
Chapter 9

GENERAL INTERPOLATION

9.1 Introduction

The previous sections have illustrated the heavy dependence of finite element
methods on both spatial interpolation and efficient integrations. In a one-dimensional
problem it does not make a great deal of difference if one selects a local or global
coordinate system for the interpolation equations, because the inter-element continuity
requirements are relatively easy to satisfy. That is not true in higher dimensions. To
obtain practical formulations it is almost essential to utilize local coordinate
interpolations. Doing this does require a small amount of additional work in relating the
derivatives in the two coordinate systems.

9.2 Unit Coordinate Interpolation

The use of unit coordinates have been previously mentioned in Chap. 4. Here some
of the procedures for deriving the interpolation functions in unit coordinates will be
presented. Consider the three-node triangular element shown in Fig. 9.2.1. The local
coordinates of its three nodes are (0, 0), (1, 0), and (0, 1), respectively. Once again we
wish to utilize polynomial functions for our interpolations. In two dimensions the
simplest complete polynomial has three constants. Thus, this linear function can be
related to the three nodal quantities of the element. Assume the polynomial for some
quantity,u, is defined as :

(9.1)ue(r, s) = de
1 + de

2r + de
3s = P(r, s) de .

If it is valid everywhere in the element then it is valid at its nodes. Substituting the local
coordinates of a node into Eq. 9.1 gives an identity between thede and a nodal value ofu.
Establishing these identities at all three nodes gives
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Figure 9.2.1 Isoparametric interpolation on a simplex triangle

(9.2)ue = g de .

Iff the inverse exists, and it does here, this equation can be solved to yield

(9.3)de = g−1ue

and
(9.4)ue(r, s) = P(r, s) g−1 ue = H(r, s)ue .

Here
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and
(9.6)H1(r, s) = 1 − r − s ,  H2(r, s) = r ,  H3(r, s) = s .

By inspection, one can see that the sum of these functions at all points in the local domain
is unity. This is illustrated graphically at the bottom of Fig. 9.2.1. Typical coding for
these relations and their local derivatives are shown as subroutinesSHAPE_3_T and
DERIV_3_T in Fig. 9.2.2. Similarly, for the unit coordinate bilinear quadrilateral
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mapping from 0 < (r , s) < 1 one could assume that

(9.7)ue(r, s) = de
1 + de

2 r + de
3 s + de

4 rs

so that
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and

SUBROUTINE SHAPE_3_T (S, T, H) ! 1
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 2
! SHAPE FUNCTIONS FOR A THREE NODE UNIT TRIANGLE ! 3
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 4
Use Precision_Module ! 5

IMPLICIT NONE ! 6
REAL(DP), INTENT(IN) :: S, T ! 7
REAL(DP), INTENT(OUT) :: H (3) ! 8

! 9
! S,T = LOCAL COORDINATES OF THE POINT 3 T !10
! H  = SHAPE FUNCTIONS . .  . !11
! NODAL COORDS 1-(0,0) 2-(1,0) 3-(0,1) 1..2 0..S !12

!13
H (1) = 1.d0 - S - T !14
H (2) = S !15
H (3) = T !16

END SUBROUTINE SHAPE_3_T !17
!18

SUBROUTINE DERIV_3_T (S, T, DH) !19
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !20
! LOCAL DERIVATIVES OF A THREE NODE UNIT TRIANGLE !21
! SEE SUBROUTINE SHAPE_3_T !22
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !23
Use Precision_Module !24

IMPLICIT NONE !25
REAL(DP), INTENT(IN) :: S, T !26
REAL(DP), INTENT(OUT) :: DH (2, 3) !27

!28
! S,T = LOCAL COORDINATES OF THE POINT !29
! DH(1,K) = DH(K)/DS !30
! DH(2,K) = DH(K)/DT !31
! NODAL COORDS ARE : 1-(0,0) 2-(1,0) 3-(0,1) !32

!33
DH (1, 1) = - 1.d0 !34
DH (1, 2) = 1.d0 !35
DH (1, 3) = 0.d0 !36
DH (2, 1) = - 1.d0 !37
DH (2, 2) = 0.d0 !38
DH (2, 3) = 1.d0 !39

END SUBROUTINE DERIV_3_T !40

Figure 9.2.2 Coding a linear unit coordinate triangle
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(9.9)

H1(r, s) = 1 − r − s + rs

H2 = r − rs

H3 = rs

H4 = s − rs .

However, for the quadrilateral it is more common to utilize the natural coordinates, as
shown in Fig. 9.2.3. In that coordinate system−1 ≤ a, b ≤ + 1 so that
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and the alternate interpolation functions are

(9.10)Hi (a, b) = (1 + aai ) (1 + bbi ) / 4 , 1 ≤ i ≤ 4

where (ai , bi ) are the local coordinates of nodei . These four functions and their local
derivatives can be coded as shown in Fig. 9.2.3.

Note that up to this point we have utilized the local element coordinates for
interpolation. Doing so makes the geometry matrix,g , depend only on element type
instead of element number. If we use global coordinates then the geometric matrix,ge is
always dependent on the element number,e. For example, if Eq. 9.1 is written in
physical coordinates then

(9.11)ue(x, y) = de
1 + de

2 x + de
3 y

so when the identities are evaluated at each node the result is
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Inverting and simplifying the algebra gives the global coordinate equivalent of Eq. 9.6 for
a specific element :

(9.13)He
i (x, y) = (ae

i + be
i x + ce

i y) / 2Ae , 1 ≤ i ≤ 3

where the algebraic constants are
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These algebraic forms assume that the three local nodes are numbered counter-clockwise
from an arbitrarily selected corner. If the topology is defined in a clockwise order then
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SUBROUTINE SHAPE_4_Q (R, S, H) ! 1
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 2
! SHAPE FUNCTIONS OF A 4 NODE PARAMETRIC QUAD ! 3
! IN NATURAL COORDINATES ! 4
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* ! 5
Use Precision_Module ! 6

IMPLICIT NONE ! 7
REAL(DP), INTENT(IN) :: R, S ! 8
REAL(DP), INTENT(OUT) :: H (4) ! 9
REAL(DP) :: R_P, R_M, S_P, S_M !10

!11
! (R,S) = A POINT IN THE NATURAL COORDS 4---3 !12
! H  = LOCAL INTERPOLATION FUNCTIONS | |  !13
! H(I) = 0.25d0*(1+R*R(I))*(1+S*S(I)) | | !14
! R(I) = LOCAL R-COORDINATE OF NODE I 1---2 !15
! LOCAL COORDS, 1=(-1,-1) 3=(+1,+1) !16

!17
R_P = 1.d0 + R ; R_M = 1.d0 - R !18
S_P = 1.d0 + S ; S_M = 1.d0 - S !19
H (1) = 0.25d0*R_M*S_M !20
H (2) = 0.25d0*R_P*S_M !21
H (3) = 0.25d0*R_P*S_P !22
H (4) = 0.25d0*R_M*S_P !23

END SUBROUTINE SHAPE_4_Q !24
!25

SUBROUTINE DERIV_4_Q (R, S, DELTA) !26
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !27
! LOCAL DERIVATIVES OF THE SHAPE FUNCTIONS FOR AN !28
! PARAMETRIC QUADRILATERAL WITH FOUR NODES !29
! SEE SHAPE_4_Q !30
! *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* *-* !31
Use Precision_Module !32

IMPLICIT NONE !33
REAL(DP), INTENT(IN) :: R, S !34
REAL(DP), INTENT(OUT) :: DELTA (2, 4) !35
REAL(DP) :: R_P, R_M, S_P, S_M !36

!37
! DELTA(1,I) = DH/DR !38
! DELTA(2,I) = DH/DS !39
! H  = LOCAL INTERPOLATION FUNCTIONS !40
! (R,S) = A POINT IN THE LOCAL COORDINATES !41
! HERE D(H(I))/DR = 0.25d0*R(I)*(1+S*S(I)), ETC. !42

!43
R_P = 1.d0 + R ; R_M = 1.d0 - R !44
S_P = 1.d0 + S ; S_M = 1.d0 - S !45
DELTA (1, 1) = -0.25d0 * S_M !46
DELTA (1, 2) = 0.25d0 * S_M !47
DELTA (1, 3) = 0.25d0 * S_P !48
DELTA (1, 4) = -0.25d0 * S_P !49
DELTA (2, 1) = -0.25d0 * R_M !50
DELTA (2, 2) = -0.25d0 * R_P !51
DELTA (2, 3) = 0.25d0 * R_P !52
DELTA (2, 4) = 0.25d0 * R_M !53

END SUBROUTINE DERIV_4_Q !54

Figure 9.2.3 Coding a bi-linear quadrilateral
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Figure 9.2.4 Boundary curves through element nodes

the area,Ae , becomes negative.
It would be natural at this point to attempt to utilize a similar procedure to define the

four node quadrilateral in the same manner. For example, if Eq. 9.7 is written as

(9.15)ue(x, y) = de
1 + de

2 x + de
3 y + de

4 xy .

