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Classic and Good Beam Elements 
Rice University, MECH 417, J.E. Akin 

 
      The most common fourth-order ordinary differential equation (ODE) in engineering is the Euler thin beam 
equation.  For such a beam with a line load of w(x) per unit length the ODE is 
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where 𝐼𝐼 ≡ 𝐼𝐼𝑧𝑧𝑧𝑧 = ∫ 𝑦𝑦2 

𝐴𝐴 𝑑𝑑𝑑𝑑 is the area moment of inertia of the beam cross-section and y is the direction through 
the depth, t, of the beam.  From the theory of even order ODEs it has been shown that there are two possible 
essential (Dirichlet) boundary conditions: specifying the transverse displacement, v, and/or specifying the slope 
of the beam, 𝜃𝜃 ≡ 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ .  Since both can be applied at any point it is necessary to have both quantities as the 
nodal degrees of freedom in a finite element mesh (𝑛𝑛𝑔𝑔 = 2).  That means that beam elements must use Hermite 
interpolations instead of Lagrange interpolation.  The associated Neumann (non-essential) boundary conditions 
allow the specification of the second and/or third derivatives of the deflection (𝑑𝑑2𝑣𝑣 𝑑𝑑𝑑𝑑2⁄  and/or 𝑑𝑑3𝑣𝑣 𝑑𝑑𝑑𝑑3⁄ ).  In 
the mechanics of solids they are shown to be proportional to the bending moment and the transverse shear force, 
respectively, at a boundary point. 
      The most widely used beam element is a third degree polynomial line element with two nodes per element 
(𝑛𝑛𝑛𝑛 = 2) with the two generalized displacements per node being the transverse deflection v(x) and the rotation 
(slope) 𝜃𝜃(𝑥𝑥) at each node.  Combined, the number of independent degrees of freedom on an element is 𝑛𝑛𝑖𝑖 =
𝑛𝑛𝑛𝑛 ∗ 𝑛𝑛𝑔𝑔 = 4, which define the complete cubic polynomial (like 𝑐𝑐1 +  𝑐𝑐2𝑥𝑥 +  𝑐𝑐3𝑥𝑥2 + 𝑐𝑐4𝑥𝑥3).  Since the deflection 
and the slope (its first derivative) are continuous at the element interfaces this is known as a 𝐶𝐶1 continuous 
element (and it is 𝐶𝐶∞ inside the element).  Which is sometimes called the L2C1 element. 
 

 
Cubic beam, linear line load, point shear forces, point bending moments, and 

a linear temperature decrease from top to bottom through thickness t 
 
If a classic single two-node cubic 𝐶𝐶1 beam element is in equilibrium then its matrix system (before Dirichlet 
BC) is 

𝐸𝐸𝐸𝐸𝑒𝑒
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where L is the element length, E is the material elastic modulus, I is the cross-section moment of inertia (about 
an axis perpendicular to the displaced shape), 𝑣𝑣𝑘𝑘 is the transverse (in plane) displacement at node k, 𝜃𝜃𝑘𝑘 is the 
small in plane slope at node k, 𝑉𝑉𝑘𝑘 is the externally applied transverse shear force at node k (or the reaction force 
if  𝑣𝑣𝑘𝑘 has a specified Dirichlet value), 𝑀𝑀𝑘𝑘 is the externally applied moment (couple) at node k (or the reaction 
moment if slope 𝜃𝜃𝑘𝑘 has a specified Dirichlet value), 𝑓𝑓𝑘𝑘 is the line load (force per unit length) value at node k 
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which is interpolated over the length of the element (using the linear L2 𝐶𝐶0 interpolation used before for linear 
sources), 𝛼𝛼 is the material’s coefficient of thermal expansion (CTE), and ∆𝑇𝑇 is the change in temperature from 
the top of beam thickness, t, to the bottom of the thickness.  Note that a temperature difference causes a thermal 
moment, but no thermal shear force.  Of course, for multiple elements in a mesh these element matrices must be 
assembled (scattered) to form the larger system matrix equilibrium equations; which will also be singular until 
they are modified to enforce the boundary conditions. 
      To design a beam it is necessary to know the magnitude and location of its maximum (absolute) moment 
and its maximum (absolute) shear force. They are given by 
 
              𝐸𝐸𝐸𝐸 𝑣𝑣′′(𝑥𝑥) =  𝑀𝑀(𝑥𝑥)  bending moment, and 𝐸𝐸𝐸𝐸 𝑣𝑣′′′(𝑥𝑥) =  𝑉𝑉(𝑥𝑥)  transverse shear force.       
 
