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Linear Spring Models, J.E. Akin, Rice University 

      Modern structural analysis relies almost extensively on the finite element method.  The most popular 

integral formulation, based on the variational calculus of Euler, is the Principle of Minimum Total Potential 

Energy.   Basically, it states that the displacement field that satisfies the displacement boundary conditions and 

minimizes the total potential energy is the unique one that corresponds to the state of static equilibrium.  This 

implies that displacements are the primary unknowns.  The total potential energy, Π, is the strain energy, U, of 

the structure minus the mechanical work, W, done by the external forces.  From introductory mechanics, the 

mechanical work, W, done by a force is the scalar dot product of the force vector, F, and the displacement 

vector, u, at its point of application.   

      The well-known linear elastic spring will be reviewed to illustrate the concept of obtaining equilibrium 

equations from an energy formulation.  Consider a linear spring, of stiffness k, and length L, that has an applied 

force, F, at the free (right) end, and is restrained from displacement at the other (left) end, as in Figure 1.   

 

 
Figure 1 Classic (top) and general linear spring element 

The free end of the spring undergoes a displacement of Δ.  The work done by the single external force is  

W = ∆⃗⃗  ° F⃗ = ∆x Fx = u F.  The spring stores potential energy, or strain energy, due to its deformation (change 

in length).  That stored energy is given by U =  
1

2
 k ∆x

2
.  Therefore, the Total Potential Energy for the loaded 

spring with one end fixed is 

                                                     𝛱 = 
1

2
 𝑘 ∆𝑥

2 − ∆𝑥  𝐹𝑥 .                                                (1) 

 

The equation of equilibrium is obtained by minimizing this total potential energy with respect to the unknown 

displacement, ∆x.  That is, the partial derivative of the total potential energy with respect to each displacement 

is set to zero. That yields one equilibrium equation per unknown displacement. 

 

                                                                    
𝜕𝛱

𝜕∆𝑥
= 0 =  

2

2
 𝑘 ∆𝑥 − 𝐹𝑥 .                                                  (2) 

This simplifies to the common single scalar equation  

                                                                       k ∆𝑥 = F, or  ∆𝑥= 𝐹 𝑘⁄                                                   (3) 

which is the well-known equilibrium equation for a linear spring.   

      In most applications it is necessary to obtain the gradient of the solution in each element. For the simple 

linear spring the displacement gradient is just the change in length divided by the original length: 

 

  𝜀 ≡ 𝜕∆ 𝜕𝑥⁄ = (∆𝑥 − 0) 𝐿⁄ . 
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      This example was slightly simplified, since we started with the condition that the left end of the spring had 

no displacement (a Dirichlet boundary condition).  Next we will consider a spring where either end can be fixed 

or free to move.  To obtain the equilibrium condition now one more step is required. In addition to minimizing 

the total potential energy it is also necessary impose all of the given displacement restraints.  Now the spring 

model has two end displacements, say u1 and u2, and two associated axial external forces, say F1 and F2.  The 

net deformation of the bar is δ = u1 − u2.  The total vector of displacement components and the associated 

vector of external forces are denoted as 

 

                                                  ∆⃗⃗ =  {u} =  { 
u1
u2
 } and  F⃗ =  {F} =  { 

F1
F2
 },                                     (4) 

 

respectively.  The mechanical work done on the spring is  W = {u}T {F} =  u1F1 + u2F2. Then the spring's 

strain energy is now 

 

                         U =
1

2
𝑘(𝑢2 − 𝑢1)

2 =
1

2
(𝑢2 − 𝑢1)𝑘(𝑢2 − 𝑢1) =

1

2
𝑘(u1u1 − u1u2 − u2u1 + u2u2). 