However, we now find that for a general quadrilateral the inverse of matrixge may not
exist. This means that the global coordinate interpolation is in general very sensitive to
the orientation of the element in global space. That is very undesirable. This important
disadvantage vanishes only when the element is a rectangle. This global form of
interpolation also yields an element that fails to satisfy the required interelement
continuity requirements. These difficulties are typical of those that are encountered in
two- and three-dimensions when global coordinate interpolation is utilized. Therefore, it
is most common to employ the local coordinate mode of interpolation. Doing so also
easily allows for the treatment of curvilinear elements. That is done withisoparametric
elementsthat will be mentioned later.

It is useful to illustrate the lack of continuity that develops in the global coordinate
form of the quadrilateral. First, consider the three-node triangular element and examine
the interface or boundary where two elements connect. Along the interface between the
two elements one has the geometric restriction that the edge is a straight line given by
y = mbx + nb . The general form of the global coordinate interpolation functions for the
triangle is u(x, y) = de

1 + de
2 x + de

3 y where thegi are element constants. Along the
typical interface this reduces tou = de

1 + de
2 x + de

3 (mbx + nb), or simplyu = f1 + f2x.
Clearly, this shows that the boundary displacement is a linear function ofx . The two
constants,fi , could be uniquely determined by noting thatu(x1) = u1 and u(x2) = u2.
Since those two quantities are common to both, elements the displacement,u(x) ,  will be
continuous between the two elements. By way of comparison when the same substitution
is made in Eq. 9.15 the resulting edge value for the quadrilateral element is
u = de

1 + de
2 x + de

3 (mbx + nb) + de
4 x (mbx + nb), or simplyu = f1 + f2 x + f3 x2 . This

quadratic function cannot be uniquely defined by the two constantsu1 andu2 . Therefore,
it is not possible to prove that the displacements will be continuous between elements.
This is an undesirable feature of quadrilateral elements when formulated in global
coordinates. If the quadrilateral interpolation is given in local coordinates such as Eq. 9.9
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or Eq. 9.10, this problem does not occur. On the edges = 0 ,  Eq. 9.9 reduces to
u = f1 + f2 r . A similar result occurs on the edges = 1 .  Likewise, for the other two
edgesu = f1 + f2 s. Thus, in local coordinates the element degenerates to a linear
function on any edge, and therefore will be uniquely defined by the two shared nodal
displacements. In other words, the local coordinate four node quadrilateral will be
compatible with elements of the same type and with the three-node triangle. The above
observations suggest that global coordinates could be utilized for the four-node element
only so long as it is a rectangle parallel to the global axes.

The extension of the unit coordinates to the three-dimensional tetrahedra illustrated
in Fig. 3.2.2 is straightforward. In the result given below

(9.16)
H1(r, s, t) = 1 − r − s − t

H3(r, s, t) = s

H2(r, s, t) = r

H4(r, s, t) = t ,

and comparing this to Eqs. 9.6 and 4.11, we note that the 2-D and 1-D forms are
contained in the three-dimensional form. This concept was suggested by the topology
relations shown in Fig. 3.2.2. The unit coordinate interpolation is easily extended to
quadratic, cubic, or higher interpolation. The procedure employed to generate Eq. 9.6
can be employed. An alternate geometric approach can be utilized. We want to generate
an interpolation function,Hi , that vanishes at thej -th node wheni ≠ j . Such a function
can be obtained by taking the products of the equations of selected curves through the
nodes on the element. For example, letH1(r, s) = C1 Γ1 Γ2 where theΓi are the
equations of the lines are shown in Fig. 9.2.4, and whereC1 is a constant chosen so that
H1(r1 , s1) = 1. This yields

H1 = (1 − 3r − 3s + 2r 2 + 4rs + 2s2) .

Similarly, letting H4 = C4 Γ1 Γ3 gives C4 = 4 and H4 = 4r (1 − r − s). This type of
procedure is usually quite straightforward. However, there are times when there is not a
unique choice of products, and then care must be employed to select the proper products.
The resulting two-dimensional interpolation functions for the quadratic triangle are

(9.17)

H1(r, s) = 1 − 3r + 2r 2 − 3s + 4rs + 2s2

H2(r, s) = − r + 2r 2

H3(r, s) = − s + 2s2

H4(r, s) = 4r − 4r 2 − 4rs

H5(r, s) = 4rs

H6(r, s) = 4s − 4rs − 4s2 .

Once again, it is possible to obtain the one-dimensional quadratic interpolation on a
typical edge by settings = 0. Figure 9.2.5 shows the shape of the typical interpolation
functions for a linear and quadratic triangular element.

Figure 9.2.6 illustrates the concept of Pascal’s triangle for representing the complete
polynomial terms in three dimensions. Beginning with the constant vertex (1), it can also
be thought of as as showing the polynomials that occur in the tetrahedron of linear,
quadratic, cubic, and quartic degree, respectively, and the relative location of the nodes on
the edges, faces, and interior of the tetrahedron. If one setsz = 1 then it can also show
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Linear Quadratic

Figure 9.2.5 Linear and quadratic triangle interpolation
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Figure 9.2.6 The 2-D Pascal triangles and the 3-D simplex family

the relative nodes and polynomials for the triangular elements of linear, quadratic, cubic,
and quartic degree from the left-most to the right-most triangles, respectively.

9.3 Natural Coordinates

The natural coordinate formulations for the interpolation functions can be generated
in a similar manner to that illustrated in Eq. 9.10. However, the inverse geometric matrix,
G−1 , may not exist. However, the most common functions have been known for several
years and will be presented here in two groups. They are generally denoted as
Lagrangian elements and as the Serendipity elements (see Tables 9.1 and 9.2). For the
four-node quadrilateral element both forms yield Eq. 9.10. This is known as the bi-linear
quadrilateral since it has linear interpolation on its edges and a bi-linear (incomplete
quadratic) interpolation on its interior. This element is easily extended to the tri-linear
hexahedra of Table 9.2. Its resulting interpolation functions are
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(9.18)Hi (a, b, c) = (1 + aai ) (1 + bbi ) (1 + cci ) / 8 ,

for 1 ≤ i ≤ 8 where (ai , bi , ci ) are the local coordinates of nodei . On a giv en face, e.g.,
c = ± 1, these degenerate to the four functions in Eq. 9.10 and four zero terms. For
quadratic (or higher) edge interpolation, the Lagrangian and Serendipity elements are
different. The Serendipity interpolation functions for the corner quadratic nodes are

(9.19)Hi (a, b) = (1 + aai ) (1 + bbi ) (aai + bbi − 1) / 4 ,

where 1≤ i ≤ 4 and for the mid-side nodes

(9.20)Hi (a, b) = a2
i (1 − b2) (1 + ai a) / 2 + b2

i (1 − a2) (1 + bi b) / 2 , 5 ≤ i ≤ 8 .

Other members of this family are listed in Tables 9.1 and 9.2. The two-dimensional
Lagrangian functions are obtained from the products of the one-dimensional equations.
The resulting quadratic functions are

H1(a, b) = (a2 − a) (b2 − b) / 4 H6(a, b) = (a2 + a) (1 − b2) / 2

H2(a, b) = (a2 + a) (b2 − b) / 4 H7(a, b) = (1 − a2) (b2 + b) / 2

H3(a, b) = (a2 + a) (b2 + b) / 4 H8(a, b) = (a2 − a) (1 − b2) / 2

H4(a, b) = (a2 − a) (b2 + b) / 4 H9(a, b) = (1 − a2) (1 − b2)

H5(a, b) = (1 − a2) (b2 − b) / 2 .

The typical shapes of these functions are shown in Fig. 9.3.1. The functionH9(a, b) is
referred to as abubble functionbecause it is zero on the boundary of the element and
looks like a soap bubble blown up over the element. Similar functions are commonly
used in hierarchical elements to be considered later. It is possible to mix the order of
interpolation on the edges of an element. Figure 9.3.2 illustrates the Serendipity
interpolation functions for quadrilateral elements that can be either linear, quadratic, or
cubic on any of its four sides. Such an element is often referred to as atransition
element. They can also be employed asp-adaptive elements. Those types of elements
are sketched in Fig. 9.3.3. From the previous figures one will note that the supplied
routines in the interpolation library generally start with the names SHAPE_ and DERIV_
and have the number of nodes and shape codes (L-line, T-triangle, Q-quadrilateral, H-
hexahedron, P-pyramid or tetrahedron, and W-wedge) appended to those names. The
class of elements shown in Fig. 9.3.3 are appended with the name L_Q_H because they
can be determined for any of the three shapes. For elements of degree four or higher one
needs to also include interior nodes for elements in Fig. 9.3.3 to form complete
polynomials, or the rate of convergence will be decreased.

