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Numerical Integration on Quadrilaterals 
MECH 417, Rice University, J.E. Akin (revised 4/7/20) 

 

[This section is like the one for integrating over curved triangles.   The parametric space has just changed from 

a unit right triangle to a square in natural coordinates.  Thus, just the tabulated integration data and the 

interpolation functions change.] 

      To evaluate the geometric properties of a part, like the mass moment of inertia matrix, just scalar 

polynomials must be integrated.  For example, the mass moment of inertial about the y-axis is 

 

Iyy = ∫ ρ x2 dΩ
 

Ω

 

 

where dΩ is a physical differential region in 1-, 2-, or 3-D space, ρ is the corresponding mass density and x is 

the first spatial coordinate to a point in the curvilinear space, Ω.  However, in FEA systems the integrand 

involves matrices along with some input scalar property. 

      Numerical integration replaces the integral with a sum where the integrand, ρ x2, is evaluated at special 

tabulated points (quadrature points) and is multiplied by a special tabulated weight.  The special tabulations are 

given in mathematical handbooks and/or online. 

 

Iyy = enq
+ ∑ ρq xq 

2  wq

nq

q=1
 

 

where enq
is the error resulting from the summation.  If the integrand is a polynomial then the tabulated 

Gaussian quadrature rules are exact (enq
≡ 0) when the total degree of the integrand is exactly integrated by 1-

D rules in each of the two parametric directions.  For line elements with polynomials the rule is 𝑑𝑒𝑔 ≤
(2𝑛1 − 1).  However, for quadrilaterals (and brick elements) the rule is the product of the 1D edge rules along 

each of the two or three parametric directions, 𝑛𝑞 = 𝑛1
2 (or 𝑛𝑞 = 𝑛1

3).  

  

 
 

There are special rules that use fewer points for exact polynomial integrations than this product rule, but they 

are not covered here. 

      CAD and FEA systems use parametric geometry to model and simulate curvilinear parts.  In those 

formulations the physical integral must be mapped to the corresponding integral in the parametric space, ⊡.  

For example, the physical inertia integral changes to 

 

Iyy = ∫ ρ x2 dΩ
 

Ω

= ∫ ρ(⊡) x2(⊡) |J(⊡)|d ⊡
 

⊡
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where |J(⊡)| denotes the determinant of the geometric Jacobian matrix of the mapping from physical space Ω 

to the parametric space ⊡.   That Jacobian matrix generally varies over the parametric space and complicates 

the integrand, but that complication is more than offset by being able to automate the integration by using 

quadratures.  

      Quadrilateral and brick (hexahedral) elements usually use natural parametric coordinates which vary as 

−1 ≤ 𝑎, 𝑏 ≤ 1 to define their interpolation functions.  As shown in the next table the interpolation functions 

for the Serendipity family of quadrilateral elements, with equally spaced edge nodes, can be written in concise 

forms (where 𝑎𝑘 denotes the non-dimensional parametric coordinate of node k, etc.). 

 

 
 

 
(Edge) Quadratic quadrilateral interpolation functions (see Appendix 2) 
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      The original Gaussian quadrature data were tabulated in natural coordinates, and most of the literature uses 

this coordinate system.  Note that in these coordinates the sum of the tabulated weights always equals four for 

quadrilaterals, which is the non-dimensional area of the parent square where each side is of length two (as 

shown above).  The sum of the weights is eight for brick elements in natural coordinates. 

      Of course, these elements can also be interpolated in a unit coordinate system as the product of the two edge 

interpolations as sketched below: 

 
Here, the interpolation functions for the Lagrange bi-linear four-node quadrilateral will also be developed, in 

unit coordinates, by using the product of the linear one-dimensional functions. From Fig. 2.5-1 the first two 

nodes on the quadrilateral have the interpolations at s = 0 multiplied times the two r-interpolations, and so on:   

 

