
Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 1 of 23

Object Oriented Programming via Fortran 90
(Preprint: Engineering Computations, v. 16, n. 1, pp. 26-48, 1999)

J. E. Akin
Rice University, MEMS Dept.

Houston, TX 77005-1892

Keywords object-oriented, encapsulation, inheritance, polymorphism, Fortran 90

Abstract
There is a widely available object-oriented (OO) programming language that is usually
overlooked in the OO Analysis, OO Design, OO Programming literature. It was designed
with most of the features of languages like C++, Eiffel, and Smalltalk. It has extensive
and efficient numerical abilities including concise array and matrix handling, like
Matlab®. In addition, it is readily extended to massively parallel machines and is backed
by an international ISO and ANSI standard. The language is Fortran 90 (and Fortran 95).

When the explosion of books and articles on OOP began appearing in the early 1990's
many of them correctly disparaged Fortran 77 (F77) for its lack of object oriented
abilities and data structures. However, then and now many authors fail to realize that the
then new Fortran 90 (F90) standard established a well planned object oriented
programming language while maintaining a full backward compatibility with the old F77
standard. F90 offers strong typing, encapsulation, inheritance, multiple inheritance,
polymorphism, and other features important to object oriented programming. This paper
will illustrate several of these features that are important to engineering computation
using OOP.

1. Introduction
The use of Object Oriented (OO) design and Object Oriented Programming (OOP) is
becoming increasingly popular (Coad, 1991; Filho, 1991; Rumbaugh, 1991), and today
there are more than 100 OO languages. Thus, it is useful to have an introductory
understanding of OOP and some of the programming features of OO languages. You can
develop OO software in any high level language, like C or Pascal. However, newer
languages such as Ada, C++, and F90 have enhanced features that make OOP much more
natural, practical, and maintainable. C++ appeared before F90 and currently, is probably
the most popular OOP language, yet F90 was clearly designed to have almost all of the
abilities of C++ (Adams, 1992; Barton, 1994). However, rather than study the new
standards many authors simply refer to the two decades old F77 standard and declare that
Fortran can not be used for OOP. Here we will try to overcome that misinformed point of
view.

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 2 of 23

Modern OO languages provide the programmer with three capabilities that improve and
simplify the design of such programs: encapsulation, inheritance, and polymorphism (or
generic functionality). Related topics involve objects, classes, and data hiding. An object
combines various classical data types into a set that defines a new variable type, or
structure. A class unifies the new entity types and supporting data that represents its
status with subprograms (functions and subroutines) that access and/or modify those data.
Every object created from a class, by providing the necessary data, is called an instance
of the class. In older languages like C and F77, the data and functions are separate
entities. An OO language provides a way to couple or encapsulate the data and its
functions into a unified entity. This is a more natural way to model real-world entities
which have both data and functionality. The encapsulation is done with a "module" block
in F90, and with a "class" block in C++. This encapsulation also includes a mechanism
whereby some or all of the data and supporting subprograms can be hidden from the user.
The accessibility of the specifications and subprograms of a class is usually controlled by
optional "public" and "private" qualifiers. Data hiding allows one the means to protect
information in one part of a program from access, and especially from being changed in
other parts of the program. In C++ the default is that data and functions are "private"
unless declared "public," while F90 makes the opposite choice for its default protection
mode. In a F90 "module" it is the "contains" statement that, among other things, couples
the data, specifications, and operators before it to the functions and subroutines that
follow it.

Class hierarchies can be visualized when we realize that we can employ one or more
previously defined classes (of data and functionality) to organize additional classes.
Functionality programmed into the earlier classes may not need to be re-coded to be
usable in the later classes. This mechanism is called inheritance. For example, if we have
defined an Employee_class, then a Manager_class would inherit all of the data and
functionality of an employee. We would then only be required to add only the totally new
data and functions needed for a manager. We may also need a mechanism to re-define
specific Employee_class functions that differ for a Manager_class. By using the concept
of a class hierarchy, less programming effort is required to create the final enhanced
program. In F90 the earlier class is brought into the later class hierarchy by the use
statement followed by the name of the "module" statement block that defined the class.

Polymorphism allows different classes of objects that share some common functionality
to be used in code that requires only that common functionality. In other words,
subprograms having the same generic name are interpreted differently depending on the
class of the objects presented as arguments to the subprograms. This is useful in class
hierarchies where a small number of meaningful function names can be used to
manipulate different, but related object classes. The above concepts are those essential to
object oriented design and OOP. In the later sections we will demonstrate by example
F90 implementations of these concepts.

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 3 of 23

 ! Areas of shapes of different classes, using different
 ! function names in each class
 module class_Rectangle ! define the first object class
 type Rectangle
 real :: base, height ; end type Rectangle

 contains ! Computation of area for rectangles.
 function rectangle_area (r) result (area)
 type (Rectangle), intent(in) :: r
 real :: area
 area = r%base * r%height ; end function rectangle_area
 end module class_Rectangle

 module class_Circle ! define the second object class
 real :: pi = 3.1415926535897931d0 ! a circle constant
 type Circle
 real :: radius ; end type Circle

 contains ! Computation of area for circles.
 function circle_area (c) result (area)
 type (Circle), intent(in) :: c
 real :: area
 area = pi * c%radius**2 ; end function circle_area
 end module class_Circle

program geometry ! for both types in a single function
 use class_Circle
 use class_Rectangle

! Interface to generic routine to compute area for any type
 interface compute_area
 module procedure rectangle_area, circle_area ; end interface

 ! Declare a set geometric objects.
 type (Rectangle) :: four_sides
 type (Circle) :: two_sides ! inside, outside
 real :: area = 0.0 ! the result

 ! Initialize a rectangle and compute its area.
 four_sides = Rectangle (2.1, 4.3) ! implicit constructor
 area = compute_area (four_sides) ! generic function
 write (6,100) four_sides, area ! implicit components list
 100 format ("Area of ",f3.1," by ",f3.1," rectangle is ",f5.2)

 ! Initialize a circle and compute its area.
 two_sides = Circle (5.4) ! implicit constructor
 area = compute_area (two_sides) ! generic function
 write (6,200) two_sides, area
 200 format ("Area of circle with ",f3.1," radius is ",f9.5)
 end program geometry ! Running gives:
! Area of 2.1 by 4.3 rectangle is 9.03
! Area of circle with 5.4 radius is 91.60885