9.4 Isoparametric and Subparametric Elements

By introducing local coordinates to formulate the element interpolation functions
we were able to satisfy certain continuity requirements that could not be satisfied by
global coordinate interpolation. We will soon see that a useful by-product of this
approach is the ability to treat elements with curved edges. At this point there may be
some concern about how one relates the local coordinates to the global coordinates. This
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Linear Quadratic

Figure 9.3.1 Quadratic Serendipity quadrilateral interpolation

Topology : 4 − 11 − 7 − 3
| |
8 S 10
| *R |
12 6
| |
1 −  5  − 9 − 2

If Cubic Side : i = 5, 9, or 6, 10 or 7, 11 or 8, 12

Hi (r, s) = (1 − s2) (1 + 9ssi ) (1 + rr i ) 9 / 32

Hi (r, s) = (1 − r 2) (1 + 9rr i )(1 + ssi ) 9 / 32

If Quadratic Side : i = 5, 6, 7, or 8

Hi (r, s) = (1 + rr i ) (1 − s2) / 2

Hi (r, s) = (1 + ssi ) (1 − r 2) / 2

H j = 0, j = i + 4
If Linear Side :

H j = Hk = 0, j = i + 4, k = i + 8, i = 1, 2, 3, or 4

If Corners : i = 1, 2, 3, 4 Hi (r, s) = (Pr + Ps ) (1 + ssi ) / 4

See subroutine SHAPE_4_12_Q

Order of Side Pr , si = ± 1 Ps , ri = ± 1

Linear 1/2 1/2
Quadratic rr i − 1/2 ssi − 1/2
Cubic (9r 2 − 5) / 8 (9s2 − 5) / 8

Figure 9.3.2 Linear to cubic transition quadrilateral
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Table 9.1. Serendipity quadrilaterals in natural coordinates

Node Location Interpolation Functions Name

ai bi Hi (a, b)

± 1 ± 1 (1 + aai ) (1 + bbi ) / 4 Q4

± 1 ± 1 (1 + aai ) (1 + bbi ) (aai + bbi − 1) / 4 Q8
± 1 0  (1+ aai ) (1 − b2) / 2

0 ± 1 (1 + bbi ) (1 − a2) / 2

± 1 ± 1 (1 + aai ) (1 + bbi ) [ 9 (a2 + b2) − 10] / 32 Q12
± 1 ± 1/3 9(1+ aai ) (1 − b2) (1 + 9bbi ) / 32
± 1/3 ± 1 9(1+ bbi ) (1 − a2) (1 + 9aai ) / 32

± 1 ± 1 (1 + aai ) (1 + bbi ) [ 4 (a2 − 1) aai Q16
+ 4(b2 − 1) bbi + 3abai bi ] / 12

± 1 0  2(1+ aai ) (b2 − 1) (b2 − aai ) / 4
0 ± 1 2(1+ bbi ) (a2 − 1) (a2 − bbi ) / 4

± 1 ± 1/2 4(1+ aai ) (1 − b2) (b2 + bbi ) / 3
± 1/2 ± 1 4(1+ bbi ) (1 − a2) (a2 + aai ) / 3

0 0  (a2 − 1) (b2 − 1)

Table 9.2. Serendipity hexahedra in natural coordinates

Node Location Interpolation Functions Name

ai bi ci Hi (a, b, c)

± 1 ± 1 ± 1 (1 + aai ) (1 + bbi ) (1 + cci ) / 8 H8

± 1 ± 1 ± 1 (1 + aai ) (1 + bbi ) (1 + cci ) (aai + bbi + cci − 2) / 8 H20
0 ± 1 ± 1 (1 − a2) (1 + bbi ) (1 + cci ) / 4

± 1 0 ± 1 (1 − b2) (1 + aai ) (1 + cci ) / 4
± 1 ± 1 0  (1− c2) (1 + aai ) (1 + bbi ) / 4

± 1 ± 1 ± 1 (1 + aai ) (1 + bbi ) (1 + cci ) H32
[ 9 (a2 + b2 + c2) − 19 ]/ 64

± 1/3 ± 1 ± 1 9(1− a2) (1 + 9aai ) (1 + bbi ) (1 + cci ) / 64
± 1 ± 1/3 ± 1 9(1− b2) (1 + 9bbi ) (1 + aai ) (1 + cci ) / 64
± 1 ± 1 ± 1/3 9(1− c2) (1 + 9cci ) (1 + bbi ) (1 + aai ) / 64

4.3 Draft− 5/27/04 © 2004 J.E. Akin. All rights reserved.



Finite Elements, General Interpolation 241

P (r,  s) Pr (r) Ps(s) Prs(r, s)

r

s

r

s

r

s

r

s

Figure 9.3.3 Blended quadrilaterals of different edge degrees

must be done since the governing integral is presented in global (physical) coordinates
and it involves derivatives with respect to the global coordinates. This can be
accomplished with the popularisoparametric elements, andsubparametricelements.

Isoparametric elements utilize a local coordinate system to formulate the element
matrices. The local coordinates, sayr , s, and t , are usually dimensionless and range
from 0 to 1, or from−1 to 1 . The latter range is usually preferred since it is directly
compatible with the usual definition of abscissa utilized in numerical integration by
Gaussian quadratures. The elements are called isoparametric since the same (iso) local
coordinate parametric equations (interpolation functions) used to define any quantity of
interest within the elements are also utilized to define the global coordinates of any point
within the element in terms of the global spatial coordinates of the nodal points. If a
lower order polynomial is used to describe the geometry then it is called asubparametric
element. These are quite common when used with the newer hierarchical elements. Let
the global spatial coordinates again be denoted byx , y, andz,. let the number of nodes
per element benn. For simplicity, consider a single scalar quantity of interest, say
V(r, s, t). The value of this variable at any local point (r, s, t) within the element is
assumed to be defined by the values at thenn nodal points of the element (Ve

i ,
1 ≤ i ≤ nn ), and a set of interpolation functions (Hi (r, s, t), 1 ≤ i ≤ nn ) .  That is,

(9.21)V(r, s, t) =
nn

i=1
Σ Hi (r, s, t) Ve

i = H(r ) Ve ,

whereH is a row vector. Generalizing this concept, the global coordinates are defined
with a geometric interpolation, or blending, function,G . If it interpolates betweennx

geometric data points then it is subparametric ifnx < nn, isoparametric ifnx = nn so
G = H, and superparametric ifnx > nn . Blending functions typically use geometric data
ev erywhere on the edge of the geometric element. The geometric interpolation, or
blending, is denoted as :x(r, s, t) = G xe , y = G ye , and z = G ze . Programming
considerations make it desirable to write the last three relations as a position row matrix,
R, written in a partitioned form

(9.22)R(r, s, t) = G(r, s, t) Re = G [ xe ye ze ]

where the last matrix simply contains the spatial coordinates of thenn nodal points
incident with the element. IfG = H, it is an isoparametric element. To illustrate a typical
two-dimensional isoparametric element, consider a quadrilateral element with nodes at
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the four corners, as shown in Fig. 9.2.3. The global coordinates and local coordinates of
a typical corner,i , are (xi , yi ), and (r i , si ), respectively. The following local coordinate
interpolation functions have been developed earlier for this element :

Hi (r, s) =
1

4
(1 + rr i ) (1 + ssi ) , 1 ≤ i ≤ 4 .

We interpolate any variable, V, as

V(r, s) = H(r, s) Ve =  H1 H2 H3 H4 







V1

V2

V3

V4







e

.

Note that along an edge of the element (r = ± 1 or s = ± 1) , these interpolation
functions become linear and thus any of these three quantities can be uniquely defined by
the two corresponding nodal values on that edge. If the adjacent element is of the same
type (linear on the boundary), then these quantities will be continuous between elements
since their values are uniquely defined by the shared nodal values on that edge. Since the
variable of interest,V, varies linearly on the edge of the element, it is called the linear
isoparametric quadrilateral although the interpolation functions are bilinear inside the
element. If the (x, y) coordinates are also varying linearly withr or s on a side it means
this element has straight sides.