                           𝐻1(𝑟, 𝑠) = 𝐻1(𝑟)𝐻1(𝑠) = (1 − 𝑟)(1 − 𝑠) = 1 − 𝑟 − 𝑠 + 𝑟𝑠  

                             𝐻2(𝑟, 𝑠) = 𝐻2(𝑟)𝐻1(𝑠) = 𝑟(1 − 𝑠) = 𝑟 − 𝑟𝑠 

                           𝐻3(𝑟, 𝑠) = 𝐻2(𝑟)𝐻2(𝑠) = 𝑟𝑠       

                            𝐻4(𝑟, 𝑠) = 𝐻1(𝑟)𝐻2(𝑠) = (1 − 𝑟)𝑠 = 𝑠 − 𝑟𝑠, 

so   
       𝑯(𝑟, 𝑠) = [(1 − 𝑟 − 𝑠 + 𝑟𝑠)    (𝑟 − 𝑟𝑠)     (𝑟𝑠)     (𝑠 − 𝑟𝑠)]   (2.5-1) 

 

These are identical to those derived by a different approach in Fig. 2.4-2, and they satisfy the requirement that  

∑ 𝐻𝑘(𝑟, 𝑠) ≡ 1 
𝑘 , as expected.  In this coordinate system the measure of the non-dimensional space (and thus the 

sum of its numerical integration weights) is 1x1=1, not 4 required in natural coordinates. 

      As an example of numerical integration over a quadrilateral, assume that the physical region, Ω, is curved in 

the x-y space.  Then, the area inertia integral is 

 

Iyy = ∫ ρ x2 dA
 

A

= ∫ ρ(a, b) x2(a, b) |J(a, b)| da db = ∑ ρ(aq, bq)
nq

q=1

 

⊡

  x2(aq, bq) |J(aq, bq)| wq  

      To illustrate this process consider just consider calculating the area of a curved quadrilateral in the x-y plane 

as shown below, with 

A = ∫  dA
 

A

= ∫  dx dy
 

A

= ∫ ∫  |J(a, b)| da db
1

−1

1

−1

 = ∑ |J(aq, bq)| wq

nq

q=1
 

The eight x data points in 2-D space define an incomplete third degree polynomial (it is missing 𝑎3 and 𝑏3), as 

does the y-data.  Those data can be interpolated over the curved quadrilateral by using a Q8 with eight nodes:   
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x(r, s) = ∑ Hk(r, s)
8

k=1
 xk

e = [𝐇(r, s)]{𝐱}𝐞 

and likewise for the y-data.  Recall that the Jacobian matrix of the mapping from x,y to 𝑎, 𝑏 is 

 

[𝑱(𝑎, 𝑏)] = [
𝜕𝑥 𝜕𝑎⁄ 𝜕𝑦 𝜕𝑎⁄

𝜕𝑥 𝜕𝑏⁄ 𝜕𝑦 𝜕𝑏⁄
] 

is just a sub-set of the 3D case, and an extension of the 1D case 

 

and is almost always a variable in the parametric space.  The determinant is 

|𝑱𝒆(𝑎, 𝑏)| = (𝜕𝑥 𝜕𝑎⁄ )(𝜕𝑦 𝜕𝑏⁄ ) −  (𝜕𝑥 𝜕𝑏⁄ )(𝜕𝑦 𝜕𝑎⁄ ). 

Those parametric derivatives are obtained from the above interpolations as 

𝜕x(𝑎, 𝑏)

𝜕𝑎
= ∑

∂Hk(𝑎, 𝑏)

𝜕𝑎

8

k=1
 xk

e = [
𝜕𝐇(𝑎, 𝑏)

𝜕𝑎
 ] {𝐱}𝐞 

This means that the Jacobian matrix at a point in an element can be found numerically as the product of the 

input coordinates matrix and the matrix of the parametric derivatives evaluated at the point: 

[𝐉(aq, bq)] = [
𝜕𝑥 𝜕𝑎⁄ 𝜕𝑦 𝜕𝑎⁄

𝜕𝑥 𝜕𝑏⁄ 𝜕𝑦 𝜕𝑏⁄
]

𝑒

𝑞

= [
𝜕𝑯(aq, bq) 𝜕𝑟⁄

𝜕𝑯(aq, bq) 𝜕𝑠⁄
] [

𝑥1 𝑦1

𝑥2 𝑦2

𝑥3 𝑦3

]

𝑒

 

             ======================================================== 
 
and numerically computing the determinant of that matrix the area becomes 

 

A = ∑ |𝐉(aq, bq)| wq

nq

q=1
 

The actual implementation is shown below (in three segments) in the download script Area_Q4_or_Q8.m. 
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3 of 3 