Figure 1: Multiple Geometric Shape Classes

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 4 of 23

2. Encapsulation, Inheritance, and Polymorphism
We often need to use existing classes to define new classes. The two ways to do this are
called composition and inheritance. We will use both methods in a series of examples.
Consider a geometry program that uses two different classes: class_Circle and
class_Rectangle, such as that shown in Figure 1 on page 3. Each class shown has the
data types and specifications to define the object and the functionality to compute their
respective areas. The operator % is employed to select specific components of a defined
type. Within the geometry (main) program a single subprogram, compute_area, is
invoked to return the area for any of the defined geometry classes. That is, a generic
function name is used for all classes of its arguments and it, in turn, branches to the
corresponding functionality supplied with the argument class. To accomplish this
branching the geometry program first brings in the functionality of the desired classes via
a use statement for each class module. Those "modules" are coupled to the generic
function by an interface block which has the generic function name (compute_area).
There is included a module procedure list which gives one class subprogram name for
each of the classes of argument(s) that the generic function is designed to accept. The
ability of a function to respond differently when supplied with arguments that are objects
of different types is called polymorphism. In this example we have employed different
names, rectangular_area and circle_area, in their respective class modules, but that is
not necessary. The use statement allows one to rename the class subprograms and/or to
bring in only selected members of the functionality.

Another terminology used in OOP is that of constructors and destructors for objects. An
intrinsic constructor is a system function that is automatically invoked when an object is
declared with all of its possible components in the defined order. In C++, and F90 the
intrinsic constructor has the same name as the "type" of the object. One is illustrated in
Figure 1 on page 3 in the statement:

 four_sides = Rectangle (2.1,4.3)

where previously we declared

 type (Rectangle) :: four_sides

which, in turn, was coupled to the class_Rectangle which had two components, base and
height, defined in that order, respectively. The intrinsic constructor in the example
statement sets component base = 2.1 and component height = 4.3 for that instance,
four_sides, of the type Rectangle. This intrinsic construction is possible because all the
expected components of the type were supplied. If all the components are not supplied,
then the object cannot be constructed unless the functionality of the class is expanded by
the programmer to accept a different number of arguments.

Assume that we want a special member of the Rectangle class, a square, to be
constructed if the height is omitted. That is, we would use height = base in that case. Or,
we may want to construct a unit square if both are omitted so that the constructor defaults

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 5 of 23

to base = height = 1. Such a manual constructor, named make_Rectangle, is illustrated
in Figure 2 on page 5. It illustrates some additional features of F90. Note that the last two
arguments were declared to have the additional type attributes of optional, and that an
associated logical function present is utilized to determine if the calling program
supplied the argument in question. That figure also shows the results of the area
computations for the corresponding variables square and unit_sq defined if the manual
constructor is called with one or no optional arguments, respectively.

 function make_Rectangle (bottom, side) result (name)
 ! Constructor for a Rectangle type
 real, optional, intent(in) :: bottom, side
 type (Rectangle) :: name
 name = Rectangle (1.,1.) ! default to unit square
 if (present(bottom)) then ! default to square
 name = Rectangle (bottom, bottom) ; end if
 if (present(side)) name = Rectangle (bottom, side) ! intrinsic
 end function make_Rectangle
 . . .
 type (Rectangle) :: four_sides, square, unit_sq

 ! Test manual constructors
 four_sides = make_Rectangle (2.1,4.3) ! manual constructor, 1
 area = compute_area (four_sides) ! generic function
 write (6,100) four_sides, area

 ! Make a square
 square = make_Rectangle (2.1) ! manual constructor, 2
 area = compute_area (square) ! generic function
 write (6,100) square, area

 ! "Default constructor", here a unit square
 unit_sq = make_Rectangle () ! manual constructor, 3
 area = compute_area (unit_sq) ! generic function
 write (6,100) unit_sq, area ! Running gives:
 ! Area of 2.1 by 4.3 rectangle is 9.03
 ! Area of 2.1 by 2.1 rectangle is 4.41
 ! Area of 1.0 by 1.0 rectangle is 1.00

Figure 2: A Manual Constructor for Rectangles

Before moving to some mathematical examples we will introduce the concept of data
hiding and combine a series of classes to illustrate composition and inheritancey. First,
consider a simple class to define dates and to print them in a pretty fashion. While other
modules will have access to the Date class they will not be given access to the number of
components it contains (3), nor their names (month, day, year), nor their types (integers)
because they are declared private in the defining module. The compiler will not allow
external access to data and/or subprograms declared as private. The module, class_Date,
is presented as a source include file in Figure 3 on page 6, and in the future will be
reference by the file name class_Date.f90. Since we have chosen to hide all the user
defined components we must decide what functionality we will provide to the users, who

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 6 of 23

may have only executable access. The supporting documentation would have to name the
public subprograms and describe their arguments and return results. The default intrinsic
constructor would be available only to those that know full details about the components
of the data type, and if those components are public. The intrinsic constructor, Date,
requires all the components be supplied, but it does no error or consistency checks. My
practice is to also define a "public constructor" whose name is the same as the intrinsic
constructor except for an appended underscore, that is, Date_. Its sole purpose is to do
data checking and invoke the intrinsic constructor, Date. If the function Date_ is declared
public it can be used outside the module class_Date to invoke the intrinsic constructor,
even if the components of the data type being constructed are all private. In this example
we have provided another manual constructor to set a date, set_Date, with a variable
number of optional arguments. Also supplied are two subroutines to read and print dates,
read_Date and print_Date, respectively.
module class_Date ! filename: class_Date.f90
 public :: Date ! and everything not "private" type Date
 private
 integer :: month, day, year ; end type Date

contains ! encapsulated functionality

function Date_ (m, d, y) result (x) ! public constructor
 integer, intent(in) :: m, d, y ! month, day, year
 type (Date) :: x ! from intrinsic constructor
 if (m < 1 .or. d < 1) stop 'Invalid components, Date_'
 x = Date (m, d, y) ; end function Date_

subroutine print_Date (x) ! check and pretty print a date
 type (Date), intent(in) :: x
 character (len=*),parameter :: month_Name(12) = &
 (/ "January ", "February ", "March ", "April ",&
 "May ", "June ", "July ", "August ",&
 "September", "October ", "November ", "December "/)
 if (x%month < 1 .or. x%month > 12) print *, "Invalid month"
 if (x%day < 1 .or. x%day > 31) print *, "Invalid day "
 print *, trim(month_Name(x%month)),' ', x%day, ", ", x%year;
 end subroutine print_Date

subroutine read_Date (x) ! read month, day, and year
 type (Date), intent(out) :: x ! into intrinsic constructor
 read *, x ; end subroutine read_Date