For future reference, note that if one can define the interpolation functions in terms
of the local coordinates then one can also define their partial derivatives with respect to
the local coordinate system. For example, the local derivatives of the interpolation
functions of the above element are

∂Hi (r, s) / ∂r = r i (1 + ssi )/4 , ∂Hi (r, s) / ∂s = si (1 + rr i )/4 .

In three dimensions (ns = 3), let the array containing the local derivatives of the
interpolation functions be denoted byDL_H , a 3× nn matrix, where

(9.23)DL_H (r, s, t) =











∂
∂r

H

∂
∂s

H

∂
∂t

H











= ∂∂LH .

Although x, y, and z can be defined in an isoparametric element in terms of the
local coordinates,r , s, and t , a unique inverse transformation is not needed. Thus, one
usually does not definer , s, andt in terms ofx, y, andz. What one must have, howev er,
are the relations between derivatives in the two coordinate systems. From calculus, it is
known that the derivatives are related by theJacobian. From the chain rule of calculus
one can write, in general,

∂
∂r

=
∂

∂x

∂x

∂r
+

∂
∂y

∂y

∂r
+

∂
∂z

∂z

∂r

with similar expressions for∂ / ∂s and∂ / ∂t. In matrix form these identities become
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(9.24)











∂
∂r

∂
∂s

∂
∂t











=











∂x

∂r

∂x

∂s

∂x

∂t

∂y

∂r

∂y

∂s

∂y

∂t

∂z

∂r

∂z

∂s

∂z

∂t





















∂
∂x

∂
∂y

∂
∂z











where the square matrix is called theJacobian. Symbolically, one can write the
derivatives of a quantity, such asV(r, s, t), which for convenience is written asV(x, y, z)
in the global coordinate system, in the following manner:∂∂LV = J(r, s, t) ∂∂gV , whereJ
is the Jacobian matrix, and where the subscriptsL andg have been introduced to denote
local and global derivatives, respectively. Similarly, the inverse relation is

(9.25)∂∂gV = J−1 ∂∂LV .

Thus, to evaluate global and local derivatives, one must be able to establish the Jacobian,
J , of the geometric mapping and its inverse,J−1. In practical application, these two
quantities usually are evaluated numerically. Consider the first term inJ that relates the
geometric mapping :∂x / ∂r = ∂ (G xe) / ∂r = ∂G / ∂r xe . Similarly, for any component
in Eq. 9.22∂R / ∂r = ∂( G Re) / ∂r . Repeating for all local directions, and noting that the
Re values are constant input coordinate data for the element, we find the identity that











∂x

∂r

∂x

∂s

∂x

∂t

∂y

∂r

∂y

∂s

∂y

∂t

∂z

∂r

∂z

∂s

∂z

∂t











=











∂
∂r

G

∂
∂s

G

∂
∂t

G











Re

or, in symbolic form, the evaluation of the definition of the Jacobian within a specific
element takes the form

(9.26)Je(r, s, t) = DL_G(r, s, t) Re .

This numerically defines the Jacobian matrix,J, at a local point inside a typical
element in terms of the spatial coordinates of the element’s nodes,Re , which is
referenced by the nameCOORDin the subroutines, and the local derivatives,DL_G, of
the geometric interpolation functions,G. Thus, at any point (r, s, t) of interest, such as a
numerical integration point, it is possible to define the values ofJ , J−1, and the
determinant of the Jacobian, |J|. In practice, evaluation of the Jacobian is simply a matrix
product, such asAJ = MATMUL(DL_G,COORD). We usually will consider two-
dimensional problems. Then the Jacobian matrix is
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J =








∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s








.

In general, the inverse Jacobian in two dimensions is

J−1 =
1

|J|








∂y

∂s

−
∂x

∂s

−
∂y

∂r

∂x

∂r








, where |J| = x,rr y,ss − y,rr x,ss .

For future reference, note that by denoting ( ),rr = ∂( ) / ∂r , etc. the determinant and
inverse of the three-dimensional Jacobian are

|J| = x,rr ( y,ss z,tt − y,tt z,ss ) + x,ss ( y,tt z,rr − y,rr z,tt ) + x,tt ( y,rr z,ss − y,ss z,rr )

and
J−1 =






( y,ss z,tt − y,tt z,ss )

( x,tt z,ss − x,ss z,tt )

( x,ss y,tt − x,tt y,ss )

( y,tt z,rr − y,rr z,tt )

( x,rr z,tt − x,tt z,rr )

( x,tt y,rr − x,rr y,tt )

( y,rr z,ss − y,ss z,rr )

( x,ss z,rr − x,rr z,ss )

( x,rr y,ss − x,ss y,rr )






/ |J|.

Of course, one can in theory also establish the algebraic form ofJ. For simplicity
consider the three-node isoparametric triangle in two dimensions. From Eq. 9.6 we note
that the local derivatives ofG are

(9.27)DL_G =




∂G / ∂r

∂G / ∂s





=




−1

−1

1

0

0

1




.

Thus, the element has constant local derivatives since no functions of the local
coordinates remain. Usually the local derivatives are also polynomial functions of the
local coordinates. Employing Eq. 9.26 for a specific T3 element :

Je = DL_G Re =




−1

−1

1

0

0

1










x1

x2

x3

y1

y2

y3






e

or simply

(9.28)Je =




(x2 − x1) (y2 − y1)

(x3 − x1) (y3 − y1)





e

which is also constant. The determinant of this 2× 2 Jacobian matrix is

|Je | = (x2 − x1)
e (y3 − y1)

e − (x3 − x1)
e (y2 − y1)

e = 2Ae ,

which is twice the physical area of the element physical domain,Ωe. For the above three-
node triangle, the inverse relation is simply

(9.29)Je−1
=

1

2Ae





(y3 − y1)

−(x3 − x1)

−(y2 − y1)

(x2 − x1)





e

=
1

2Ae





b2 b3

c2 c3





e.
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For most other elements it is common to form these quantities numerically by
utilizing the numerical values ofRe given in the data. The use of the local coordinates in
effect represents a change of variables. In this sense the Jacobian has another important
function. The determinant of the Jacobian, |J |, relates differential changes in the two
coordinate systems, that is,

dL = dx = |J | dr

da = dx dy = |J | dr ds

dv = dx dy dz = |J | dr ds dt

in one-, two-, and three-dimensional problems. When the local and physical spaces have
the same number of dimensions we can write this symbolically asd Ωe = |J | d e .

The integral definitions of the element matrices usually involve the global
derivatives of the quantity of interest. From Eq. 9.21 it is seen that the local derivatives of
V are related to the nodal parameters by











∂V

∂r

∂V

∂s

∂V

∂t











=











∂
∂r

H

∂
∂s

H

∂
∂t

H











Ve ,

or symbolically,
(9.30)∂∂LV(r, s, t) = DL_H (r, s, t) Ve .

To relate the global derivatives ofV to the nodal parameters,Ve, one substitutes the
above expression, and the geometry mapping Jacobian into Eq. 9.25 to obtain

∂∂gV = J−1 DL_H V e ≡ d(r, s, t) Ve ,

where
(9.31)d(r, s, t) = J(r, s, t)−1DL_H (r, s, t) .

The matrixd is very important since it relates the global derivatives of the quantity of
interest to the quantity’s nodal values. Note that it depends on both the Jacobian of the
geometric mapping and the local derivatives of the solution interpolation functions. For
the sake of completeness, note thatd can be partitioned as

(9.32)d(r, s, t) =









dx

− − − − −
dy

− − − − −
dz









=











∂
∂x

H

− − − − − − −
∂

∂y
H

− − − − − − −
∂
∂z

H











= ∂gH

so that each row represents a derivative of the solution interpolation functions with
respect to a global coordinate direction. Sometimes it is desirable to compute and store
the rows ofd independently. In practice thed matrix usually exists only in numerical
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form at selected points. Once again, it is simply a matrix product such as GLOBAL =
MATMUL (AJ_INV, DL_H), where GLOBAL represents the physical derivatives of the
parametric functionsH. For the linear triangleJ, DL_G, and d are all constant.
Substituting the results from Eqs. 9.27 and 9.29 into 9.31 yields

(9.33)de =
1

2Ae





(y2 − y3) (y3 − y1) (y1 − y2)

(x3 − x2) (x1 − x3) (x2 − x1)





e

=
1

2Ae





b1 b2 b3

c1 c2 c3





e

.

As expected for a linear triangle, all the terms are constant. This element is usually
referred to as the Constant Strain Triangle (CST). For Poisson problemsBe = de.