Original question: 

 

      Note that in the quadrature point loop (segment 3) that the values of the interpolation functions, 𝑯(aq, bq), 

were also evaluated  but not used.  In finite element applications they are almost always needed in formulating 

element matrices and/or in post-processing the solution.  It is usually more efficient to store items evaluated 

during computing the element matrices rather than re-compute them in post-processing the solution.  In post-

processing it is usually important to know the physical (x, y) location of each quadrature point.  Using the 

element nodal coordinates a matrix dot produce gives those data 
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x(aq, bq) = ∑ Hk(aq, bq)
8

k=1
 xk

e = [𝐇(aq, bq)]{𝐱}e 

y(aq, bq) = ∑ Hk(aq, bq)
8

k=1
 yk

e = [𝐇(aq, bq)]{𝐲}e 

The original question was how to calculate the mass inertia term 

Iyy = ∑ ρq xq 
2  wq

nq

q=1
 

 

Assuming the mass per unit area is constant, say rho, the physical location would be obtained with 

   x_q = H * Coord      ;  % x physical point 

and the increment to the inertia term would be 

   I_yy = I_yy + rho * x_q^2 * Det_J * w  ; % increment inertia 

Of course, that calculation would increase the highest degree to be integrated and thereby increase the minimum 

value of the number of quadrature points required as an input argument.  

 

 

Appendix 1, Examples: 

 

Example 4.2-6 Given: A quadrilateral area in physical space is defined in ‘natural coordinate’ parametric space 

by the mapping            𝑥(𝑎, 𝑏) =  (−3 + 27 𝑎 − 27 𝑏 + 3 𝑎 𝑏)  

and                               𝑦 (𝑎, 𝑏) = (51 + 31 𝑎 + 19 𝑏 − 𝑎 𝑏) where −1 ≤ 𝑎, 𝑏 ≤  +1.  

 

Verify that the variable Jacobian matrix of the mapping is     

                                      𝐽(𝑎, 𝑏) = [
(27 + 3 𝑏) (31 − 𝑏)

(−27 + 3 𝑎) (19 − 𝑎)
], 

 

and determine its determinant.  

 

Solution: Calculating the partial derivatives with respect to a:  𝜕𝑥 𝜕𝑎⁄ = (0 + 27 − 0 + 3 𝑏)  and 𝜕𝑦 𝜕𝑎⁄ =
(0 + 31 + 0 − 𝑏). These are the terms in the first row of the Jacobian matrix. Repeating the process for 

derivatives with respect to b gives the cited matrix: 

   𝑱(𝑎, 𝑏) = [
𝜕𝑥 𝜕𝑎⁄ 𝜕𝑦 𝜕𝑎⁄

𝜕𝑥 𝜕𝑏⁄ 𝜕𝑦 𝜕𝑏⁄
] = [

(27 + 3 𝑏) (31 − 𝑏)

(−27 + 3 𝑎) (19 − 𝑎)
]. 

 

Thus, |𝐽(𝑎, 𝑏)| = (27 + 3 𝑏)(19 − 𝑎) − (31 − 𝑏)(−27 + 3 𝑎) = 1,350 − 120 𝑎 + 30 𝑏. The determinant is 

not constant, but it is positive for the given range of (a, b) values. Since the determinant is positive, |𝐽(𝑎, 𝑏)| > 

0, this mapping is called invertible. Valid finite element shapes should be invertible. 

 

Example 4.2-7 Given:  The natural coordinate square −1 ≤ 𝑎, 𝑏 ≤  +1 is mapped into a physical quadrilateral 

by 𝑥(𝑎, 𝑏) =  (−3 + 27 𝑎 − 27 𝑏 + 3 𝑎 𝑏) and 𝑦 (𝑎, 𝑏) = (51 + 31 𝑎 + 19 𝑏 − 𝑎 𝑏), in meters. Evaluate the 

mapping at the four parametric corners to find the physical coordinates of the corners of the quadrilateral. Use 

the mapping to determine the physical area of the quadrilateral.  
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Solution:  Directly substituting a variable b at 𝑎 = ±1 gives two sides connecting the physical coordinates of 

the vertices. Substituting a variable a at 𝑏 = ±1 completes the figure below:  
 

 