function set_Date (m, d, y) result (x) ! manual constructor
 integer, optional, intent(in) :: m, d, y ! month, day, year
 type (Date) :: x
 x = Date (1,1,1997) ! default, (or use current date)
 if (present(m)) x%month = m ; if (present(d)) x%day = d
 if (present(y)) x%year = y ; end function set_Date

end module class_Date

Figure 3: Defining a Date Class

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 7 of 23

A sample main program that employs this class is given in Figure 4 on page 7, which
contains sample outputs as comments. This program uses the default constructor as well
as all three programs in the public class functionality. Note that the definition of the class
was copied in via an include statement and activated with the use statement.
include 'class_Date.f90' ! see previous figure

program main
 use class_Date
 type (Date) :: today, peace

 ! peace = Date (11,11,1918) ! NOT allowed for private components
 peace = Date_ (11,11,1918) ! public constructor
 print *, "World War I ended on " ; call print_Date (peace)
 peace = set_Date (8, 14, 1945) ! optional constructor

 print *, "World War II ended on " ; call print_Date (peace)
 print *, "Enter today as integer month, day, and year: "
 call read_Date(today) ! create today's date
 print *, "The date is "; call print_Date (today)
end program main ! Running produces:
! World War I ended on November 11, 1918
! World War II ended on August 14, 1945
! Enter today as integer month, day, and year: 7 10 1998
! The date is July 10, 1998

Figure 4: Testing a Date Class

Now we will employ the class_Date within a class_Person which will use it to set the
date of birth (DOB) and date of death (DOD) in addition to the other Person components
of name, nationality, and sex. Again we have made all the type components private, but
make all the supporting functionality public. The functionality shown provides a manual
constructor, make_Person, subprograms to set the DOB or DOD, and those for the
printing of most components. The new class is given in Figure 5 on page 8. Note that the
manual constructor utilizes optional arguments and initializes all components in case
they are not supplied to the constructor. The set_Date public subroutine from the
class_Date is "inherited" to initialize the DOB and DOD. That function member from the
previous module was activated with the combination of the include and use statements.
Of course, the include could have been omitted if the compile statement included the
path name to that source. A sample main program for testing the class_Person is in
Figure 6 on page 9 along with comments containing its output.

 module class_Person ! filename: class_Person.f90
 use class_Date
 public :: Person
 type Person
 private
 character (len=20) :: name
 character (len=20) :: nationality
 integer :: sex
 type (Date) :: dob, dod ! birth, death

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 8 of 23

 end type Person
 contains

 function make_Person (nam, nation, s, b, d) result (who)
 ! Optional Constructor for a Person type
 character (len=*), optional, intent(in) :: nam, nation
 integer, optional, intent(in) :: s ! sex
 type (Date), optional, intent(in) :: b, d ! birth, death
 type (Person) :: who
 who = Person (" ","USA",1,Date_(1,1,0),Date_(1,1,0))! defaults
 if (present(nam)) who % name = nam
 if (present(nation)) who % nationality = nation
 if (present(s)) who % sex = s
 if (present(b)) who % dob = b
 if (present(d)) who % dod = d ; end function

function Person_ (nam, nation, s, b, d) result (who)
 ! Public Constructor for a Person type
 character (len=*), intent(in) :: nam, nation
 integer, intent(in) :: s ! sex
 type (Date), intent(in) :: b, d ! birth, death
 type (Person) :: who
 who = Person (nam, nation, s, b, d) ; end function Person_

subroutine print_DOB (who)
 type (Person), intent(in) :: who
 call print_Date (who % dob) ; end subroutine print_DOB

subroutine print_DOD (who)
 type (Person), intent(in) :: who
 call print_Date (who % dod) ; end subroutine print_DOD

subroutine print_Name (who)
 type (Person), intent(in) :: who
 print *, who % name ; end subroutine print_Name

subroutine print_Nationality (who)
 type (Person), intent(in) :: who
 print *, who % nationality ; end subroutine print_Nationality

subroutine print_Sex (who)
 type (Person), intent(in) :: who
 if (who % sex == 1) then ; print *, "male"
 else ; print *, "female" ; end if ; end subroutine print_Sex

subroutine set_DOB (who, m, d, y)
 type (Person), intent(inout) :: who
 integer, intent(in) :: m, d, y ! month, day, year
 who % dob = Date_ (m, d, y) ; end subroutine set_DOB

subroutine set_DOD(who, m, d, y)
 type (Person), intent(inout) :: who
 integer, intent(in) :: m, d, y ! month, day, year
 who % dod = Date_ (m, d, y) ; end subroutine set_DOD
end module class _Person

Figure 5: Definition of a Typical Person Class

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 9 of 23

include 'class_Date.f90'
include 'class_Person.f90' ! see previous figure
program main
 use class_Date ; use class_Person ! inherit class members
 type (Person) :: author, creator
 type (Date) :: b, d ! birth, death
 b = Date_(4,13,1743) ; d = Date_(7, 4,1826) ! OPTIONAL

! Method 1
! author = Person ("Thomas Jefferson", "USA", 1, b, d) ! iff private
 author = Person_ ("Thomas Jefferson", "USA", 1, b, d) ! constructor
 print *,"The author of the Declaration of Independence was ";
 call print_Name (author);
 print *,". He was born on "; call print_DOB (author);
 print *," and died on "; call print_DOD (author); print *,".";

 ! Method 2
 author = make_Person ("Thomas Jefferson", "USA") ! alternate
 call set_DOB (author, 4, 13, 1743) ! add DOB
 call set_DOD (author, 7, 4, 1826) ! add DOD
 print *,"The author of the Declaration of Independence was ";
 call print_Name (author)
 print *,". He was born on "; call print_DOB (author);
 print *," and died on "; call print_DOD (author); print *,".";

 ! Another Person
 creator = make_Person ("John Backus", "USA") ! alternate
 print *,"The creator of Fortran was "; call print_Name (creator);
 print *," who was born in "; call print_Nationality (creator);
 print *,".";
 end program main ! Running gives:
! The author of the Declaration of Independence was Thomas Jefferson.
! He was born on April 13, 1743 and died on July 4, 1826.
! The author of the Declaration of Independence was Thomas Jefferson.
! He was born on April 13, 1743 and died on July 4, 1826.
! The creator of Fortran was John Backus who was born in the USA.

Figure 6: Testing the Date and Person Classes

Next, we want to use the previous two classes to define a class_Student which adds
something else special to the general class_Person. The Student person will have
additional private components for an identification number, the expected date of
matriculation (DOM), the total course credit hours earned (credits), and the overall grade
point average (GPA). The type definition and selected public functionality are given if
Figure 7 on page 10 while a testing main program with sample output is illustrated in
Figure 8 on page 11. Since there are various ways to utilize the various constructors some
alternate source lines have been included as comments to indicate some of the
programmer’s options.

