2.5 Weighted Residuals (Global, not FEA)

Consider the following model equation:

$$L(u) = \frac{d^2 u}{dx^2} + u + x = 0, \quad x \in]0,1[$$
 (2.15)

with the essential boundary conditions u=0 at x=0 and u=0 at x=1 so that the exact solution is u=Sin x/Sin 1-x. We want to find a global approximate solution involving constants Δ_i , $1 \le i \le n$ that will lead to a set of n simultaneous equations. For homogeneous essential boundary conditions we usually pick a global product approximation of the form

$$u^* = g(x) f(x, \Delta_i) \tag{2.16}$$

where $g(x) \equiv 0$ on Γ . Here the boundary is x = 0 and x - 1 = 0 so we select a form such as

$$g_1(x) = x(1-x)$$

or

$$g_2(x) = x - \frac{\sin x}{\sin 1}.$$

We could pick $f(x, \Delta_i)$ as a polynomial

$$f(x) = \Delta_1 + \Delta_2 x + \cdots + \Delta_n x^{(n-1)}.$$

For simplicity, select n = 2 and use $g_1(x)$ so the approximate solution is

$$u^{*}(x) = x(1-x)(\Delta_{1} + \Delta_{2}x). \tag{2.17}$$

Here we will employ the method of weighted residuals to find the Δ 's. From Eq. (2.17) we see that the residual error at any point is R(x) = u'' + u + x, or in expanded form:

$$R(x) = x + (-2 + x - x^2) \Delta_1 + (2 - 6x + x^2 - x^3) \Delta_2 \neq 0.$$
 (2.18)

Note for future reference that the partial derivatives of the residual with respect to the unknown degrees of freedom are:

$$\frac{\partial R}{\partial \Delta_1} = (-2 + x - x^2), \quad \frac{\partial R}{\partial \Delta_2} = (2 - 6x + x^2 - x^3).$$

The residual error will vanish everywhere only if we guess the exact solution. The method of weighted residuals requires that a weighted integral of the residual vanish, that is,

$$\int_{0}^{1} R(x) w(x) dx \equiv 0 \tag{2.19}$$

where w(x) is a weighting function. For an approximate solution with n constants we can split R into parts including and independent of the Δ_i , say

$$R = R_0 + \sum_{j=1}^{n} h_j(x) \, \Delta_j. \tag{2.20}$$

We use n weights to get the necessary algebraic equations

$$\int_{\Omega} R w_i d\Omega = \int_{\Omega} \left[R_0 + \sum_{j=1}^n h_j(x) \Delta_j \right] w_i d\Omega = 0_i, \quad 1 \le i \le n$$

or

$$\sum_{j=1}^{n} \int_{\Omega} h_{j}(x) w_{i}(x) \Delta_{j} d\Omega = -\int_{\Omega} R_{0}(x) w_{i}(x) d\Omega, \quad 1 \le i \le n.$$
 (2.21)

In matrix form this system of equations is written as:

$$\mathbf{S} \qquad \mathbf{\Delta} \qquad = \mathbf{C} \\
n \times n \quad n \times 1 \quad n \times 1. \tag{2.22}$$

C) Galerkin Method: The concept here is to make the residual error orthogonal to the functions associated with the spatial influence of the constants. That is, let

$$u^*(x) = g(x) f(x, \Delta_i) = \sum_{i=1}^n h_i(x) \Delta_i.$$

Then for n = 2 and $h_1 = (x - x^2)$ and $h_2 = (x^2 - x^3)$, we set

$$w_i(x) \equiv h_i(x) \tag{2.27}$$

so that we require

$$\int_{0}^{1} R(x) h_{1}(x) dx = 0, \quad \int_{0}^{1} R(x) h_{2}(x) dx = 0$$
 (2.28)

so that Eq. (2.18) yields

$$\frac{3}{10} \Delta_1 + \frac{3}{20} \Delta_2 = \frac{1}{12}$$

$$\frac{3}{20} \Delta_1 + \frac{13}{105} \Delta_2 = \frac{1}{20}$$

which is again symmetric (for the self-adjoint equation). Solving gives degree of freedom values of $\Delta_1 = 71/369$, $\Delta_2 = 7/41$ and selected results at the three interior points of: 0.044, 0.070, and 0.060, respectively.

B) Least Squares Method: For the n equations pick

$$\int_{0}^{1} R(x) w_{i}(x) dx = 0, \qquad 1 \le i \le n$$

with the weights defined as

$$w_i(x) = \frac{\partial R(x)}{\partial \Delta_i}.$$
 (2.25)

This is equivalent to

$$\int_{0}^{1} R^{2}(x) dx \rightarrow \text{stationary (minimum)}.$$
 (2.26)

For this example

$$\int_{0}^{1} R(x) \frac{\partial R}{\partial \Delta_{1}} dx = 0, \quad \int_{0}^{1} R(x) \frac{\partial R}{\partial \Delta_{2}} dx = 0$$

and substitutions from Eq. (2.18) gives

$$\frac{202}{60} \Delta_1 + \frac{101}{60} \Delta_2 = \frac{55}{60}$$

$$\frac{101}{60} \Delta_1 + \frac{1532}{600} \Delta_2 = \frac{393}{60}.$$

It should be noted from Eq. (2.18) that this procedure yields a square matrix which is always symmetric. Solving gives $\Delta_1 = 0.192$, $\Delta_2 = 0.165$ and selected results at the three interior points of: 0.043, 0.068, and 0.059, respectively. 0, 1655

AND

rersity, UK

ath, UK

ng ds in Potential

ical solution of

bal Expansion

nt Methods ment Solution

llelism

d Their Finite

and Numerical

Finite Elements for Analysis and Design

BY

J. E. AKIN

Department of Mechanical Engineering and Materials Science Rice University, Houston, Texas, USA

ACADEMIC PRESS

Harcourt Brace & Company, Publishers

London San Diego New York Boston Sydney Tokyo Toronto