

Introduction to ANSYS Mechanical

Realize Your Product Promise®

ANSYS Chapter Overview

In this chapter controlling meshing operations is described.

Topics:

- **A.** Global Meshing Controls
- **B.** Local Meshing Controls
- **C.** Meshing Troubleshooting
- **D.** Virtual Topology
- **E.** Direct Modeling
- F. Mesh quality Criteria
- G. Workshop 4.1 Mesh Control

H. Appendix

ANSYS Meshing in Mechanical

The nodes and elements representing the geometry model make up the mesh:

- A "default" mesh is automatically generated during a solution.
- It is generally recommended that additional controls be added to the default mesh before solving.
- A finer mesh produces more precise answers but also increases CPU time and memory requirements.

Physics Based Meshing allows the user to specify the metrics used in measuring element quality to be based on the kind of analysis being done.

Physics preferences are:

- Mechanical
- Electromagnetics
- CFD
- Explicit

Different analysis types define acceptable or favorable element shapes differently. For this course we limit the discussion to Mechanical.

🖓 Mesh		
Details of "Mesh		
Display		
Display Style	Body Color	
Defaults		
Physics Preferer	nce Mechanical	
Relevance	0	
Sizing		
Inflation		
Patch Conform	Patch Conforming Options	
🗄 Patch Indepen	dent Options	
Advanced		
Defeaturing		
+ Statistics		

• Relevance is the most basic global size control and is set in the "Defaults" area of the mesh details.

Outline

• Relevance is set between -100 and +100 (zero = default).

Sizing Control:

6

• These settings assume the "Use Advanced Size Function" is set to "Off".

- Details of "Mesh"
 9

 Display
 0

 Defaults
 0

 Physics Preference
 Mechanical

 Relevance
 100

 Sizing
 0

 Use Advanced Siz... Off
 0

 Relevance Center
 Coarse

 Element Size
 Default

 Initial Size Seed
 Active Assembly

 Smoothing
 Medium
- Relevance Center: sets the mid point of the "Relevance" slider control.
- Element Size: defines the maximum element size used for the entire model.
- For most static structural applications the default values for the remaining global controls are usually adequate.

Advanced Size Functions provide additional control over the global mesh sizing and are activated in the mesh details.

- While many of these controls are beyond the scope of an introductory course we'll explain some of the advanced size controls here. As stated earlier linear static analysis types usually do not share the same meshing demands as more advanced analysis types (e.g. nonlinear, transient thermal, etc.).
- Three advanced size functions can be employed: proximity, curvature and fixed (proximity and curvature can be combined).

	Off
	On: Proximity and Curvature
	On: Curvature
2	On: Proximity
	On: Fixed

Use Advanced Size Function	On: Proximity and Curvature	
Relevance Contor	Coarse	
Initial Size Seed	Active Assembly	
Smoothing	Medium	
Transition	Fast	
Span Angle Center	Coarse	
Curvature Normal Angle	Default (70.3950 °)	
Proximity Accuracy	0.5	
Num Cells Across Gap	Default (3)	
Min Size	Default (6.8252e-002 mm)	
Proximity Min Size	Default (6.8252e-002 mm)	
Max Face Size	Default (6.82520 mm)	
Max Size	Default (13.650 mm)	
Growth Rate	Default (1.850)	
Minimum Edge Length	4.0 mm	

The "Fixed" size function provides minimum and maximum element size controls.

"Curvature" as the name implies, is driven by the curvature encountered in the geometry. For models dominated by lots of curved features this control provides a way to refine the mesh over much of the model without using local controls.

For models composed of mostly straight features the control will have a lesser impact.

Sizing	
Use Advanced Size Function	On: Curvature
Relevance Center	Coarse
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Curvature Normal Angle	Default (70.3950 °)
🗌 Min Size	Default (5.8756e-002 mm)
🗌 Max Face Size	5.0 mm
🗌 Max Size	Default (11.7510 mm)
🗆 Growth Rate	Default (1.850)
Minimum Edge Length	1.250 mm

Curvature = 20 deg.

Curvature = 75 deg.

Proximity provides a means to control the mesh density in regions of the model where features are located closely together. In cases where the geometry contains lots of detail this can be a quick way to refine the mesh in all areas without applying numerous local controls.