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 10 of 23

module class_Student ! filename class_Student.f90
 use class_Person ! inherits class_Date
 public :: Student, set_DOM, print_DOM
 type Student
 private
 type (Person) :: who ! name and sex
 character (len=9) :: id ! ssn digits
 type (Date) :: dom ! matriculation
 integer :: credits
 real :: gpa ! grade point average
 end type Student
 contains ! coupled functionality

 function get_person (s) result (p)
 type (Student), intent(in) :: s
 type (Person) :: p ! name and sex
 p = s % who ; end function get_person

 function make_Student (w, n, d, c, g) result (x)
! Optional Constructor for a Student type
 type (Person), intent(in) :: w ! who
 character (len=*), optional, intent(in) :: n ! ssn
 type (Date), optional, intent(in) :: d ! matriculation
 integer, optional, intent(in) :: c ! credits
 real, optional, intent(in) :: g ! grade point ave
 type (Student) :: x ! new student
 x = Student_(w, " ", Date_(1,1,1), 0, 0.) ! defaults
 if (present(n)) x % id = n ! optional values
 if (present(d)) x % dom = d
 if (present(c)) x % credits = c
 if (present(g)) x % gpa = g; end function make_Student

 subroutine print_DOM (who)
 type (Student), intent(in) :: who
 call print_Date(who%dom) ; end subroutine print_DOM

 subroutine print_GPA (x)
 type (Student), intent(in) :: x
 print *,"My name is "; call print_Name (x % who)
 print *,", and my G.P.A. is ", x % gpa, "."; end subroutine

 subroutine set_DOM (who, m, d, y)
 type (Student), intent(inout) :: who
 integer, intent(in) :: m, d, y
 who % dom = Date_(m, d, y) ; end subroutine set_DOM

 function Student_ (w, n, d, c, g) result (x)
 ! Public Constructor for a Student type
 type (Person), intent(in) :: w ! who
 character (len=*), intent(in) :: n ! ssn
 type (Date), intent(in) :: d ! matriculation
 integer, intent(in) :: c ! credits
 real, intent(in) :: g ! grade point ave
 type (Student) :: x ! new student
 x = Student (w, n, d, c, g) ; end function Student_

 end module class_Student

Figure 7: Defining a Typical Student Class

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 11 of 23

include 'class_Date.f90'
include 'class_Person.f90'
include 'class_Student.f90' ! see previous figure
program main ! create or correct a student
 use class_Student ! inherits class_Person, class_Date also
 type (Person) :: p ; type (Student) :: x

 ! Method 1
 p = make_Person ("Ann Jones","",0) ! optional person constructor
 call set_DOB (p, 5, 13, 1977) ! add birth to person data
 x = Student_(p, "219360061", Date_(8,29,1955), 9, 3.1) ! public
 call print_Name (p) ! list name
 print *, "Born :"; call print_DOB (p) ! list dob
 print *, "Sex :"; call print_Sex (p) ! list sex
 print *, "Matriculated:"; call print_DOM (x) ! list dom
 call print_GPA (x) ! list gpa

 ! Method 2
 x = make_Student (p, "219360061") ! optional student constructor
 call set_DOM (x, 8, 29, 1995) ! correct matriculation
 call print_Name (p) ! list name
 print *, "was born on :"; call print_DOB (p) ! list dob
 print *, "Matriculated:"; call print_DOM (x) ! list dom

 ! Method 3
 x = make_Student (make_Person("Ann Jones"),"219360061")! optional
 p = get_Person (x) ! get defaulted person data
 call set_DOM (x, 8, 29, 1995) ! add matriculation
 call set_DOB (p, 5, 13, 1977) ! add birth
 call print_Name (p) ! list name
 print *, "Matriculated:"; call print_DOM (x) ! list dom
 print *, "was born on :"; call print_DOB (p) ! list dob
end program main ! Running gives:
! Ann Jones
! Born : May 13, 1977
! Sex : female
! Matriculated: August 29, 1955
! My name is Ann Jones, and my G.P.A. is 3.0999999.
! Ann Jones was born on: May 13, 1977, Matriculated: August 29, 1995
! Ann Jones Matriculated: August 29, 1995, was born on: May 13, 1977

Figure 8: Testing the Student, Person, and Date Classes

3. Object Oriented Numerical Calculations
OOP is often used for numerical computation, especially when the standard storage mode
for arrays is not practical or efficient. Often one will find specialized storage modes like
linked lists (Akin, 1997; Barton, 1994; Hubbard, 1994), or tree structures used for
dynamic data structures. Here we should note that many matrix operators are intrinsic to
F90, so one is more likely to define a class_sparse_matrix than a class_matrix.
However, either class would allow us to encapsulate several matrix functions and
subroutines into a module that could be reused easily in other software. Here, we will
illustrate OOP applied to rational numbers and vectors and introduce the important topic
of operator overloading.

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 12 of 23

3.1 A Rational Number Class and Operator Overloading

To illustrate an OOP approach to simple numerical operations we will introduce a fairly
complete rational number class, called class_Rational. The defining module is given in
Figure 9 on page 14. The type components have been made private, but not the type
itself, so we can illustrate the intrinsic constructor, but extra functionality has been
provided to allow users to get either of the two components. The provided subprograms
shown in that figure are:

 add_Rational convert copy_Rational delete_Rational
 equal_integer gcd get_Denominator get_Numerator
 invert is_equal_to list make_Rational
 mult_Rational Rational reduce

Procedures with only one return argument are usually implemented as functions instead
of subroutines.

Note that we would form a new rational number, z, as the product of two other rational
numbers, x and y, by invoking the mult_Rational function,

 z = mult_Rational (x, y)

which returns z as its result. A natural tendency at this point would be to simply write this
as z = x * y. However, before we could do that we would have to have to tell the
operator, "*", how to act when provided with this new data type. This is known as
overloading an intrinsic operator. We had the foresight to do this when we set up the
module by declaring which of the "module procedures" were equivalent to this operator
symbol. Thus, from the interface operator (*) statement block the system now knows
that the left and right operands of the "*" symbol correspond to the first and second
arguments in the function mult_Rational. Here it is not necessary to overload the
assignment operator, "=", when both of its operands are of the same intrinsic or defined
type. However, to convert an integer to a rational we could, and have, defined an
overloaded assignment operator procedure. Here we have provided the procedure,
equal_Integer, which is automatically invoked when we write: type (Rational) y; y = 4.
That would be simpler than invoking the constructor called make_rational.

