2.5 Weighted Residuals (G)ebal | not FEA)

Consider the following model equation:

L _ dlu +x=0 0,1 2.15
(u)——dx—z'f'u x=0, xe]0l1] (2.15)

with the essential boundary /conditions u=0atx=0and =0 at x =1 so that the exact

solution is u = Sinx/Sin1 — x. We want to find a global approximate solution
involving constants A;, 1 < i < n that will lead to a set’of n simultaneous equations.

For homogeneous essential boundary conditions we usually pick a global product
approximation of the form
u” = g0 f(x A) (2.16)

where g(x) = 0 onI'. Here the boundary is x=0 and x — 1 = 0 so we select a form such

as
g1 () = x(1-x)

or ) = x— Sin x
52 Sinl

We could pick f(x, A;) as a polynomial
f) = A+ Ayx+ - A xTD,
For simplicity, select n = 2 and use g (x) so the approximate solution is
w () = x(1 - x) (A +Ayx). (2.17)
Here we will employ the method of weighted residuals to find the A’s. From
Eq. (2.17) we see that the residual error at any point is R(x) = u” +u+x, or in
expanded form:
R = x+(=2+x-x*)Aj + (2-6x+x2-x3) Ay 2 0. (2.18)
Note for future reference that the partial derivatives of the residual with respect to the
unknown degrees of freedom are :
JdR 2 oR
— = (2+x-x*), —
oA, ( ) dA,
The residual error will vanish everywhere only if we guess the exact solution. The
method of weighted residuals requires that a weighted integral of the residual vanish, that
is,

= (2-6x+x>-x3).

1
[R® Wy dx = 0 (2.19)
0

where w(x) is a weighting function. For an approximate solution with n constants we
can split R into parts including and independent of the A;, say

n
R = Ry+ Y hj(x) A,. (2.20)

j=1
We use n weights to get the necessary algebraic equations

wdQ =0, 1<i<n

[ Rwid@ = | [R0+ B A
Q Q Jj=1
or n
S [ h@w®Ade = - [RiWw,(0dQ, 1<is<n. @21
= Q Q

Jj=1



In matrix form this system of equations is written as:
S A = C
nXxn nx1l nxl,. 2.22)

C) Galerkin Method: The concept here is to make the residual error orthogonal to the
functions associated with the spatial influence of the constants. That is, let

() = g0 F(x A = 3 h(x) A

i=1

Then forn=2and h; =(x—x )andh =(x —x3) we set

/ wi(x) = %) (2.27)
so that we require | 1
[R&) Ay x)dx = 0, [R@) hy(x)dx = 0 (2.28)
0 0
so that Eq. (2.18) yields
B A, 3 34 = L
10 20 12
i AI + _13_A2 = L
20 105 20

which is again symmetric (for the self-adjoint equation). Solving gives degree of
freedom values of A;=71/369, A,=7/41 and selected results at the three interior
points of : 0.044, 0.070, and 0.060, respectively.

B) Least Squares Method: For the n equations pick
1

JR(x)wi(x)dx=O, 1<i<n

0
with the weights defined as JR(x)

w; (x) = W (2.25)

This is equivalent to

1

[R*(x)dx —  stationary (minimum). (2.26)

0

For this example

jR(x)——dx— 0, jR(x)—dx_ 0
2

jand substitutions from Eq. (2.18) gives
202 101 55
— A + — = =
60

It should be noted from Eq. (2.18) that this procedure yields a square matrix which is
always symmetric. Solving gives A; = Q192" A, = 0.063 and selected results at the three
interior points of : 0.043, 0.068, and 0.059)\respectively. . {95
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