As mentioned earlier proximity and curvature can be combined. The choice of control is dictated by the geometry being meshed.

Sizina	
Use Advanced Size Function	On: Proximity
Relevance Center	Coarse
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Num Cells Across Gap	Default (5)
Proximity Size Function Sources	Faces and Edges
Proximity Min Size	Default (8.4169e-002 mm)
Max Face Size	Default (8.41690 mm)
Max Size	Default (16.8340 mm)
Growth Rate	Default (1.50)
Minimum Edge Length	1.06650 mm

Num Cells = 4

Num Cells = 12

Shape Checking:

10

- Standard Mechanical linear stress, modal and thermal analyses.
- Aggressive Mechanical large deformations and material nonlinearities.

Element Midside Nodes:

© 2015 ANSYS, Inc.

- Program Controlled (default), Dropped or Kept (see below).
- Number of Retries: if poor quality elements are detected the mesher will retry using a finer mesh.

D	etails of "Mesh"	4	
+	Display		
+	Defaults		
+	Sizing		
+	Inflation		
+	Patch Conforming Options		
+	Patch Independent Options		
Ξ	Advanced		
	Number of CPUs for Parallel P	Program Controlled	
	Shape Checking	Standard Mechanical	
	Element Midside Nodes	Program Controlled	
	Straight Sided Elements	No	
	Number of Retries	0	
	Extra Retries For Assembly	Yes	
	Rigid Body Behavior	Dimensionally Reduced	
	Mesh Morphing	Disabled	
+	Defeaturing		

Mesh Morphing: when enabled allows updated geometry to use a morphed mesh rather than remeshing (saves time). Topology must remain the same and large geometry changes cannot be morphed.

Local Mesh Controls can be applied to either a Geometry Selection or a Named Selection. These are available only when the mesh branch is highlighted. Available controls include :

- Method Control
- Sizing Control
- Contact Sizing Control
- Refinement Control
- Mapped Face Meshing
- Match Control
- Pinch Control
- Inflation Control

🔍 Mesh Control 🔻
🕸 Method
🐁 Mesh Group
🔍 Sizing
🙀 Contact Sizing
🛦 Refinement
Face Meshing
Face Meshing Match Control
 Face Meshing Match Control Pinch
 Face Meshing Match Control Pinch Inflation
 Face Meshing Match Control Pinch Inflation Sharp Angle

Method Control : Provides the user with options as to how bodies are meshed:

Automatic (default):

Body will be swept if possible. Otherwise, the "Patch Conforming • mesher under "Tetrahedrons" is used.

Continued . . .

i boures	🔍 Mesh Control 🔻
	ô Method 🐁 Mesh Group
ing"	 Image: Sizing Image: Contact Sizing Image: Amage: Ama
	 Face Meshing Match Control Pinch Inflation Sharp Angle
	-
tails of "Automatic Meth	od" - Method
Scope	1.0 00 000
Scoping Method	Geometry Selection
Geometry	1 Body
Definition	
Suppressed	No
Method	Automatic
Element Midside Nodes	Use Global Setting

Detail ESC Sco Ge

ANSYS Meshing Methods

- Meshing Methods available for 3D bodies
 - Automatic
 - Tetrahedrons
 - Patch Conforming
 - Patch Independent
 - MultiZone
 - Mainly hexahedral elements
 - Hex dominant
 - Sweep
- Meshing Methods available for 2D bodies
 - Automatic Method (Quad Dominant)
 - Triangles
 - Uniform Quad/Tri
 - Uniform Quad

Tetrahedrons Method:

- All Tetrahedra mesh is generated (not usually requested for mechanical applications).
- Can use Patch Conforming or Patch Independent Meshing algorithms.

Patch Conforming

Underlying Geometry

Ξ	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Body	
Ξ	Definition		
	Suppressed	No	
	Method	Tetrahedrons	
	Algorithm	Patch Conforming	
	Element Midside Nodes	Patch Conferming Patch Independent	

ANSYS License	Availability
DesignSpace	x
Professional	x
Structural	x
Mechanical/Multiphysics	x

14 © 2015 ANSYS, Inc. February 27, 2015

Hex Dominant Method : Creates a free hex dominant mesh:

- Recommended for meshing bodies with large interior volumes.
- Not recommended for thin or highly complex shapes.
- Useful for meshing bodies that cannot be swept.