The scalar energy can be written as a triple matrix product 

 

                                               U =
1

2
[u1 u2]  [

   k −k
−k    k

] {
u1
u2
} =  

1

2
 {𝐮}𝐓 [𝐤] {𝐮}                           (5) 

where the “spring stiffness matrix” is found to be 

                                                                           [𝐤] = k [ 
   1 −1
−1    1

 ].                                               (6) 

The total potential energy, Π, becomes  Π =  
1

2
 {𝐮}𝐓 [𝐤] {𝐮} −  {𝐮}𝐓{𝐅}  or                    

                                                 Π =  
1

2
{ 
u1
u2
 }
T

 k [ 
   1 −1
−1    1

 ]  { 
u1
u2
 } −  { 

u1
u2
 }
T

 { 
F1
F2
 } .                     (7) 

Note that each term has the units of energy, i.e. force times length.  The matrix equations of equilibrium will 

come from the minimization of the above total potential energy with respect to each and every displacement 

component, as well as from satisfying all displacement restraints. The minimization requires that the partial 

derivative of all the displacements vanish: 

                                                         
∂Π

∂{u}
= {0} , or  

∂Π

∂uj
= 0j, 1 ≤ j ≤ n.                                (8) 

      That represents only the first stage system of algebraic equations of equilibrium for the elastic system: 

 

                                                           k [
    1 −1
 −1    1

 ]  { 
u1 
u2
} =  { 

F1
F2
 } .                                       (9) 

 

However, the square stiffness matrix has a zero determinant and therefore cannot be inverted.  These two 

symmetric equations do not yet reflect the presence of any boundary condition on the displacements which are 

required to define a unique solution and/or to eliminate the axial rigid body motion (RBM).   In other words, the 

full system must be modified to impose the known displacement boundary condition(s) before the unknown 

displacements can be computed. 



Page 3 of 10 
 

      In order to enforce the displacement boundary conditions (Dirichlet conditions) on this small matrix system 

note that the matrix can be partitioned into even smaller matrices associated with the known (k) and unknown 

(u) displacements as: 

 

                                                                           [
𝐒𝐤𝐤 𝐒𝐤𝐮
𝐒𝐮𝐤 𝐒𝐮𝐮

] {
𝐮𝐤
𝐮𝐮 
} = {

𝐫𝐤
𝐜𝐮
}                                                        (10) 

where                                       𝐒𝐤𝐤 = [𝑘],    𝐒𝐤𝐮 = [−𝑘],  𝐮𝐤 = {u1} = {𝑢𝑔𝑖𝑣𝑒𝑛},  𝐫𝐤 = {R} 

                                                      𝐒𝐮𝐤 = [−𝑘],  𝐒𝐮𝐮 = [𝑘],    𝐮𝐮 = {u2},                       𝐜𝐮 = {F},   
                                                        
 and both u2 and R are the unknowns.  Only the lower row(s) are independent equations for the displacements, 

𝐮𝐮. Once they are computed, then the top row(s) are the independent equations to compute the reactions, 𝐫𝐤, at 

the displacement boundary conditions. The displacements, 𝐮𝐮, which satisfy both equilibrium and the imposed 

displacements, 𝐮𝐤, are computed from the bottom partition: 

 

                                                                             𝐮𝐮 = 𝐒𝐮𝐮
−𝟏(𝐜𝐮 − 𝐒𝐮𝐤𝐮𝐤)                                                    (11) 

Next the reactions can be found, if desired: 

                                                                                         𝐒𝐤𝐤𝐮𝐤 + 𝐒𝐤𝐮𝐮𝐮 = 𝐫𝐤.                                                         (12) 

This process works on arrays of any size. 

    For example, consider the classic spring with which this study began and assume that the left node has a 

known displacement (𝑢1 = 𝑢𝑔𝑖𝑣𝑒𝑛) and the right end has the known force, 𝑓2 = 𝐹.  The unknowns are the right 

displacement, 𝑢2, and the left end reaction force, say 𝑓1 = 𝑅.  The now unique analytic equilibrium relation is 

partitioned between the known displacements (with unknown reactions) and the independent unknown 

displacements being subjected to known forces: 

 

                                                                 𝑘 [ 
  1 −1
−1    1

 ] { 
𝑢𝑔𝑖𝑣𝑒𝑛
𝑢2

 } = { 
𝑅
𝐹
 }.                                     (13) 

 

There are still two unknowns, R and 𝑢2, related to two known quantities, F and 𝑢𝑔𝑖𝑣𝑒𝑛.  This matrix form has 

the very desirable property of being symmetric.  In theory, the matrices could be rearranged to solve for R and 

𝑢2 simultaneously but that would destroy the important symmetry property.  Instead, a two-step process is used: 

first solve the symmetric sub-set of equations involving the independent unknown displacements, and then after 

all displacements are known the equations for the reactions can be solved (but they don’t have to be solved). 