Any finite element analysis ultimately leads to the evaluation of the integrals that
define the element and/or boundary segment matrices. The element matrices,Se or Ce,
are usually defined by integrals of the symbolic form

(9.34)I e = ∫
Ωe
∫ ∫ Fe(x, y, z) dx dy dz =

1

−1
∫

1

−1
∫

1

−1
∫ F̃

e
(r, s, t)  Je(r, s, t)  dr ds dt ,

where Fe is usually the sum of products of other matrices involving the element
interpolation functions,H, their derivatives,d, and problem properties. In practice, on
would usually use numerical integration to obtain

(9.35)I e =
nq

i= 1
Σ Wi F̃

e
(r i , si , ti ) |Je(r i , si , ti ) |

whereF̃
e

and |J | are evaluated at each of thenq integration points, and where (r i , si , ti )
andWi denote the tabulated abscissae and weights, respectively. It should be noted that
this type of coding makes repeated calls to the interpolation functions to evaluate them at
the quadrature points. If the element type is constant, then the quadrature locations
would not change. Thus, these computations are repetitious. Since machines have larger
memories today, it would be more efficient to evaluate the interpolation functions and
their local derivatives once at each quadrature point and store those data for later use.
This is done by adding an additional subscript to those arrays that correspond to the
quadrature point number.

9.5 Hierarchical Interpolation

In Sec. 4.6 we introduced the typical hierarchical functions on line elements and let
the mid-point tangential derivatives from orderm to ordern be denoted bym→ n . The
exact same functions can be utilized on each edge of a two-dimensional or three-
dimensional hierarchical element. We will begin by considering quadrilateral elements,
or the quadrilateral faces of a solid element. To apply the previous one-dimensional
element to each edge of the element requires an arbitrary choice of which way(s) we
consider to the positive tangential direction. Our choice is to use the "right hand rule" so
that the tangential derivatives are taken counterclockwise around the element. In other
words, if we circle the fingers of our right hand in the direction of the tangential circuit,
our thumb points in the direction of the outward normal vector perpendicular to that face.

Usually a (sub-parametric) four node element will be used to describe the geometry
of the element. The element starts with the standard isoparametric form of four nodal
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values to begin the hierarchical approximation of the function. As needed, tangential
derivatives of the unknown solution are added as additional degrees of freedom. It is well
known that it is desirable to have complete polynomials included in the interpolation
polynomials. Thus, at some point it becomes necessary to add internal (bubble) functions
at the centroid of the element. There is more than one way to go about doing this. The
main question is does one want to use the function value at the centroid as a dof or just
its higher derivatives? The latter is simpler to automate if we use the Q4 element.

Since the hierarchical derivative interpolation functions are all zero at both ends of
their edge they will also be zero on their two adjoining edges of the quadrilateral. Thus,
to use these functions on the interior of the Q4 element we must multiply them by a
function that is unity on the edge where the hierarchical functions are defined and zero on
the opposite parallel edge. From the discussion of isoparametric elements it should be
clear that on each of the four sides (see Table 9.1) the necessary functions ( in natural
coordinatesa, b) are

(9.36)
N(1)(b) = (1 − b) / 2 , N(3)(b) = (1 + b) / 2

N(2)(a) = (1 + a) / 2 , N(4)(a) = (1 − a) / 2

respectively, whereN(i) denotes the interpolation normal to sidei . If Tij denotes the
hierarchical tangential interpolations on sidei and node j , then their net interior
contributions areHij (a, b) = N(i) Tij . That is, the p-th degree edge interpolation
enrichments of the Q4 element are

(9.37)

Side 1 (b = − 1) H (1)
p (a, b) = 1

2 (1 − b) Ψp(a)

Side 2 (a = 1) H (2)
p (a, b) = 1

2 (1 + a) Ψp(b)

Side 3 (b = 1) H (3)
p (a, b) = 1

2 (1 + b) Ψp(−a)

Side 4 (a = − 1) H (4)
p (a, b) = 1

2 (1 − a) Ψp(−b)

where theΨp(a) = [ Pp (a) − Pp−2 (a) ]  2p − 1 , p ≥ 2. They are normalized such that
their p-th tangential derivative is unity. Note that there are 4(p − 1) such enrichments.
Likewise, there are (p − 2) ( p − 3) / 2 internal enrichments forp ≥ 4. They occur at the
center (0, 0) of the element. Their degrees of freedom are the cross-partial derivatives
∂ p−2 / ∂aj ∂bk , for j + k = p − 2 , and 1 ≤ j, k ≤ p − 3 .  The general form of the
internal (centroid) enrichments are a product of "bubble functions" and other functions

(9.38)H (0)
p (a, b) = (1 − a2) (1 − b2) Pp−4− j (a) Pj (b) , j = 0, 1, . . . ,p − 4 ,

wherePj (a) is the Legendre polynomial of degreej given in Eq. 3.25. The number of
internal degrees of freedom,n , are
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p 4 5 6  7 8 9 10

n 1 2 3  4 5 6 7

Total 1 3 6 10 15 21 28

so that we see the number of internal terms corresponds to the number of coefficients in a
complete polynomial of degree (p − 3). The n terms for degree 4 to 10 are given in
Table 9.3. It can be shown that the above combinations are equivalent to a complete
polynomial of degreep , plus the two monomial termsap b ,  a bp for p ≥ 2. This
boundary and interior enrichment of the Q4 element is shown in Fig. 9.5.2. Therep
denotes the order of the edge polynomial,n is the total number of degrees of freedom
(interpolation functions), andc is the number of dof needed for a complete polynomial
form. For a quadrilateral we note that the total number of shape functions on any side is
n = p + 1 for p ≥ 1, and the number of interior nodes isni = ( p − 2) ( p − 3) / 2 for
p ≥ 4, and the total for the element isnt = ( p − 2)( p − 3) / 2 + 4p , or simply
nt = ( p2 + 3p + 6) / 2 for p ≥ 4 .  Note that the number of dof grows rapidly and by the
time p = 9 is reached the element has almost 15 times as many dof as it did originally.

At this point the reader should see that there is a very large number of alternate
forms of this same element. Consider the case where an error estimator has predicted the
need for a different polynomial order on each edge. This is calledanisotropic
hierarchical p-enrichment. For maximum value ofp = 8 there are a total of 32 possible
interpolation combinations, including the six uniform ones shown in Fig. 9.5.2. It is
likely that future codes will take advantage of anisotropic enrichment, although very few
do so today. If one is going to use a nine node quadrilateral (Q9) to describe the
geometry then the same types of enrichments can be added to it. However, the Q4 form
would have better orthogonality behavior, that is, it would produce square matrices that
are more diagonally dominant. For triangular and tetrahedral elements one could
generate different interpolation orders on each edge, and in the interior, by utilizing the
enhancement procedures for Lagrangian elements to be described later. This is probably
easier to do in baracentric coordinates.

Since these elements have so much potential power they tend to be relatively large
in size, and/or distorted in shape, and small in number. That trend might begin to conflict
with the major appeal of finite elements: the ability to match complicated shapes. Thus,
the choice of describing the geometry (and it’s Jacobian) by isoparametric, or sub-
parametric methods might be dropped in favor of other geometric modeling methods.
That is, the user may want to exactly match an ellipse or circle rather than approximate it
with a parametric curve. One way to do that is to employblending functionssuch as
Coon’s functions to describe the geometry. To do this we use local analytical functions to
describe each physical coordinate on the edge of the element rather than 2, 3, or 4
discrete point values as we did with isoparametric elements in the previous sections. Let
(a, b) denote the quadrilateral’s natural coordinates,−1 ≤ (a, b) ≤ 1. Consider only thex
physical coordinate of any point in the element. Let the four corner values ofx be
denoted byXi . Number the sides in a CCW manner also starting from the first (LLH)
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Table 9.3. Quadrilateral hierarchical internal functions

Ψp (a, b) = (1 − a2)(1 − b2) Pm (a) Pn (b) , p ≥ 3

p m n j k

4 0 0 1 1

5 1 0 1 2
0 1 2 1

6 2 0 1 3
1 1 2 2
0 2 3 1

7 3 0 1 4
2 1 2 3
1 2 3 2
0 3 4 1

8 4 0 1 5
3 1 2 4
2 2 3 3
1 3 4 2
0 4 5 1

9 5 0 1 6
4 1 2 5
3 2 3 4
2 3 4 3
1 4 5 2
0 5 6 1

10 6 0 1 7
5 1 2 6
4 2 3 5
3 3 4 4
2 4 5 3
1 5 6 2
0 6 7 1

Pi = Legendre polynomial of degreei ; dof = ∂ j +k / ∂aj ∂bk
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p = 6, n = 30, c = 28p = 5, n = 23, c = 21p = 4, n = 17, c = 15

p = degree,       n = degrees  of  freedom,       c = complete  ploynomial

1

1

3

1

2

1

k m Tangential  derivatives  from  order  k  to  m

k

m

Cross  derivatives  to  order  (i + j) = p - 3,    k <= i, j <= m

Function  value

Figure 9.5.2 Hierarchical enrichments of the Q4 element

corner node. Letx j be a function of the tangential coordinate describingx on side j .
Then theCoon’s blending functionfor thex-component of the geometry is :

(9.39)
x(a, b) = [ x1(a)(1 − b) + x2(b)(1 + a) + x3(a)(1 + b) + x4(a)(1 − a) ] / 2

−
4

i = 1
Σ xi (1 + aai )(1 + bbi ) / 4

where (ai , bi ) denote the local coordinates of thei-th corner. Since the term in brackets
includes each corner twice ( e.g.,x1(1) = x2(−1) = X2), the last summation simply
subtracts off one full set of corner contributions.