Scope	
Scoping Method	Geometry Selection
Geometry	1 Body
Definition	
Suppressed	No
Method	Hex Dominant
Element Midside Nodes	Use Global Settir ig
Free Face Mesh Type	Quad/Tri
Control Messages	No

ANSYS License	Availability
DesignSpace	
Professional	х
Structural	х
Mechanical/Multiphysics	х

Solid Model with Hex dominant mesh (approximate percentages): Tetrahedrons – 443 (9.8%) Hexahedron – 2801(62.5%) Wedge – 124 (2.7%) Pyramid – 1107 (24.7%)

Sweep Method (hex and possibly wedge shapes):

- Source/Target Selection: Manually select the start/end faces for sweeping or allow the mesher to choose.
- Can include size controls and/or biasing along sweep.

February 27, 2015

16

© 2015 ANSYS, Inc.

Details of "Sweep Metho	a" - Method				
Scoping Method	Geometry Selection				
Geometry	1 Body				
Definition	Definition				
Suppressed	No				
Active	Ves				
Method	Sweep				
Element Midside Node	Element Midside Nodes Use Global Setting				
Src/Trg Selection	Manual Source and Target				
Source	1 Face				
Target	1 Face				
Free Face Mesh Type	All Quad				
Туре	Number of Divisions				
Sweep Num Divs	Default				
Sweep Bias Type	No Bias				
Element Option	Solid				

Note: the geometry shown here has 6 different possible sweep directions.

ANSYS MultiZone Meshing

- Based on blocking approach used in ANSYS ICEM CFD Hexa
- Automatically decomposes geometry
- Uses structured and unstructured blocks
- Can have multiple source and target faces
- Depends on settings of Free Mesh Type
- Structured blocks are meshed with Hexa or Hexa/Prism
- If Free Mesh Type is set to other than Not Allowed then unstructured blocks are meshed with Tetra, Hexa Dominant or Hex Core based on the selected method

Program Controlled inflation

Access

- RMB on Mesh
- Insert → Method
- Definition → Method → MultiZone

MultiZone Mesh

D	Details of "MultiZone" - Method					
-	Scope					
	Scoping Method	Geometry Selection				
	Geometry	1 Body				
-	Definition					
	Suppressed	No				
	Method	MultiZone				
	Mapped Mesh Type	Hexa				
	Surface Mesh Method	Program Controlled				
	Free Mesh Type	Not Allowed				
	Element Midside Nodes	Use Global Setting				
	Src/Trg Selection	Automatic				
	Source Scoping Method	Program Controlled				
	Source	Program Controlled				
	Sweep Size Behavior	Sweep Element Size				
	Sweep Element Size	Default				
-	Advanced					
	Preserve Boundaries	Protected				
	Mesh Based Defeaturing	Off				
	Minimum Edge Length	1.0665 mm				
	Write ICEM CFD Files	No				

- Control:
- Src/Trg Selection Automatic

Geometry for MultiZone Meshing

Details of "MultiZone" - Method				
Ξ	Scope			
	Scoping Method	Geometry Selection		
	Geometry 1 Body			
	Definition			
	Suppressed	No MultiZone		
	Method			
	Mapped Mesh Type	Hexa/Prism		
	Free Mesh Type	Not Allowed		
	Element Midside Nodes	Use Global Setting		
	Src/Trg Selection	Automatic		
	Source	Program Controlled		

Details View of MultiZone Method

MultiZone Mesh

- Control:
- Src/Trg Selection Manual

Geometry for MultiZone Meshing

De	Details of "MultiZone" - Method					
Ξ	Scope					
	Scoping Method	Geometry Selection				
	Geometry 1 Body					
Ξ	Definition					
	Suppressed	No				
	Method	MultiZone				
	Mapped Mesh Type	Hexa/Prism				
	Free Mesh Type	Not Allowed				
	Element Midside Nodes	Use Global Setting				
	Src/Trg Selection	Manual Source				
	Source	4 Faces				
		1				

Details View of MultiZone Method

Cut section of MultiZone Mesh

MultiZone Meshing

- Control:
- Free (unstructured) Mesh Type

MultiZone Meshing

- Control:
- Local Defeaturing Tolerance

Can be also controlled with global defeaturing tolerance

Defeaturing					
Pinch Tolerance	Default (31.50 mm)				
Generate Pinch on Refresh	Yes				
Automatic Mesh Based Defeaturing	On				
Defeaturing Tolerance	35. mm				

Surface Body Methods:

- Quadrilateral Dominant (default): attempts to mesh with as many quad elements as possible, fills in with triangles.
- Triangles: all triangular shapes are used.