       Here, the independent displacement sub-set is found from the second row:  

 

                                                                         [𝑘]{𝑢2} = {𝐹} − [−𝑘]{𝑢𝑔𝑖𝑣𝑒𝑛} 

where the known displacement effects have been moved to the right hand side. Multiplying both sides by 

the inverse matrix [1 𝑘]⁄  gives the solution 

                                                            {𝑢2} = [𝑘]−1({𝐹} + [𝑘]{𝑢𝑔𝑖𝑣𝑒𝑛}) = {𝐹/𝑘} + {𝑢𝑔𝑖𝑣𝑒𝑛}.                              (14) 

This is the same solution as the common form when {𝑢𝑔𝑖𝑣𝑒𝑛} = 0: 

                                                                              {𝑢2} = {𝐹/𝑘}.   
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      Now the system reaction force necessary to maintain {𝑢𝑔𝑖𝑣𝑒𝑛} can be obtained from the first row of the 

matrix system: 

𝑘[1 −1  ] { 
u1 
u2
} = {𝑅} 

                                        𝑘[ 1 ∗ 𝑢𝑔𝑖𝑣𝑒𝑛 −1 ∗ (𝑢𝑔𝑖𝑣𝑒𝑛 + 𝐹 𝑘⁄ ) ] = {−𝐹} = {𝑅}                            (15) 

Thus, the reaction force is equal and opposite to the applied load:  R = −F, as expected.  For this form of the 

linear spring the displacement gradient again is just the change in length divided by the original length:  

                                                                 𝜀 ≡ 𝜕𝑢 𝜕𝑥⁄ = ∆𝑢 ∆𝐿 =⁄ (u2 − u1) 𝐿⁄ .    

     Next, a system of linear springs, shown in Figure 2, will be analyzed.  Clearly there are a total of five 

displacements, or degrees of freedom, of which only three are independent. The five system displacements and 

the five external forces are    

 

                                         ∆= [𝑢1 𝑢2 𝑢3 𝑢4 𝑢5]  and 𝑭𝑻 = [𝑅1 𝑅2 0 0 𝑃],  
 

respectively, where P is a known external load and 𝑅1and 𝑅2 are unknown external reactions, and nodes 3 and 4 

have no external loads.  The system stiffness matrix, 𝐾, will be 5 x 5 in size and is initially zero. 

 

 
Figure 2 A mesh of six springs with rigid links 

.   

      A system of springs is described by a ‘connection list’ which gives the first and second node connected to 

the spring: 

   Spring  Stiffness Length  Node 1  Node 2 

      1     𝑘1     𝐿1     1     3 

      2     𝑘2     𝐿2     3     4 

      3     𝑘3     𝐿3     3     5 

      4     𝑘4     𝐿4     3     5 

      5     𝑘5     𝐿5     5     4 

   6     𝑘6     𝐿6     4     2 

 

The stiffness matrix of the j-th spring is 

𝒌𝒆 = [
   𝑘𝑗 −𝑘𝑗
−𝑘𝑗    𝑘𝑗

] 

 

and its four components will be directly scattered (added) to the rows and columns of the 5 by 5 system stiffness 

matrix, 𝑲, to which the j-th spring is connected.  Begin forming the system stiffness matrix K by allocating it 

and setting the matrix to zero before looping over all of the springs in the system.  Scatter in the first element 

having node connections 1 and 3 by adding its four terms only into those rows and columns.  For example, 

𝑘𝑒(1, 1) is added to 𝐾(1, 1), and 𝑘𝑒(1, 2) is added to 𝐾(1, 3): 
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         𝑲 = 

[
 
 
 
 

−

 𝑘1
0
𝑘1
0
0

0
0
0
0
0

−𝑘1
0
   𝑘1
0
0

0
0
0
0
0

0
0
0
0
0]
 
 
 
 

, add spring 2 at 3 and 4: 𝑲 = 

[
 
 
 
 

−

 𝑘1
0
𝑘1
0
0

0
0
0
0
0

   −𝑘1
      0
(𝑘1 +
    −𝑘2
      0

𝑘2) −

0
0
𝑘2
𝑘2
0

0
0
0
0
0]
 