Before moving on note that the system does not yet know how to multiply an integer
times a rational number, or visa versa. To do that one would have to add more
functionality, such as a function, say int_mult_rn, and add it to the module procedure
list associated with the "*" operator. A typical main program which exercises most of the
rational number functionality is given in Figure 10 on page 15, along with typical
numerical output.

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 13 of 23

module class_Rational ! filename: class_Rational.f90
 ! public, everything but following private subprograms
 private :: gcd, reduce
 type Rational
 private ! numerator and denominator
 integer :: num, den ; end type Rational

! overloaded operators interfaces
 interface assignment (=)
 module procedure equal_Integer ; end interface
 interface operator (+) ! add unary versions & (-) later
 module procedure add_Rational ; end interface
 interface operator (*) ! add integer_mult_Rational, etc
 module procedure mult_Rational ; end interface
 interface operator (==)
 module procedure is_equal_to ; end interface
contains ! inherited operational functionality
function add_Rational (a, b) result (c) ! to overload +
 type (Rational), intent(in) :: a, b ! left + right
 type (Rational) :: c
 c % num = a % num*b % den + a % den*b % num
 c % den = a % den*b % den
 call reduce (c) ; end function add_Rational

function convert (name) result (value) ! rational to real
 type (Rational), intent(in) :: name
 real :: value ! decimal form
 value = float(name % num)/name % den ; end function convert

function copy_Rational (name) result (new)
 type (Rational), intent(in) :: name
 type (Rational) :: new
 new % num = name % num
 new % den = name % den ; end function copy_Rational

subroutine delete_Rational (name) ! deallocate allocated items
 type (Rational), intent(inout) :: name ! simply zero it here
 name = Rational (0, 1) ; end subroutine delete_Rational

subroutine equal_Integer (new, I) ! overload =, with integer
 type (Rational), intent(out) :: new ! left side of operator
 integer, intent(in) :: I ! right side of operator
 new % num = I ; new % den = 1 ; end subroutine equal_Integer

recursive function gcd (j, k) result (g) ! Greatest Common Divisor
 integer, intent(in) :: j, k ! numerator, denominator
 integer :: g
 if (k == 0) then ; g = j
 else ; g = gcd (k, modulo(j,k)) ! recursive call
 end if ; end function gcd

function get_Denominator (name) result (n) ! an access function
 type (Rational), intent(in) :: name
 integer :: n ! denominator
 n = name % den ; end function get_Denominator

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 14 of 23

function get_Numerator (name) result (n) ! an access function
 type (Rational), intent(in) :: name
 integer :: n ! numerator
 n = name % num ; end function get_Numerator

subroutine invert (name) ! rational to rational inversion
 type (Rational), intent(inout) :: name
 integer :: temp
 temp = name % num
 name % num = name % den
 name % den = temp ; end subroutine invert

function is_equal_to (a_given, b_given) result (t_f) ! for ==
 type (Rational), intent(in) :: a_given, b_given ! left == right
 type (Rational) :: a, b ! reduced copies
 logical :: t_f
 a = copy_Rational (a_given) ; b = copy_Rational (b_given)
 call reduce(a) ; call reduce(b) ! reduced to lowest terms
 t_f = (a%num == b%num) .and. (a%den == b%den) ; end function

subroutine list(name) ! as a pretty print fraction
 type (Rational), intent(in) :: name
 print *, name % num, "/", name % den ; end subroutine list

function make_Rational (numerator, denominator) result (name)
! Optional Constructor for a rational type
 integer, optional, intent(in) :: numerator, denominator
 type (Rational) :: name
 name = Rational(0, 1) ! set defaults
 if (present(numerator)) name % num = numerator
 if (present(denominator)) name % den = denominator
 if (name % den == 0) name % den = 1 ! now simplify
 call reduce (name) ; end function make_Rational

function mult_Rational (a, b) result (c) ! to overload *
 type (Rational), intent(in) :: a, b
 type (Rational) :: c
 c % num = a % num * b % num ; c % den = a % den * b % den
 call reduce (c) ; end function mult_Rational

function Rational_ (numerator, denominator) result (name)
! Public Constructor for a rational type
 integer, optional, intent(in) :: numerator, denominator
 type (Rational) :: name
 if (denominator == 0) then ; name = Rational (numerator, 1)
 else ; name = Rational (numerator, denominator) ; end if
end function Rational_

subroutine reduce (name) ! to simplest rational form
 type (Rational), intent(inout) :: name
 integer :: g ! greatest common divisor
 g = gcd (name % num, name % den)
 name % num = name % num/g
 name % den = name % den/g ; end subroutine reduce
end module class_Rational

Figure 9: A Fairly Complete Rational Number Class

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 15 of 23

! F90 Implementation of a Rational Class Constructors & Operators
include 'class_Rational.f90'
program main
 use class_Rational
 type (Rational) :: x, y, z

! x = Rational(22,7) ! intrinsic constructor iff public components
 x = Rational_(22,7) ! public constructor if private components

 write (*,'("public x = ")',advance='no'); call list(x)
 write (*,'("converted x = ", g9.4)') convert(x)
 call invert(x)
 write (*,'("inverted 1/x = ")',advance='no'); call list(x)
 x = make_Rational () ! default constructor
 write (*,'("made null x = ")',advance='no'); call list(x)
 y = 4 ! rational = integer overload
 write (*,'("integer y = ")',advance='no'); call list(y)
 z = make_Rational (22,7) ! manual constructor
 write (*,'("made full z = ")',advance='no'); call list(z)

! Test Accessors
 write (*,'("top of z = ", g4.0)') get_numerator(z)
 write (*,'("bottom of z = ", g4.0)') get_denominator(z)

! Misc. Function Tests
 write (*,'("making x = 100/360, ")',advance='no')
 x = make_Rational (100,360)
 write (*,'("reduced x = ")',advance='no'); call list(x)
 write (*,'("copying x to y gives ")',advance='no')
 y = copy_Rational (x)
 write (*,'("a new y = ")',advance='no'); call list(y)

! Test Overloaded Operators
 write (*,'("z * x gives ")',advance='no'); call list(z*x) ! times
 write (*,'("z + x gives ")',advance='no'); call list(z+x) ! add
 y = z ! overloaded assignment
 write (*,'("y = z gives y as ")',advance='no'); call list(y)
 write (*,'("logic y == x gives ")',advance='no'); print *, y==x
 write (*,'("logic y == z gives ")',advance='no'); print *, y==z