The computational aspects of implementing the use of the tangential derivatives are
not trivial. That is due to the fact that when mutiple elements share an edge one must
decide which one is moving in "the" positive direction for that edge. One must establish
some heuristic rule on how to handle the sign conflicts that can develop among different
elements, or faces, on a common edge. The above suggested right hand rule means that
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edges share degrees of freedom, but view them as having opposite signs. These sign
conflicts must be accounted for during the element assembly process, or by invoking a
different rule when assigning equation numbers so that shared dof are always viewed as
having the same sign when viewed from any face or element on that edge. One could, for
example, take the tangential derivative to be acting from the end with the lowest node
number toward the end with the higher node number. One must plan for these difficulties
before developing a hierarchical program. However, the returns on such an investment of
effort is clearly worth it many times over.

9.6 Differential Geometry*

When the physical space is a higher dimension than the parametric space defining
the geometry then the geometric mapping is no longer one-to-one and it is necessary to
utilize the subject ofdifferential geometry. This is covered in texts on vector analysis or
calculus. It is also an introductory topic in most books on the mechanics of thin shell
structures. Here we cover most of the basic topics except for the detailed calculation of
surface curvatures. Every surface in a three-dimensional Cartesian coordinate system
(x, y, z) may also be expressed by a pair of independent parametric coordinates (r, s) that
lie on the surface. In our geometric parametric form, we have defined thex-coordinate as

(9.40)x(r, s) = G(r, s) xe .

The y- andz-coordinates are defined similarly. The components of theposition vectorto
a point on the surface

(9.41)
→
R(r, s) = x(r, s) î + y(r, s) ĵ + z(r, s) k̂ ,

whereî , ĵ , k̂ are the constant unit base vectors, could be written in array form as

(9.42)RT = [ x y z] = G(r, s) [ xe ye ze ] .

The local parameters (r, s) constitute a system of curvilinear coordinates for points on the
physical surface. Equation 9.41 is called theparametric equationof a surface. If we
eliminate the parameters (r, s) from Eq. 9.41, we obtain the familiar implicit form of the
equation of a surface,f (x, y, z) = 0. Likewise, any relation betweenr and s, say
g(r, s) = 0, represents a curve on the physical surface. In particular, if only one
parameter varies while the other is constant, then the curve on the surface is called a
parametric curve. Thus, the surface can be completely defined by a doubly infinite set of
parametric curves, as shown in Fig. 9.6.1. We will often need the differential lengths,
differential areas, tangent vectors, etc. We begin with differential changes in position on
the surface. Since

→
R =

→
R(r, s), we have

(9.43)d
→
R =

∂
→
R

∂r
dr +

∂
→
R

∂s
ds

where ∂
→
R/ ∂r and ∂

→
R/ ∂s are thetangent vectorsalong the parametric curves. The

physical distance,dl, associated with such a change in position on the surface is found
from

(9.44)(dl )2 = dx2 + dy2 + dz2 = d
→
R . d

→
R .

This gives three contributions :
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Figure 9.6.1 Parametric surface coordinates

(dl )2 =




∂
→
R

∂r
. ∂

→
R

∂r





dr2 + 2




∂
→
R

∂r
. ∂

→
R

∂s





dr ds+




∂
→
R

∂s
. ∂

→
R

∂s





ds2 .

In the common notation of differential geometry this is called thefirst fundamental form
of a surface, and is usually written as

(9.45)(dl )2 = E dr2 + 2F dr ds + G ds2

where
(9.46)E =

∂
→
R

∂r
. ∂

→
R

∂r
, F =

∂
→
R

∂r
. ∂

→
R

∂s
, G =

∂
→
R

∂s
. ∂

→
R

∂s
are called the firstfundamental magnitudes(or metric tensor) of the surface. For future
reference we will use this notation to note that the magnitudes of the surface tangent
vectors are

| ∂
→
R

∂r
| = √ E , | ∂

→
R

∂s
| = √ G .

Of course, these magnitudes can be expressed in terms of the parametric derivatives
of the surface coordinates, (x, y, z). For example, from Eq. 9.46,

(9.47)F =
∂x

∂r

∂x

∂s
+

∂y

∂r

∂y

∂s
+

∂z

∂r

∂z

∂s
can be evaluated for an isoparametric surface by utilizing Eq. 9.42. Define a parametric
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surface gradient array given by

(9.48)g =








∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

∂z

∂r

∂z

∂s








.

The rows contain the components of the tangent vectors along the parametricr and s
curves, respectively. In the notation of Eq. 9.26, this becomes

(9.49)g(r, s) = [∂∂l R] = DL_G Re = 


∂∂l G(r, s) 





xe ye ze 

.

In other words, the surface gradient array at any point is the product of the parametric
function derivatives evaluated at that point and the array of nodal data for the element of
interest. Themetric array, m , is the product of the surface gradient and its transpose

(9.50)m ≡ g gT =




(x2
,rr + y2

,rr + z2
,rr )

(x,rr x,ss + y,rr y,ss + z,rr z,ss )

(x,rr x,ss + y,rr y,ss + z,rr z,ss )

(x2
, ss + y2

, ss + z2
, ss )





where the subscripts denote partial derivatives with respect to the parametric coordinates.
Comparing this relation with Eq. 9.46 we note that

(9.51)m = 


E

F

F

G



contains the fundamental magnitudes of the surface. This surface metric has a
determinant that is always positive. It is denoted in differential geometry as

(9.52)|m| ≡ H2 = EG − F2 > 0 .

We can degenerate the differential length measure in Eq. 9.44 to the common special
case where we are moving along a parametric curve, that is,dr = 0 or ds = 0. In the first
case ofr = constant, we hav e (dl )2 = G ds2 wheredl is a physical differential length on
the surface andds is a differential change in the parametric surface. Thendl = √ G ds
and likewise, for the parametric curves = constant, dl = √ E dr . The quantities√ G and
√ E are known as theLame parameters. They convert differential changes in the
parametric coordinates to differential lengths on the surface when moving on a parametric
curve. From Fig. 9.6.1 we note that the vector tangent to the parametric curvesr and s
are ∂

→
R/ ∂r and ∂

→
R/ ∂s, respectively. While the isoparametric coordinates may be

orthogonal, they generally will be non-orthogonal when displayed as parametric curves
on the physical surface. The angleθ between the parametric curves on the surface can be
found by using these tangent vectors and the definition of the dot product. Thus,
F ≡ ∂

→
R/ ∂r . ∂

→
R/ ∂s = √ E √ G Cosθ and the angle at any point comes from

(9.53)Cosθ =
F

√ E √ G
.

Therefore, we see that the parametric curves form an orthogonal curvilinear coordinate
system on the physical surface only whenF = 0. Only in that case does Eq. 9.44 reduce
to the orthogonal form (dl )2 = E dr2 + G ds2 . The calculations of the most general
relations between local parametric derivatives and global derivatives are shown in
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Fig. 9.6.1. Later we will utilize the function PARM_GEOM_METRIC when computing
fluxes or pressures on curved surfaces or edges.