 
 
 

,  

add spring 3 at nodes 3 and 5:          𝑲 = 

[
 
 
 
 
 𝑘1
0
−𝑘1
0
0

0
0
0
0
0

        −𝑘1
            0
(𝑘1 +
        −𝑘2
        −𝑘3

𝑘2 + 𝑘3) −

0
0
𝑘2
𝑘2
0

0
0
−𝑘3
0
𝑘3 ]

 
 
 
 

,  

add spring 4 at nodes 3 and 4: 𝑲 = 

[
 
 
 
 
 𝑘1
0
−𝑘1
0
0

0
0
0
0
0

−𝑘1
 0

(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)
  −𝑘2

       (−𝑘3 − 𝑘4)

−

0
0
𝑘2
𝑘2
0

0
0

(−𝑘3 − 𝑘4)
0

(𝑘3 + 𝑘4) ]
 
 
 
 

,  

add spring 5 at nodes 5 and 4 so 𝑘𝑒(1, 1) is added to 𝐾(5, 5), and 𝑘𝑒(2, 2) is added to 𝐾(4, 4): 

                                          𝑲 = 

[
 
 
 
 
 𝑘1
0
−𝑘1
0
0

0
0
0
0
0

−𝑘1
 0

(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4)
  −𝑘2

       (−𝑘3 − 𝑘4)

0
0
−𝑘2

(𝑘2 + 𝑘5)
−𝑘5

0
0

(−𝑘3 − 𝑘4)
−𝑘5

(𝑘3 + 𝑘4 + 𝑘5)]
 
 
 
 

,  

and add spring 6 at nodes 4 and 2 to give the final assembled partitioned system stiffness matrix: 

                               𝑲 = 

[
 
 
 
 
 
 𝑘1     0 ⋮
 0     𝑘6 ⋮
⋯ ⋯ ⋯

    
−𝑘1                 0                   0
0                 −𝑘6                   0
⋯                   ⋯                    ⋯

−𝑘1  0 ⋮
  0 −𝑘6 ⋮
  0  0 ⋮

(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4) −𝑘2 (−𝑘3 − 𝑘4)
−𝑘2 (𝑘2 + 𝑘5 + 𝑘6) −𝑘5

     (−𝑘3 − 𝑘4) −𝑘5 (𝑘3 + 𝑘4 + 𝑘5)]
 
 
 
 
 

.      (16) 

      Note the general rules that the system stiffness matrix is symmetric and its diagonal element on each row 

(corresponding to a node) has as many sums as elements connected to that node. Also, the diagonal terms are 

always positive and the off diagonal terms are often negative.  This means that the assembled system has 

another important mathematical property: it is ‘diagonally dominant’.  The combinations of these matrix 

properties yield algorithms that can efficiently solve for hundreds of thousands of displacements. 

      The final (singular) system matrix equilibrium equations are partitioned as 𝑲𝒖 = 𝑭 

 

               

[
 
 
 
 
 
 𝑘1     0 ⋮
 0     𝑘6 ⋮
⋯ ⋯ ⋯

    
−𝑘1                 0                   0
0                 −𝑘6                   0
⋯                   ⋯                    ⋯

−𝑘1  0 ⋮
  0 −𝑘6 ⋮
  0  0 ⋮

(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4) −𝑘2 (−𝑘3 − 𝑘4)
−𝑘2 (𝑘2 + 𝑘5 + 𝑘6) −𝑘5

     (−𝑘3 − 𝑘4) −𝑘5 (𝑘3 + 𝑘4 + 𝑘5)]
 
 
 
 
 

{
 
 

 
 
𝑢1
𝑢2
⋯
𝑢3
𝑢4
𝑢5}
 
 

 
 

=

{
 
 

 
 
𝑅1
𝑅2
⋯
0
0
𝑃 }
 
 

 
 

       (17) 