! Destruct
 call delete_Rational (y) ! actually only null it here
 write (*,'("deleting y gives y = ")',advance='no'); call list(y)
end program main ! Running gives:
! public x = 22 / 7 ! converted x = 3.143
! inverted 1/x = 7 / 22 ! made null x = 0 / 1
! integer y = 4 / 1 ! made full z = 22 / 7
! top of z = 22 ! bottom of z = 7
! making x = 100/360, reduced x = 5 / 18
! copying x to y gives a new y = 5 / 18
! z * x gives 55 / 63 ! z + x gives 431 / 126
! y = z gives y as 22 / 7 ! logic y == x gives F
! logic y == z gives T ! deleting y gives y = 0 / 1

Figure 10: Testing the Rational Number Class

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 16 of 23

3.2 A Numerical Vector Class

Vectors are commonly used in many computational areas of engineering and applied
mathematics. Thus, one might want to define a vector class that has the most commonly
used operations with vectors. Of course, that is not actually required in F90 since it, like
Matlab, has many intrinsic functions for operating on vectors and general arrays.
However, the concepts are commonly understood, so that vectors make a good
illustration of OOP for numerical applications. Also, the standard F90 features provide a
simple way to verify the accuracy of our vector class procedures. Therefore, we could
define a vector class, an array class that is actually a collection of vector classes, and then
test them with both standard F90 features and the new OOP functionality of the two
classes. The module class_Vector in Figure 11 on page 20 contains functions called

 add_Real add_Vector assign
copy_Vector dot_Vector is_equal_to
length make_Vector normalize_Vector
real_mult_Vector size_Vector subtract_Real

 subtract_Vector values vector_max_value
 vector_min_value vector_mult_real

and subroutines called

 delete_Vector equal_Real
 list read_Vector

where the names suggest their purpose. This OOP approach allows one to extend the
available intrinsic functions and add members like is_equal_to and normalize_Vector.
These subprograms are also employed to overload the standard operators (=, +, -, *, and
==) so that they work in a similar way for members of the vector class. The definitions of
the vector class has also introduced the use of pointer variables (actually reference
variables of C++) for allocating and deallocating dynamic memory for the vector
coefficients as needed. Like Java, but unlike C++, F90 automatically dereferences its
pointers. The availability of pointers allows the creation of storage methods like linked
lists, circular lists, and trees which are more efficient than arrays for some applications
(Akin, 1997). F90 also allows for the automatic allocation and deallocation of local
arrays. While we have not done so here the language allows new operators to be defined
to operate on members of the vector class.

The two components of the vector type are an integer that tells how many components
the vector has, and then those component values are stored in a real array. Here we
assume that the vectors are full and that any two vectors involved in a mathematical
operation have the same number of components. Also, we do not allow the vector to have
zero or negative lengths. The functionality presented here is easily extended to declare
operations on a sparse vector type which is not a standard feature of F90. The first
function defined in this class is add_Real, which will add a real number to all
components in a given vector. The second function, add_Vector, adds the components of
one vector to the corresponding components of another vector. Both were needed to
overload the "+" operator so that its two operands could either be real or vector class

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 17 of 23

entities. Note that the last executable statement in these functions utilizes the intrinsic
array subscript ranging with the new colon (:) operator, which is similar to the one in
Matlab®, or simply cite the array name to range over all of its elements. In an OO
language like C++, that line would have to be replaced by a formal loop structure block.
This intrinsic feature of F90 is used throughout the functionality of this illustrated vector
class. Having defined the type Vector, the compiler knows how to evaluate the
assignment, "=", of one vector to another. However, it would not have the information for
equating a single component vector to a real number. Thus, an overloaded assignment
procedure called equal_Real has been provided for that common special case. A program
to exercise those features of the vector class, along with the validity output as comments,
is given in Figure 12 on page 21. A partial extension to a matrix class is shown in Figure
13 on page 22.
module class_Vector

! filename: class_Vector.inc

! public, everything by default, but can specify any

 type Vector
 private
 integer :: size ! vector length
 real, pointer, dimension(:) :: data ! component values
 end type Vector

! Overload common operators
 interface operator (+) ! add others later
 module procedure add_Vector, add_Real_to_Vector ; end interface
 interface operator (-) ! add unary versions later
 module procedure subtract_Vector, subtract_Real ; end interface
 interface operator (*) ! overload *
 module procedure dot_Vector, real_mult_Vector, Vector_mult_real
 end interface
 interface assignment (=) ! overload =
 module procedure equal_Real ; end interface
 interface operator (==) ! overload ==
 module procedure is_equal_to ; end interface
contains ! functions & operators
function add_Real_to_Vector (v, r) result (new) ! overload +
 type (Vector), intent(in) :: v
 real, intent(in) :: r
 type (Vector) :: new ! new = v + r
 if (v%size < 1) stop "No sizes in add_Real_to_Vector"
 allocate (new%data(v%size)) ; new%size = v%size
 ! new%data = v%data + r ! as array operation, or use implied loop
 new%data(1:v%size) = v%data(1:v%size) + r ; end function

function add_Vector (a, b) result (new) ! vector + vector
 type (Vector), intent(in) :: a, b
 type (Vector) :: new ! new = a + b
 if (a%size /= b%size) stop "Sizes differ in add_Vector"
 allocate (new%data(a%size)) ; new%size = a%size
 new%data = a%data + b%data ; end function add_Vector
function assign (values) result (name) ! array to vector constructor

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 18 of 23

 real, intent(in) :: values(:) ! given rank 1 array
 integer :: length ! array size
 type (Vector) :: name ! Vector to create
 length = size(values); allocate (name%data(length))
 name % size = length ; name % data = values; end function assign

function copy_Vector (name) result (new)
 type (Vector), intent(in) :: name
 type (Vector) :: new
 allocate (new%data(name%size)) ; new%size = name%size
 new%data = name%data ; end function copy_Vector

subroutine delete_Vector (name) ! deallocate allocated items
 type (Vector), intent(inout) :: name
 integer :: ok ! check deallocate status
 deallocate (name%data, stat = ok)
 if (ok /= 0) stop "Vector not allocated in delete_Vector"
 name%size = 0 ; end subroutine delete_Vector

function dot_Vector (a, b) result (c) ! overload *
 type (Vector), intent(in) :: a, b
 real :: c
 if (a%size /= b%size) stop "Sizes differ in dot_Vector"
 c = dot_product (a%data, b%data) ; end function dot_Vector

subroutine equal_Real (new, R) ! overload =, real to vector
 type (Vector), intent(inout) :: new
 real, intent(in) :: R
 if (associated (new%data)) deallocate (new%data)
 allocate (new%data(1)); new%size = 1
 new%data = R ; end subroutine equal_Real

logical function is_equal_to (a, b) result (t_f) ! overload ==
 type (Vector), intent(in) :: a, b ! left & right of ==
 t_f = .false. ! initialize
 if (a%size /= b%size) return ! same size ?
 t_f = all (a%data == b%data) ! and all values match
end function is_equal_to

function length (name) result (n) ! accessor member
 type (Vector), intent(in) :: name
 integer :: n
 n = name % size ; end function length

subroutine list (name) ! accessor member
 type (Vector), intent(in) :: name
 print *,"[", name % data(1:name%size), "]"; end subroutine list

function make_Vector (len, values) result(v) ! Optional Constructor
 integer, optional, intent(in) :: len ! number of values
 real, optional, intent(in) :: values(:) ! given values
 type (Vector) :: v
 if (present (len)) then ! create vector data
 v%size = len ; allocate (v%data(len))
 if (present (values)) then ; v%data = values ! vector
 else ; v%data = 0.d0 ! null vector
 end if ! values present