The third derivative of this cubic beam element is a constant (6𝑐𝑐4) along the length of the beam.  It is rare for a 
beam problem to have only segments of constant shear force. Therefore, this beam element should not be used 
unless you have a zillion of them in the mesh.  The American Institute of Steel Construction publishes solutions 
for thirty nine of the most common beam support and load cases (see the appendix).  A mesh of cubic beam 
elements can only exactly solve less than half of those common cases, unless an infinite number of elements is 
used. 
      What is a reasonable alternative to this classical beam element? The answer is to form a 5-th degree beam 
element by adding a third node at the center of the element that also uses the deflection and slope values 
(𝑛𝑛𝑛𝑛 = 3,𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑛𝑛 ∗ 𝑛𝑛𝑔𝑔 = 6 ).  That element can exactly solve all 39 example AISC cases with only one to four 
elements as shown in the table below.  Note that he figure (below) for this element shows no point force or 
moment at the mid-length node because either one represents a discontinuity in the post-processing results. 
 

Number of Elements Required to Exactly Solve the AISC Cases 
Case L3s L2s Case L3s L2s Case L3s L2s 

1 1 ∞ 14 2 2 27 2 ∞ 
2 1 ∞ 15 1 ∞ 28 2 2 
3 2 ∞ 16 2 2 29 2 ∞ 
4 3 ∞ 17 2 2 30 3 3 
5 2 ∞ 18 1 ∞ 31 3 3 
6 3 ∞ 19 1 ∞ 32 1 ∞ 
7 2 2 20 1 ∞ 33 2 2 
8 2 2 21 2 2 34 3 ∞ 
9 3 3 22 1 1 35 3 ∞ 
10 3 3 23 1 1 36 3 ∞ 
11 3 3 24 2 ∞ 37 4 ∞ 
12 1 ∞ 25 2 ∞ 38 4 ∞ 
13 2 2 26 2 ∞ 39 4 ∞ 

 

  
Quintic beam with a quadratic line load 
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If a single three-node fifth degree 𝐶𝐶1 beam element is in equilibrium then its matrix system (before Dirichlet 
BC) is 
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     Keep in mind that the point shear force and the point moment (couple) both represent the Neumann 
boundary conditions which are weakly introduced through the integration by parts: 
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This form is useful for applications that are not structural, but are governed by the same ordinary differential 
equation (like creeping fluid flow).  The Hermite polynomial interpolation functions for the cubic beam are 
 

𝑣𝑣(𝑥𝑥) =  𝑣𝑣1(1 − 3𝑟𝑟2 + 2𝑟𝑟3) + 𝜃𝜃1(𝑟𝑟 − 2𝑟𝑟2 + 𝑟𝑟3)𝐿𝐿 + 𝑣𝑣2(3𝑟𝑟2 − 2𝑟𝑟3) + 𝜃𝜃2(𝑟𝑟3 − 𝑟𝑟2)𝐿𝐿 
 
and the quintic functions are 
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                  𝑣𝑣(𝑟𝑟) = [𝑣𝑣1(1 − 23𝑟𝑟2 + 66𝑟𝑟3 − 68𝑟𝑟4 + 24𝑟𝑟5) + 𝜃𝜃1(𝑟𝑟 − 6𝑟𝑟2 + 13𝑟𝑟3 − 12𝑟𝑟4 + 4𝑟𝑟5)𝐿𝐿  
      
                            + 𝑣𝑣2(16𝑟𝑟2 − 32𝑟𝑟3 + 16𝑟𝑟4) + 𝜃𝜃2(−8𝑟𝑟2 + 32𝑟𝑟3 − 40𝑟𝑟4 + 16𝑟𝑟5)𝐿𝐿   
     
                            + 𝑣𝑣3(7𝑟𝑟2 − 34𝑟𝑟3 + 52𝑟𝑟4 − 24𝑟𝑟5) + 𝜃𝜃3(−𝑟𝑟2 + 5𝑟𝑟3 − 8𝑟𝑟4 + 4𝑟𝑟5)𝐿𝐿]     
 
Both functions are given in the function Hermite_1D_C1_library.m, along with their first, second, and third 
derivatives with respect to x. They are located on the Rice Clear Linux system at /mech517/Akin_FEA_Lib. 
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Appendix: American Institute for Steel Construction Beam Tables 
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