Denote the parametric curve tangent vectors as
→
t r = ∂

→
R/ ∂r and

→
t s = ∂

→
R/ ∂s. We

have seen that the differential lengths in these two directions on the surface are√ E dr and
√ G ds. In a vector form, those lengths are

→
t r dr and

→
t s ds, and they are separated by the

angleθ . The corresponding differential surface area of the surface parallelogram is

FUNCTION PARM_GEOM_METRIC (DL_G, GEOMETRY) RESULT (FFM_ROOT) ! 1
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ! 2
! FUNDAMENTAL MAGNITUDE FROM PARAMETRIC TO GEOMETRIC SPACE ! 3
! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ! 4

USE Elem_Type_Data ! for LT_GEOM, LT_PARM ! 5
USE System_Constants ! for DP, N_SPACE ! 6
IMPLICIT NONE ! 7
REAL(DP), INTENT(IN) :: DL_G (LT_PARM, LT_GEOM) ! 8
REAL(DP), INTENT(IN) :: GEOMETRY (LT_GEOM, N_SPACE) ! 9
REAL(DP) :: FFM, FFM_ROOT ! first fundamental form data !10

!11
! Automatic arrays !12

REAL(DP) :: METRIC (LT_PARM, LT_PARM) !13
REAL(DP) :: P_GRAD (LT_PARM, N_SPACE) ! Tangent vectors !14

!15
! GEOMETRY = COORDINATES OF THE ELEMENT’S GEOMETRIC NODES !16
! DL_G = LOCAL DERIVATIVES OF THE GEOMETRIC SHAPE FUNCTIONS !17
! FFM = DET(A), D_PHYSICAL = FFM * D_PARAMETRIC !18
! LT_GEOM = NUMBER OF NODES DEFINING THE GEOMETRY !19
! LT_PARM = DIMENSION OF PARAMETRIC SPACE FOR ELEMENT TYPE !20
! METRIC = 1-ST FUNDAMENTAL MAGNITUDE (METRIC MATRIX) !21
! P_GRAD = PARAMETRIC DERIVATIVES OF PHYSICAL SPACE !22

!23
! ESTABLISH PARAMETRIC GRADIENTS !24

P_GRAD = MATMUL (DL_G, GEOMETRY) ! Tangent vectors !25
!26

! FORM METRIC MATRIX !27
METRIC = MATMUL (P_GRAD, TRANSPOSE (P_GRAD)) !28

!29
! COMPUTE DETERMINANT OF METRIC MATRIX !30

SELECT CASE (LT_PARM) ! size of parametric space !31
CASE (1) ; FFM = METRIC (1, 1) !32
CASE (2) ; FFM = METRIC (1, 1) * METRIC (2, 2) & !33

- METRIC (1, 2) * METRIC (2, 1) !34
CASE (3) ; FFM = METRIC(1,1)*( METRIC(2,2)*METRIC(3,3) & !35

- METRIC(3,2)*METRIC(2,3)) & !36
+ METRIC(1,2)*(-METRIC(2,1)*METRIC(3,3) & !37

+ METRIC(3,1)*METRIC(2,3)) & !38
+ METRIC(1,3)*( METRIC(2,1)*METRIC(3,2) & !39

- METRIC(3,1)*METRIC(2,2)) !40
CASE DEFAULT ; STOP ’INVALID LT_PARM, P_GRAD_METRIC’ !41

END SELECT ! LT_PARM !42
FFM_ROOT = SQRT (FFM) ! CONVERT TO METRIC MEASURE !43

END FUNCTION PARM_GEOM_METRIC !44

Figure 9.7.1 Computing the general metric tensor
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dS = (√ E dr) (√ G dsSinθ ) = √ E √ G Sinθ dr ds.

By substituting the relation between Cosθ and the surface metric, this simplifies to

dS2 = EG Sin 2 θ dr2 ds2 = EG (1 − Cos2 θ ) dr2 ds2

dS2 = (EG − F2) dr2 ds2 ,
or simply

(9.54)dS = √ H dr ds.

We also note that this calculation can be expressed as a vector cross product of the
tangent vectors :

dS
→
N = →

t r × →
t s dr ds

where
→
N is a vector normal to the surface. We also note that thenormal vectorhas a

magnitude of
(9.55)|

→
N| = |

→
t r × →

t s| = H .

Sometimes it is useful to note that the components of
→
N are

→
N = (y,r z,s − y,s z,r ) î + (x,r z,s − x,s z,r ) ĵ + (x,r y,s − x,s y,r ) k̂ .

We often want the unit vector,→n , normal to the surface. It is

(9.56)→n =
→
N

H
=

→
t r × →

t s

|
→
t r × →

t s|
.

9.7 Mass Properties*

Mass properties and geometric properties are often needed in a design process.
These computations provide a useful check on the model, and may also lead to reducing
more complicated calculations by identifying geometrically equivalent elements. To
illustrate the concept consider the following area, centroid, and inertia terms for a two-
dimensional general curvilinear isoparametric element:

(9.60)A = ∫A
12 da , Ax = ∫A

x1 da , Ay = ∫A
y1 da

I xx = ∫A
y2 da , − I xy = ∫A

xy da , Iyy = ∫A
x2 da , Izz = I xx + I yy .

From the parallel axis theorem we know that

I xx = I xx − y2 A ,  Ixy = I xy + x y A ,  Iyy = I yy − x2 A ,  Izz = I xx + I yy .

The corresponding two general inertia tensor definitions are

(9.61)I ij = ∫V
( xk xk δ ij − xi x j ) dV , Iij = I ij − ( xk xk δ ij − xi x j ) V

wherexi are the components of the position vector of a point in volume,V andδ ij is the
Kronecker delta. Typically, elements that have the same area, and inertia tensor, relative
to the element centroid will have the same square matrix integral if the properties do not
depend of physical coordinates (x ,  y) .

We want to illustrate these calculations in a finite element context for a two-
dimensional geometry. For the parametric form in local coordinates (r , s)
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x (r , s) = G (r , s) xe , y (r , s) = G (r , s) ye

1 = G (r , s) 1 =
i
Σ Hi (r , s)

where1 is a vector of unity terms. Then the above measures become

Ae = 1T ∫
e

A
GT G d A 1 = 1T M e 1

whereM e is thought of as the element measure (or mass) matrix

(9.62)Ae x e = 1T M e xe , Ae y e = 1T M e ye

I e
xx = xeT

M e xe , − I e
xy = xeT

M e ye , I e
yy = yeT

M e ye .

The measure matrix is defined as :

(9.63)M e = ∫
e

A
GT G da = ∫ GT G |Je| d

where denotes any non-dimensional parent domain (triangular or square) and |Je| is the
Jacobian of the transformation from toAe . For any straight sided triangular element it
has a constant value of |Je| = 2Ae . Likewise, for a straight rectangular element or
parallelogram element |Je| is again constant. For a one-to-one geometric mapping, we
always have the relation that

Ae = ∫Ae
d a = ∫ |Je| d

so that whenJe is constantAe = |Je| m, and where here m is the measure (volume) of
the non-dimensional parent domain. For example, for the unit coordinate triangle we
have m = 1

2 so that we getAe = (2Ae ) ( 1
2), as expected. The calculation of the mass

properties of each element and the total analysis domain is a data checking feature.

9.8 Interpolation Error

Here we will briefly outline some elementary error concepts in two-dimensions.
From the Taylor expansion of a function,u , at a point (x, y) in two-dimensions:

(9.64)

u(x + h ,  y + k) = u(x, y) +




h
∂u

∂x
(x, y) + k

∂u

∂y
(x, y)





+
1

2 !





h2 ∂2u

∂x2
+ 2hk

∂2u

∂x ∂y
+ k2 ∂2u

∂y2





+ ...

The objective here is to show that if the third term is neglected, then the relations for a
linear interpolation triangle are obtained. That is, we will find that the third term is
proportional to the error between the true solution and the interpolated solutions.
Consider a linear triangle whose maximum length in thex − and y −directions areh and
k, respectively. Let the three node numbers, given in CCW order, bei , j , andm. Employ
Eq. 9.64 to estimate the nodal valuesuj andum in terms ofui :
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uj = ui +




x j
∂u

∂x
( xi , yi ) + ym

∂u

∂y
( xi , yi )




.

The value of∂u ( xi , yi ) / ∂x can be found by multiplying the first relation byym, and
subtracting the product ofyi and the second relation. The result is

∂u

∂x
( xi , yi ) =

1

2A



ui ( yj − ym ) + um ( yi − yj ) + uj ( ym − yi ) 


whereA is the area of the triangle. In a similar manner, if we compute this derivative at
the other two nodes, we obtain

∂u

∂x
( x j , yj ) =

∂u

∂x
(xm , ym ) =

∂u

∂x
( xi , yi ) .

That is,∂u/ ∂x is a constant in the triangle. Likewise,∂u/ ∂y is a constant. We will see
later that a linear interpolation triangle has constant derivatives. Thus, these common
elements will represent the first two terms in Eq. 9.64. Thus, the element error is
proportional to the third term :

(9.65)E ∝ 


h2 ∂2u

∂x2
+ 2hk

∂2u

∂x ∂y
+ k2 ∂2u

∂y2




where u is the exact solution, andh and k measure the element size in thex and y
directions.