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 19 of 23

 else ! scalar constant
 v%size = 1 ; allocate (v%data(1)) ! default
 if (present (values)) then ; v%data(1) = values(1) ! scalar
 else ; v%data(1) = 0.d0 ! null
 end if ! value present
 end if ! len present
end function make_Vector

function normalize_Vector (name) result (new)
 type (Vector), intent(in) :: name
 type (Vector) :: new
 real :: total, nil = epsilon(nil) ! tolerance
 allocate (new%data(name%size)) ; new%size = name%size
 total = sqrt (sum (name%data**2)) ! intrinsic functions
 if (total < nil) then ; new%data = 0.d0 ! avoid division by 0
 else ; new%data = name%data/total
 end if ; end function normalize_Vector

subroutine read_Vector (name) ! read array, assign
 type (Vector), intent(inout) :: name
 integer, parameter :: max = 999
 integer :: length
 read (*,'(i1)', advance = 'no') length
 if (length <= 0) stop "Invalid length in read_Vector"
 if (length >= max) stop "Maximum length in read_Vector"
 allocate (name % data(length)) ; name % size = length
 read *, name % data(1:length) ; end subroutine read_Vector

function real_mult_Vector (r, v) result (new) ! overload *
 real, intent(in) :: r
 type (Vector), intent(in) :: v
 type (Vector) :: new ! new = r * v
 if (v%size < 1) stop "Zero size in real_mult_Vector"
 allocate (new%data(v%size)) ; new%size = v%size
 new%data = r * v%data ; end function real_mult_Vector

function size_Vector (name) result (n) ! accessor member
 type (Vector), intent(in) :: name
 integer :: n
 n = name % size ; end function size_Vector

function subtract_Real (v, r) result (new) ! vector-real, overload -
 type (Vector), intent(in) :: v
 real, intent(in) :: r
 type (Vector) :: new ! new = v + r
 if (v%size < 1) stop "Zero length in subtract_Real"
 allocate (new%data(v%size)) ; new%size = v%size
 new%data = v%data - r ; end function subtract_Real

function subtract_Vector (a, b) result (new) ! overload -
 type (Vector), intent(in) :: a, b
 type (Vector) :: new
 if (a%size /= b%size) stop "Sizes differ in subtract_Vector"
 allocate (new%data(a%size)) ; new%size = a%size
 new%data = a%data - b%data ; end function subtract_Vector

function values (name) result (array) ! accessor member

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 20 of 23

 type (Vector), intent(in) :: name
 real :: array(name%size)
 array = name % data ; end function values

function Vector_ (length, values) result(name) ! Public constructor
 integer, intent(in) :: length ! array size
 real, target, intent(in) :: values(length) ! given array
 real, pointer :: pt_to_val(:) ! pointer to array
 type (Vector) :: name ! Vector to create
 integer :: get_m ! allocate flag
 allocate (pt_to_val (length), stat = get_m) ! allocate
 if (get_m /= 0) stop 'allocate error' ! check
 pt_to_val = values ! dereference values
 name = Vector(length, pt_to_val) ! intrinsic constructor
end function Vector_

function Vector_max_value (a) result (v) ! accessor member
 type (Vector), intent(in) :: a
 real :: v
 v = maxval (a%data(1:a%size)); end function Vector_max_value

function Vector_min_value (a) result (v) ! accessor member
 type (Vector), intent(in) :: a
 real :: v
 v = minval (a%data(1:a%size)) ; end function Vector_min_value

function Vector_mult_real (v, r) result (new) ! vector*real, overload *
 type (Vector), intent(in) :: v
 real, intent(in) :: r
 type (Vector) :: new ! new = v * r
 if (v%size < 1) stop "Zero size in Vector_mult_real"
 new = Real_mult_Vector (r, v) ; end function Vector_mult_real
end module class_Vector

Figure 11: A Typical Class of Vector Functionality

! Testing Vector Class Constructors & Operators
include 'class_Vector.f90' ! see previous figure
program check_vector_class
 use class_Vector
 type (Vector) :: x, y, z

! test optional constructors: assign, and copy
 x = make_Vector () ! single scalar zero
 write (*,'("made scalar x = ")', advance='no'); call list (x)
 call delete_Vector (x) ; y = make_Vector (4) ! 4 zero values
 write (*,'("made null y = ")', advance='no'); call list (y)
 z = make_Vector (4, (/11., 12., 13., 14./)) ! 4 non-zero values
 write (*,'("made full z = ")', advance='no'); call list (z)
 write (*,'("assign [31., 32., 33., 34.] to x")')
 x = assign((/31., 32., 33., 34./)) ! (4) non-zeros
 write (*,'("assigned x = ")', advance='no'); call list (x)
 x = Vector_(4, (/31., 32., 33., 34./)) ! 4 non-zero values
 write (*,'("public x = ")', advance='no'); call list (x)
 write (*,'("copy x to y =")', advance='no')

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 21 of 23

 y = copy_Vector (x) ; call list (y) ! copy

! test overloaded operators
 write (*,'("z * x gives ")', advance='no'); print *, z*x ! dot
 write (*,'("z + x gives ")', advance='no'); call list (z+x) ! add
 y = 25.6 ! real to vector
 write (*,'("y = 25.6 gives ")', advance='no'); call list (y)
 y = z ! equality
 write (*,'("y = z gives y as ")', advance='no'); call list (y)
 write (*,'("logic y == x gives ")', advance='no'); print *, y==x
 write (*,'("logic y == z gives ")', advance='no'); print *, y==z