      Here rows 1 and 2 are not independent equations for displacements since 𝑢1and 𝑢2 are to be specified as 

boundary conditions. Those equations are just optional equations for finding the reaction forces needed to 
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enforce the specified displacements at the two ends of the spring assembly.  Only the last three rows are 

independent equations for the system displacements.  Also, the first two columns of those rows are stiffnesses 

multiplied by known displacements so those products must be carried to the right hand side (RHS) of known 

values.  The system started with five degrees of freedom, but applying two displacement boundary conditions 

left only three independent degrees of freedom.  Applying sufficient boundary conditions always results in a 

non-singular stiffness matrix partition to find the independent displacements. The active 3 by 3 independent 

equations of equilibrium, 𝑲∗𝒖∗ = 𝑭∗, are             

              [

(𝑘1 + 𝑘2 + 𝑘3 + 𝑘4) −𝑘2 (−𝑘3 − 𝑘4)
−𝑘2 (𝑘2 + 𝑘5 + 𝑘6) −𝑘5

     (−𝑘3 − 𝑘4) −𝑘5 (𝑘3 + 𝑘4 + 𝑘5)
] {

𝑢3
𝑢4
𝑢5
} = {

0
0
𝑃
} − 𝑢1 {

−𝑘1
0
0
} − 𝑢2 {

0
−𝑘6
0
}   (18) 

and they can be solved once the known end displacements, 𝑢1and 𝑢2, are specified to make the results unique.  

Note that this general approach allows for non-zero displacements as the end boundary conditions.  

      Using the vector subscript notations of Matlab and Fortran the independent matrices are 

 

                                  𝑲∗ = 𝑲(3: 5, 3: 5) = 𝐒𝐮𝐮,   𝑢
∗ = 𝒖(3: 5) = 𝐮𝐮,   𝑭

∗ = 𝑭(3: 5) = 𝐜𝐮  
or 

                                             𝑲∗ = 𝑲(𝒇𝒓𝒆𝒆, 𝒇𝒓𝒆𝒆), 𝑢∗ = 𝒖(𝒇𝒓𝒆𝒆), 𝑭∗ = 𝑭(𝒇𝒓𝒆𝒆) 
 

where the vector subscript array is 𝒇𝒓𝒆𝒆 = [3  4  5].  The latter form is used later since it is a more powerful 

programming approach because it does not require the independent displacement numbers to be sequential. 

      To simplify this system assume that all six springs have the same stiffness, k. Then the above system 

becomes 

                                              𝑘 [

(4) −1 (−2)
−1 (3) −1
(−2) −1 (3)

] {

𝑢3
𝑢4
𝑢5
} = {

0
0
𝑃
} − 𝑢1 {

−𝑘
  0
  0
} − 𝑢2 {

  0
−𝑘
  0
}                         (19) 

 

Now assign numerical values of  𝑘 = 120 𝑘𝑁/𝑚 , 𝑃 = 20 𝑘𝑁, and 𝑢1 = 𝑢2 = 0 𝑚. Then 

  

                                               [
   480 −120 −240
−120    360 −120
−240 −120    360

] {

𝑢3
𝑢4
𝑢5
} = {

0
0
20
} − {

0
0
0
} − {

0
0
0
} = {

0
0
20
} 

and solving for the independent displacements using the Matlab command 𝒖∗ = 𝑲∗\𝑭∗ gives 

𝑢∗ = {

𝑢3
𝑢4
𝑢5
} = {

0.08974

0.07692

0.14103

}  𝑚 

      Now that all of the displacements, 𝒖, are known the optional first two rows of the original 5 by 5 system can 

be used to recover the two system end reaction forces.  For the current numerical values the reactions are 

 

                             [
120 0 −120 0      0
   0 120    0 −120 0

] 𝑘𝑁/𝑚

{
 
 

 
 0

0
0.08974

0.07692

0.14103}
 
 

 
 

𝑚 = {
−10.7692

−9.2307
} 𝑘𝑁 = {

𝑅1
𝑅2
}. 
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Those two system reaction forces are shown in Figure 3 along with the external applied force. Checking for 

equilibrium using Newton’s third law shows that the sum of the external axial forces is indeed zero. 

