the ratio of the longest side to the shortest side.

Let the minimum and maximum angles between corner cord lines be dendtechdy,
respectively. DefindH, the lack of flatness, to be the perpendicular distance of a fourth
node from the plane of the first three divided by the maximum side length. Then the
following guidelines in Table 9.4 should be considered when validating geometric data
for membrane or solid elements.

9.10 Space-Time Interpolatior’

In Section 3.7 we addressed some of the aspects of space-time interpolation
methods. In solving time dependent problems in three-dimensional space the main

Table 9.4 Geometric criteria for two- and three-dimensional elements
Shape Warning state Error state
Triangle 5 <R < 15 R > 15
15° < 9 < 3¢ 6 < 15°
15¢° < y < 165 y = 165
Quadrilateral 5 <R < 15 R > 15
25° < 9 < 4% 6 < 25°
135 < y < 15% y = 155
10° < H < 10° H > 1072
Solids: The abvelimits on R, 8 and y are checked on each face.
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Figure 9.10.1 Space-time forms for the solid simplex element
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difficult is in visualization of the mesh and results. This is illustrated in Fig. 9.10.1 where
the parametric solid tetraheda element has been expanded into 4-D by adding a fourth
parametric coordinate af. If one wants a fully unstructured formulation in space-time
then the element becomes a 5 noded simplex. However, if we want to view it as being
structured so as to simply translate through a time slab we double its number of nodes
from 4 in 3-D to 8 in a 4-D time slab. Of course, we would only have to generate the 3-D
mesh and define the connectivity of the first four nodes.

One important advantage of space-time interpolation is that it automatically allows
for elements that must significantly change shape or spatial position with time (that is,
moving meshes). There are many published results where 2-D and 3-D space elements
have been extended to space-time formulations. See for example the applications by Aziz
and Monk [1] Behr [4] Bonnerot and Jamet [5] Dettmer and Peric [9] Gardner, et. al [11].
Hansbo [12] Idesman, et. al [15]. and Tezduyar, et. al. [19-21] to cite a few.

One thing different about the space-time elements is in the calculation of their
Jacobian matrix, which is now one dimension larger than in the pure space formulation.
That is, it is a square matrix of size, (+ 1). Unlike Eqg. 9.24 where we would allow the
last column to compute how the physical space coordmedeies with respect to all the
element parametric coordinates, we know time will not depend on a spatial parametric
coordinate. It will only depend on the non-dimensional time parametric coordinate
(denoted byu in Fig. 9.10.1) and all but the last row of the right-most column of the
Jacobian must be zero. Here, tetlenote time corresponding to the fourth parametric
coordinateu. The generalization of the 3-D spatial Jacobian to 4-D space-time is

905 o oy 0z o0 o
or Uor or or 05 0x
0o o 0oXx g
0,0 U 09 . o
0 dox dy 0z 05 0
0-0 = 22 £ og0—0O
0os O Das os 0s DD oy O
0. 0=g o0 . O (9.66)
noo B oy oz Hpog
Oot O ot ot ot nHoz U
0 0 g o0 O
Oo U ox o0y o0z or /0o O
050 O a au a0 0a 0
0% 0o 0% O

If the spatial nodes of the domain do not change with respect to time then the non-
diagonal terms on the last row of the space-time Jacobian will also be zero. Otherwise it
automatically includes a moving domain formulation. For linear interpolation in time the
term az /du in the space-time Jacobian will it / 1 for the unit coordinates of Fig.
9.10.1, oAt / 2 of the natural parametric coordinate frefhto +1 is used fou.

9.11 Exercises

1. Use the subroutines in Fig. 3.5.2 to form similar functions 6 aectangular
element by taking a tensor product of the one-dimensional Hermite interpolation
relations. This will be a 16 degree of freedom element since each node will have
u,du/ dx,0u/ dy, and 8?u/axdy as nodal unknowns. This element will not ®& if
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mapped to a quadrilateral shape. (Why not?)

2. Verify that for the H8 brick element in Table 9.2 that limiting its local coordinates to
any one face, sag = 1, results in the interpolation functions not on that face becoming
zero, and that the four non-zero interpolation functions on that face degenerate to those
give for the Q4 quadrilateral in Table 9.1.

3. Create the local parametric derivativa$ da, etc.) of the interpolation functions for
the: a) Q4 quadrilateral element of Table 9.1, b) the H8 hexahedra element of Table 9.2,
c) the T6 triangular element of Eq. 9.17.

4. For a one-to-one geometric map the Jacobian matrix (of Eq. 9.26) is
J¢ = [0, H][x®y® z°]. For a 2-D quadrilateral (Q4) verify that in natural coordinates this
simplifies to
X1 Yi0J
D_|1,a H2,a H3,a H4,aBB(2 yZB
a_'l,b Hop Hap H4,b|j§<3 Y3
Xq YalU

so that the Jacobian usually varies over the element with
10(b-1) (1-b) (1+b) (-1-bd

4g(-1-a) (a-1) (1+a (1-ag

J%a b) =

[0 H] =

5. Verify that if the abve Q4element maps onto a rectangle, with is sides parallel to the
global axes, of length, and heightL, then the Jacobian is constant at all points in the
element.

6. If a Q4 element is mapped to a trapezoid having the four nodal coordinates of
x® =[0 2 2 0,andy® =[0 O 2 1] verify that its Jacobian matrix is

104 (1 + b)0
e _—
J(a,b) = 450 3+a)p

6. Sketch how you thing an 8 noded parametric cube in 3-D parametric space would
appear when extended to a time slab (with 16 nodes).
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