The area is given by the integral  𝐴 = ∫ 𝑑𝐴 = ∫ ∫  |𝐽(𝑎, 𝑏)| 𝑑𝑎 𝑑𝑏
1

−1

1

−1

 

𝐴
. The determinant for this area, with the 

units 𝑚2, was developed in Ex. 4.2-4. Substituting gives 

 

𝐴 = ∫ 𝑑𝐴 = ∫ ∫  |𝐽(𝑎, 𝑏)| 𝑑𝑎 𝑑𝑏
1

−1

1

−1

= 𝑚2 ∫ ∫  (1,350 − 120 𝑎 + 30 𝑏) 𝑑𝑎 𝑑𝑏
1

−1

1

−1

 

𝐴

= 5,400 𝑚2  

 

 

Appendix 2, 2D Interpolation Terms 

      Triangular elements always use ‘complete polynomials’ (defined below) whose degree is defined by the 

number of nodes on an edge.  For example, a quadratic T6 element has three nodes on each edge and thus is a 

complete 1D polynomial of degree 2 on the edge.  Its interior interpolation contains the addition product(s) 

needed to define a complete 2D polynomial (the red lines below); and nothing of higher degree. 

      Quadrilateral elements likewise have complete 1D polynomials on each edge. They are therefore compatible 

with a triangular element of the same 1D edge degree, even if they are curved.  Quadrilateral elements always 

have interior interpolations that are of a higher 2D degree than their 1D edge degree, and they are always 

incomplete polynomials.  There are two types of quadrilaterals, the original Lagrangian quads that always have 

interior nodes and the later Serendipity quads that avoid most interior nodes (due to a lack of computer power in 

1960’s).   

      Both types have higher degree polynomial terms on their interior than triangular elements with the same 

number of edge nodes.  Therefore, quadrilaterals give more accurate solutions than triangles. However, it is 

very much easier to automatically create triangular meshes than quadrilateral meshes.  Thus, use a large number 

of triangles. 

 

a b x (a, b) y (a, b) 

-1 -1 0 0 

-1 +1 48 64 

+1 +1 0 100 

+1 -1 -60 40 
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Lagrange quadrilateral interpolation polynomial terms 

 

 
Serendipity quadrilateral interpolation polynomial terms 
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Appendix 3: Convert Gauss’ 1D rule to 2D square rule 
 
function [r_q, s_q, w_q] = qp_rule_nat_quad (n_q) % =============== 

%     tables of quadrature point locations and weights for 

%  quadrilaterals interpolated in natural coords, -1 <= r,s <= 1 

 

% n_1 = number of 1-D points in each direction 

% n_q = 2-D number of quadrature points required, = n_1^2 

% r_q = all of first parametric quadrature coordinates 

% s_q = all of second parametric quadrature coordinates 

% w_q = weight at all quadrature points in n_p 

 

r_q = zeros (n_q, 1); s_q = zeros (n_q, 1) ; w_q = zeros (n_q, 1) ; 

 

if ( n_q == 1 )         ; % exact for constant or linear polynomial 

  r_q = [ 0 ] ; s_q = [ 0 ] ; w_q = [ 4 ] ;   % centroid point data 

 

% tensor products of 1-D rule 

elseif ( n_q == 4 | n_q == 9 | n_q == 16 | n_q == 25 ); % tabulated 

  n_1 = fix ( sqrt ( n_q ) )                   ; % size of 1-D rule 

  [r_1, w_1] = qp_rule_Gauss (n_1)            ; % get 1-D rule data 

  k = 0                            ; % initialize quad point number 

  for i = 1 : n_1               ; % loop over points in s-direction 

    for j = 1 : n_1             ; % loop over points in r-direction 

      k = k + 1               ; % point number in the quadrilateral 

      w_q (k) = w_1 (i) * w_1 (j)        ; % product of 1-D weights 

      r_q (k) = r_1 (j)           ; % r-coordinate in quadrilateral 

      s_q (k) = r_1 (i)           ; % s-coordinate in quadrilateral 

    end                            ; % for j point in quadrilateral 

  end                              ; % for i point in quadrilateral 

else                          ; % update the tables or elseif above 

  error ('\nERROR quad rule not tabulated for these points') 

end                              ; % if number of quadrature points 

% end qp_rule_nat_quad % ========================================== 

 