 

 
Figure 3 System external load and end reaction forces (kN) 

 

      At this point there is usually a loop over all of the elements where their end displacements are gathered to 

find the solution gradient and optionally to find the element nodal forces. For each spring the displacement 

gradient again is just the change in length divided by the original length: 𝜀 ≡ 𝜕𝑢 𝜕𝑥⁄ .  From the element 

connection list the first spring is connected to nodes 1 and 3. Those connections can be represented as the 

entries into a vector subscript array 𝒍𝒊𝒔𝒕 =  [1      3].  The first spring end displacements are a sub-set of the 

system displacements, 𝜹 ⊂ 𝒖.   Here the two ‘gathered’ spring end displacements on the first spring are 

 

{𝜹} = {𝒖(𝒍𝒊𝒔𝒕)} = {
𝒖(1)
𝒖(3)

} = {
0

0.08974
}𝑚 

 

From other sources, like Figure 7, the length of the first spring is known to be 𝐿1 = 2 𝑚.  Thus, the solution 

gradient for the first element is 

 

𝜀 ≡
𝜕𝑢

𝜕𝑥
=

𝑢(3)−𝑢(1)

𝐿1
=

0.08974 𝑚−0 𝑚

2 𝑚
= 0.04487 𝑚 𝑚⁄ . 

  

A spring network is one of the rare cases where the solution gradient is not an important item, so the remaining 

gradients will not be given in detail.  In the vast majority of applications the solution gradient in each element is 

of vital importance and is always calculated.  Conversely, since springs are structural members it is often 

important to determine the individual spring end forces, typically called the element reactions. Most non-

structural applications do not bother to recover the individual element reactions. 

    From Figure 3 the forces in springs 1 and 6 are obvious from Newton’s third law, but the finite element 

analysis gives them in a systematic way by requiring that each element be in equilibrium: [𝒌]{𝜹} = {𝒓}.  As 

shown above, the first spring is connected to nodes 1 and 3 and its end displacements were gathered above.  

Substituting the data for the first element into the single spring matrix equilibrium equations [𝒌]1{𝜹}1 = {𝒓}1 

gives the reaction set as 

                                           120 𝑘𝑁/𝑚 [
  1 −1
−1    1

] {
0

0.08974
}𝑚 = {

−10.769
   10.769

} 𝑘𝑁 = {
𝑟1
𝑟2
} 

 

for the first spring. Note that the sign of the second reaction determines if the spring is in tension (+) or in 

compression (-).  For spring 2 the node connections are  𝒍𝒊𝒔𝒕 =  [3      4] and its reactions are 

 

                                           120 𝑘𝑁/𝑚 [
  1 −1
−1    1

] {
0.08974
0.07692

}𝑚 = {
   1.5384
−1.5384

} 𝑘𝑁 = {
𝑟1
𝑟2
} 
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which shows that it is compression.  Likewise, for springs 3 through 6 their second node reactions are 6.1538, 

6.1538, -7.6923, and -9.2308 kN, respectively. Figure 4 shows the free body diagrams of internal nodes 3 and 5 

to verify that they are also in equilibrium via Newton’s law.  The reader should try drawing the equilibrium 

forces at internal node 4. 

 

 
Figure 4 Equilibrium forces (𝑘𝑁) at internal nodes 3 and 5 

 

      The nodes in this network mesh would have axial coordinates even if they were not required.  They could be 

used to establish the length of each spring for plotting the mesh. In most applications the length of each element 

is an important piece of data that appears in the ‘stiffness’. 

      It so happens that there are several field of engineering where this same mesh and matrix equations 

represent other types of equilibrium, and the terms have different units.  Such applications include elastic bars, 

steady DC electrical circuits, heat conduction, torsion of circular shafts, laminar pipe flow through a network, 

etc. Below the interpretations of some of these alternate forms are listed. 

 

    Study   K (units)   u (units)            F (units)              R (units)  

       Linear   Stiffness per unit Displacement   External       Reaction  

     Spring   Length (N/m) (m)    force (N)       force (N) 

 

    Axial   Axial stiffness Displacement   External        Reaction 

    Bar    k=𝐸 𝐴 𝐿⁄  (N/m) (m)    force (N)        force (N) 

 

    Heat    Axial conductivity Temperature   External heat       Reaction heat 

    Conduction   k=𝜅 𝐴 𝐿⁄  (𝑊 ℃⁄ ) (℃)    flow (W)        flow (W) 

 

    Torsional   Torsion stiffness Twist angle   External         Reaction  

    Shaft   k=𝐺 𝐽 𝐿⁄  (N-m) (radians)   torque (N-m)         torque (N-m) 

 