! test destructor, accessors
 call delete_Vector (y) ! destructor
 write (*,'("deleting y gives y = ")', advance='no'); call list (y)
 print *, "size of x is ", length (x) ! accessor
 print *, "data in x are [", values (x), "]" ! accessor
 write (*,'("2. times x is ")', advance='no'); call list (2.0*x)
 write (*,'("x times 2. is ")', advance='no'); call list (x*2.0)
 call delete_Vector (x); call delete_Vector (z) ! clean up
end program check_vector_class
! Running gives the output: ! made scalar x = [0.]
! made null y = [0., 0., 0., 0.] ! made full z = [11., 12., 13., 14.]
! assign [31., 32., 33., 34.] to x ! assigned x = [31., 32., 33., 34.]
! public x = [31., 32., 33., 34.] ! copy x to y = [31., 32., 33., 34.]
! z * x gives 1630. ! z + x gives [42., 44., 46., 48.]
! y = 25.6 gives [25.6000004] ! y = z, y = [11., 12., 13., 14.]
! logic y == x gives F ! logic y == z gives T
! deleting y gives y = [] ! size of x is 4
! data in x : [31., 32., 33., 34.] ! 2. times x is [62., 64., 66., 68.]
! x times 2. is [62., 64., 66., 68.]

Figure 12: Manually Checking the Vector Class Functionality

module class_Matrix ! file: class_Matrix.f90
type Matrix
 private
 integer :: rows, columns ! matrix sizes
 real, pointer :: values(:,:) ! component values
end type Matrix ! Overload common operators

 interface operator (+)
 module procedure Add_Matrix, Add_Real_to_Matrix ; end interface
 . . .
contains ! constructors, destructors, functions & operators

! -- constructors & destructors --
function Matrix_ (rows, columns, values) result(M) ! Public constructor
 integer, intent(in) :: rows, columns ! array size
 real, target, intent(in) :: values(rows, columns) ! given array
 real, pointer :: pt_to_val(:, :) ! pointer to array
 type (Matrix) :: M ! Matrix to create
 pt_to_val => values ! point at array

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 22 of 23

 M = Matrix(rows, columns, pt_to_val) ! intrinsic
constructor
 active = active + 1 ! increment activity
end function Matrix_

. . .

function Add_Matrix (a, b) result (new) ! matrix + matrix, overload +
 type (Matrix), intent(in) :: a, b ! left and right of +
 type (Matrix) :: new ! new = a + b
 if (a%rows /= b%rows .or. a%columns /= b%columns) stop &
 "Error: Sizes differ in Add_Matrix"
 allocate (new%values(a%rows, a%columns))
 new%rows = a%rows ; new%columns = a%columns ! sizes
 new%values = a%values + b%values ! intrinsic array addition
end function Add_Matrix

Figure 13: Segments of a Typical Matrix Class

4. Conclusion
There are dozens of OOP languages. Persons involved in engineering computations need
to be aware that F90 can meet almost all of their needs for a OOP language. At the same
time it includes the F77 standard as a subset and thus allows efficient use of the many
millions of Fortran functions and subroutines developed in the past. The newer F95
standard is designed to make efficient use of super computers and massively parallel
machines. It includes most of the High Performance Fortran features that are in wide use.
Thus, efficient use of OOP on parallel machines is available through F95. None of the
OOP languages have all the features one might desire. For example, the useful concept of
a "template" which is standard in C++ is not in the F90 standard. Yet the author has
found that a few dozen lines of F90 code will define a preprocessor that allows templates
to be defined in F90 and expanded in line at compile time. The real challenge in OOP is
the actual OO analysis and OO design (Coad, 1991; Rumbaugh, 1991) that must be
completed before programming can begin, regardless of the language employed. For
example, several authors have described widely different approaches for defining classes
to be used in constructing OO finite element systems (e.g., Barton, 1994; Filho, 1991;
Machiels, 1997). These areas still merit study and will be important to the future of
engineering computations. Those programmers still employing F77 should try the OO
benefits of F90 and F95 as one approach for improving the efficiency of their
computations.

5. References
1. J. C. Adams, W.S. Brainerd, J.T. Martin, B.T. Smith and J.L. Wagener, Fortran 90
Handbook, McGraw Hill, 1992.

2. J. E. Akin, "A RP-Adaptive Scheme for the Finite Element Analysis of Linear Elliptic
Problems", Mathematics of Finite Elements and Applications: 1996, J. R. Whiteman
(Ed.), Academic Press, pp. 427-438, 1997.

Object Oriented Programming via Fortran 90

Copyright © 1999, 2000 J. E. Akin. All rights reserved. Page 23 of 23

3. J.J. Barton and L.R. Nackman, Scientific and Engineering C++, Addison Wesley,
1994.

4. P. Coad and E. Yourdon, Object Oriented Design, Prentice Hall, 1991.

5. Y. Dubois-P`elerin and T. Zimmermann, "Object-oriented finite element
programming: III. An efficient implementation in C++" Comp. Meth. Appl. Mech. Engr.,
Vol. 108, pp. 165-183, 1993.

6. Y. Dubois-P`elerin and P. Pegon, "Improving Modularity in Object-Oriented Finite
Element Programming," Communications in Numerical Methods in Engineering, Vol. 13,
pp. 193-198, 1997.

7. J. S. R. A. Filho and P. R. B. Devloo, "Object Oriented Programming in Scientific
Computations," Engineering Computations, Vol. 8, No. 1, pp. 81-87, 1991.

8. J. R. Hubbard, Programming with C++, McGraw Hill, 1994.

9. L. Machiels and M. O. Deville, "Fortran 90: On Entry to Object Oriented
Programming for the Solution of Partial Differential Equations," ACM Trans. Math.
Software, Vol. 23, No. 1, pp. 32-49, Mar. 1997.

10. W. H. Press, S. A. Teukolsky, W. T. Vettering and B. P. Flannery, Numerical Recipes
in Fortran 90, Cambridge Press, 1996.

11. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object Oriented
Modeling and Design, Prentice Hall, 1991.

Matlab is a registered trademark of The MathWorks, Inc.

	Abstract
	1. Introduction
	2. Encapsulation, Inheritance, and Polymorphism
	3. Object Oriented Numerical Calculations
	3.1 A Rational Number Class and Operator Overloading
	3.2 A Numerical Vector Class

	4. Conclusion
	5. References

		2000-04-02T17:23:41-0600
	Houston, Texas
	J. E. Akin, Ph.D., P.E.
	I am the author of this document

		2000-04-02T17:26:48-0600
	Houston, Texas
	J. E. Akin, Ph.D., P.E.
	I am the author of this document

		2000-04-06T05:09:34-0600
	Houston, Texas
	J. E. Akin, Ph.D., P.E.
	I am the author of this document