Once again, we would find that these second derivatives are related to the strain and
stress gradients. If the strains (e.g.,ε x = ∂u/ ∂x ) are constant, then the error is small or
zero. Before leaving these error comments, note that Eq. 9.65 could also be expressed in
terms of the ratio (k /h). This is a measure of the relative shape of the element, and it is
often called theaspect ratio. For an equilateral element, this ratio would be near unity.
However, for a long narrow triangle, it could be quite large. Generally, it is best to keep
the aspect ratio near unity (say < 5 ).

9.9 Element Distortion*

The effects of distorting various types of elements can be serious, and most codes
do not adequately validate data in this respect. As an example, consider a quadratic
isoparametric line element. As shown in Fig. 9.9.1, let the three nodes be located in
physical (x) space at points 0,ah, andh, whereh is the element length, and 0≤ a ≤ 1 is
a location constant. The element is defined in a local unit space where 0≤ s ≤ 1. The
relation betweenx ands is easily shown to be

x(s) = h(4a − 1) s + h(2 − 4a) s2

and the two coordinates have derivatives related by

∂x / ∂s = h(4a − 1) + 4h(1 − 2a) s .

The Jacobian of the transformation,J, is the inverse relation; that is,J = ∂s/ ∂x. The
integrals required to evaluate the element matrices utilize this Jacobian. The
mathematical principles require thatJ be positive definite. Distortion of the elements can
causeJ to go to zero or become negative. This possibility is easily seen in the present
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Figure 9.9.1 Constant and variable Jacobian elements

1- D example. If one locates the interior (s = 1/2) node at the standard midpoint position,
then a = 1/2 so that∂x / ∂s = h and J is constant throughout the element. Such an
element is generally well formulated. However, if the interior node is distorted to any
other position, the Jacobian will not be constant and the accuracy of the element may
suffer. Generally, there will be points where∂x / ∂s goes to zero, so that the stiffness
becomes singular due to division by zero. For slightly distorted elements, say
0. 4 <a < 0. 6, the singular points lie outside the element domain. As the distortion
increases, the singularities move to the element boundary, e.g.,a = 1/4 or a = 3/4.
Eventually, the distortions cause singularities ofJ inside the element. Such situations can
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cause poor stiffness matrices and very bad stress estimates, unless the true solution has
the same singularity, as they do in linear fracture mechanics. In that special case these
distorted elements are known as the quarter point element.

The effects of distortions of two- or three-dimensional elements are similar. For
example, the edge of a quadratic element may have the non-corner node displaced in a
similar way, or it may be moved normal to the line between the corners. Similar analytic
singularities can be developed for such elements. However, the presence of singularities
due to element distortions can easily be checked by numerical experiments. Several such
analytic and numerical studies have led to useful criteria for checking the element
geometry for undesirable effects. For example, envision a typical two- or three-
dimensional quadratic element with a curved edge. LetL be the cord length of that edge,
D the normal displacement of the mid-side node on that edge, andα the angle between
the corner tangent and the cord line. Suggested ranges for linear elliptical problems are:

warning range : 1/ 7 < D / L < 1/ 3, α ≤ 30°
error range : 1/ 3 < D / L, α ≥ 53°.

These values are obtained when only one edge is considered. If more than one edge of a
single element causes a warning state, then the warnings should be considered more
serious. Other parameters influence the seriousness of element distortion. LetR be a
measure of the aspect ratio, that is,R is the ratio of the longest side to the shortest side.
Let the minimum and maximum angles between corner cord lines be denoted byθ andγ ,
respectively. DefineH , the lack of flatness, to be the perpendicular distance of a fourth
node from the plane of the first three divided by the maximum side length. Then the
following guidelines in Table 9.4 should be considered when validating geometric data
for membrane or solid elements.

9.10 Space-Time Interpolation*

In Section 3.7 we addressed some of the aspects of space-time interpolation
methods. In solving time dependent problems in three-dimensional space the main

Table 9.4 Geometric criteria for two- and three-dimensional elements

Shape Warning state Error state

Triangle 5 < R < 15 R > 15
15° < θ < 30° θ ≤ 15°

150° < γ < 165° γ ≥ 165°
Quadrilateral 5 <R < 15 R ≥ 15

25° < θ < 45° θ ≤ 25°
135° < γ < 155° γ ≥ 155°
10−5 < H < 10−2 H ≥ 10−2

Solids : The above limits on R, θ and γ are checked on each face.
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H 1 = 1 - r - s - t - u
H 2 =  r
H 3 =  s
H 4 =  t
H 5 = u

Figure 9.10.1 Space-time forms for the solid simplex element
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difficult is in visualization of the mesh and results. This is illustrated in Fig. 9.10.1 where
the parametric solid tetraheda element has been expanded into 4-D by adding a fourth
parametric coordinate ofu. If one wants a fully unstructured formulation in space-time
then the element becomes a 5 noded simplex. However, if we want to view it as being
structured so as to simply translate through a time slab we double its number of nodes
from 4 in 3-D to 8 in a 4-D time slab. Of course, we would only have to generate the 3-D
mesh and define the connectivity of the first four nodes.

One important advantage of space-time interpolation is that it automatically allows
for elements that must significantly change shape or spatial position with time (that is,
moving meshes). There are many published results where 2-D and 3-D space elements
have been extended to space-time formulations. See for example the applications by Aziz
and Monk [1] Behr [4] Bonnerot and Jamet [5] Dettmer and Peric [9] Gardner, et. al [11].
Hansbo [12] Idesman, et. al [15]. and Tezduyar, et. al. [19 − 21] to cite a few.

One thing different about the space-time elements is in the calculation of their
Jacobian matrix, which is now one dimension larger than in the pure space formulation.
That is, it is a square matrix of size (ns + 1). Unlike Eq. 9.24 where we would allow the
last column to compute how the physical space coordinatez varies with respect to all the
element parametric coordinates, we know time will not depend on a spatial parametric
coordinate. It will only depend on the non-dimensional time parametric coordinate
(denoted byu in Fig. 9.10.1) and all but the last row of the right-most column of the
Jacobian must be zero. Here, letτ denote time corresponding to the fourth parametric
coordinateu. The generalization of the 3-D spatial Jacobian to 4-D space-time is

(9.66)
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

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If the spatial nodes of the domain do not change with respect to time then the non-
diagonal terms on the last row of the space-time Jacobian will also be zero. Otherwise it
automatically includes a moving domain formulation. For linear interpolation in time the
term ∂τ / ∂u in the space-time Jacobian will be∆t / 1 for the unit coordinates of Fig.
9.10.1, or∆t / 2 of the natural parametric coordinate from−1 to +1 is used foru.

9.11 Exercises

1. Use the subroutines in Fig. 3.5.2 to form similar functions for aC1 rectangular
element by taking a tensor product of the one-dimensional Hermite interpolation
relations. This will be a 16 degree of freedom element since each node will have
u, ∂u/ ∂x,∂u / ∂y, and ∂2u/ ∂x∂y as nodal unknowns. This element will not beC1 if
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mapped to a quadrilateral shape. (Why not?)

2. Verify that for the H8 brick element in Table 9.2 that limiting its local coordinates to
any one face, sayc = 1, results in the interpolation functions not on that face becoming
zero, and that the four non-zero interpolation functions on that face degenerate to those
give for the Q4 quadrilateral in Table 9.1.

3. Create the local parametric derivatives (∂ / ∂a, etc.) of the interpolation functions for
the: a) Q4 quadrilateral element of Table 9.1, b) the H8 hexahedra element of Table 9.2,
c) the T6 triangular element of Eq. 9.17.

4. For a one-to-one geometric map the Jacobian matrix (of Eq. 9.26) is
Je = [∂∂L H] [xe ye ze]. For a 2-D quadrilateral (Q4) verify that in natural coordinates this
simplifies to

Je(a, b) =




H1, aa

H1, bb

H2, aa

H2, bb

H3, aa

H3, bb
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H4, bb











x1

x2

x3

x4

y1

y2

y3

y4







e

so that the Jacobian usually varies over the element with

[∂∂L H] =
1

4





( b − 1)

(−1 − a)

( 1 − b)

( a − 1)

( 1 + b)

( 1 + a)

(−1 − b)

( 1 − a)




.

5. Verify that if the above Q4element maps onto a rectangle, with is sides parallel to the
global axes, of lengthLx and heightLy then the Jacobian is constant at all points in the
element.

6. If a Q4 element is mapped to a trapezoid having the four nodal coordinates of
xeT

= [0 2 2 0], andyeT
= [0 0 2 1] verify that its Jacobian matrix is

Je(a, b) =
1

4





4

0

(1 + b)

(3 + a)




.

6. Sketch how you thing an 8 noded parametric cube in 3-D parametric space would
appear when extended to a time slab (with 16 nodes).
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