     Electric   Inverse resistance Voltage   External current   Reaction 

     DC Circuit   k=1/R (amp/V) (V)    source (Amp)       current (Amp) 

 

    As an example of non-zero boundary conditions let the prior spring mesh represent a DC current electrical 

network.  Assign node 1 to have a value of 100 Volts and node 2 to be ground at 0 Volts, and let 𝑃 = 20 𝑎𝑚𝑝be 

an external current source.  Let each wire have a resistance of only 1/120 Ohm. Then k = 120 1/Ω and the only 

initial numerical change in the prior equations is the voltage at node 1, 𝑉1 = 100.  Then Eq. 19 becomes 

 

                                            𝑘 [

(4) −1 (−2)
−1 (3) −1
(−2) −1 (3)

] {
𝑉3
𝑉4
𝑉5

} = {
0
0
𝑃
} − 𝑉1 {

−𝑘
  0
  0
} − 𝑉2 {

  0
−𝑘
  0
}                         (19’) 

 

with the new numerical resultant source values of 
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[
   480 −120 −240
−120    360 −120
−240 −120    360

] {
𝑉3
𝑉4
𝑉5

} = {
0
0
20
} − 100 {

−120
0
0

} − 0 {
0

−120
0

} = {
1.2𝑒4
0
20

} 

and solving for the independent voltages using the Matlab command 𝒖∗ = 𝑲∗\𝑭∗ gives 

𝒖∗ = {
𝑉3
𝑉4
𝑉5

} = {
61.6282
38.5385
53.9872

}  𝑉𝑜𝑙𝑡𝑠 

      Now that all of the voltages, 𝒖, are known the optional first two rows of the original 5 by 5 system can be 

used to recover the two system end reaction currents.  For the current numerical values the reaction currents are 

 

                       [
120 0 −120 0      0
   0 120    0 −120 0

] 1/Ω 

{
 
 

 
 100

0
61.6282

38.5385

53.9872}
 
 

 
 

𝑉𝑜𝑙𝑡𝑠 = 1𝑒3 {
   4.6046
−4.60462

}𝐴𝑚𝑝𝑠 = {
𝑅1
𝑅2
} 

 

Looping over all of the wires where their end voltages are gathered to find the element end currents. A current 

entering the first node of a wire is positive (+). The first spring is connected to nodes 1 and 3. Those 

connections are represented by the vector subscript array 𝒍𝒊𝒔𝒕 =  [1      3].  The wire voltages are a sub-set of 

the system voltages, 𝜹 ⊂ ∆.   Here the two ‘gathered’ end voltages are 

 

{𝜹} = {∆(𝒍𝒊𝒔𝒕)} = {
∆(1)
∆(3)

} = {
100

61.6282
}𝑉𝑜𝑙𝑡𝑠 

 

and the element equilibrium requirement [𝒌]{𝜹} = {𝒓} gives  

 

                                 120 1/Ω [
  1 −1
−1    1

] {
100

61.6282
}𝑉𝑜𝑙𝑡𝑠 = 1𝑒3 {

   4.6046
−4.6046

}𝐴𝑚𝑝𝑠 = {
𝑟1
𝑟2
} 

 

for the first wire. Note that the current enters that wire from the 100 V boundary condition.  For wire 2 the node 

connections are  𝒍𝒊𝒔𝒕 =  [3      4] and its reactions are 

 

                                     120 1/Ω [
  1 −1
−1    1

] {
61.6282
38.5385

}𝑉 = {
   2.7708
−2.7708

}𝐴𝑚𝑝𝑠 = {
𝑟1
𝑟2
} 

 

which shows its current enters at node 3 and exits at node 4.  Likewise, for wires 3 through 6 their first node 

reactions are 916.9231, 916.9231, 1.8538e3, and 4.6246e3 Amp, respectively. Figure 5 shows Kirchhoff’s nodal 

current law for internal nodes 3 and 5 to verify that they are also in equilibrium.  The reader should try drawing 

Kirchhoff’s law at internal node 4. The network nodal voltages can be sketched using the nodal coordinates that 

did not enter into the solution process, in this example, as shown in Figure 6. 

 

 
Figure 5 Kirchhoff’s nodal current law (1𝑒3 Amp) at internal nodes 3 and 5 
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Figure 7 Voltages in the DC circuit 

 