• MultiZone Quad/Tri: Depending on settings, quad or tri shapes are created using a patch independent algorithm.

Note, each method contains a unique set of options in the details allowing additional configuration.

Sizing (3 configurations):

- Element Size (element edge length) OR Number of Divisions.
- Sphere of Influence (see next page)
 - "Soft" control may be overridden by other mesh controls. "Hard" may not.

Entity	Element Size	# of Elem. Division	Sphere of Influence
Bodies	х		х
Faces	х		х
Edges	x	х	х
Vertices			х

Sphere of Influence:

- Center is located using a coordinate system.
- All scoped entities within the sphere are affected by size settings.

Only the portion of the scoped face or body within the sphere is included in the scope of the mesh control.

Contact Sizing: generates similar-sized elements on contact faces for face/face or face/edge contact regions.

- "Element Size" or "Relevance" can be specified.
 - Can drag and drop a Contact Region object onto the "Mesh" branch as a shortcut.

De	Details of "Contact Sizing" - Contact Sizing 🛛 📮					
Ξ	Scope					
	Contact Region	Bonded - PumpHousing To I				
	Definition					
	Suppressed	No				
	Туре	Element Size 📃 💌				
12	Element Size Relevance					

Element Refinement:

• An initial mesh is created using the global and local size settings, then elements are divided at the scoped locations (up to 3 times).

Note: the refinement method generally offers less control or predictability over the final mesh since an initial mesh is split. This splitting process may adversely affect other meshing controls as well.

Mapped Face Meshing: generates structured meshes on surfaces:

Mapped quad or tri mesh also available for surface bodies.

See next slide for advanced options . . .

27 © 2015 ANSYS, Inc. February 27, 2015

For some geometry mapping will fail if an obvious pattern is not recognized. By specifying side, corner or end vertices a mapped face can be achieved. See next page for additional examples.

Scope	
Scoping Method	Geometry Selection
Geometry	1 Face
Definition	A. 1997. 1997. 1997. 1997.
Suppressed	No
Constrain Bounda	iry No
Advanced	0010111
Specified Sides	2 Vertices
Specified Corners	INO Selection
Specified Ends	4 Vertices

By setting side and end vertices the mapped mesh succeeds resulting in a uniform sweep.

Inflation Control: useful for adding layers of elements along specific boundaries.

Note: Inflation is more often used in CFD and EMAG applications but may be useful for capturing stress concentrations etc. in structural applications.

Pinch: allows the removal of small features by "pinching" out small edges and vertices.

- Master: geometry that retains the original geometry profile.
- Slave: geometry that changes to move toward the master. •
- Can be automatic (mesh branch details) or local (add Pinch branch).

🔍 Mesh Control 🔻

Mesh Group

Contact Sizing

A Refinement

Face Meshing

Method

🔍 Sizing

ANSYS C. Meshing Troubleshooting

Mesh Metric (requested in the "statistics" section):

• Select individual bars in the graph to view the elements graphically.

D	etails of "Mesh"		д
Ŧ	Display		
÷	Defaults		
Ŧ	Sizing		
÷	Inflation		
÷	Patch Conforming Options		
Ŧ	Patch Independent Options		
Ŧ	Advanced		
÷	Defeaturing		
	Statistics		
	Nodes	21883	
	Elements	11512	
	Mesh Metric	None	-
		None	
		Element Quality	
		Aspect Ratio	=
		Jacobian Ratio	
		Warping Factor	
		Parallel Deviation	~

Note: each mesh metric is described in detail in the "Meshing User's Guide".

ANSYS ... Meshing Troubleshooting

If the mesher is not able to generate a mesh an error message will be returned:

- Double click the message field in the status bar to open the messages window.
- Double click individual messages to show the error in a separate window.

Meccad					ANSYS Workbench - Error
Error	Text The mesh generation A mesh could po	ation was not successful. t be generated using the r	current meshing ontions an	t settings.	A mesh could not be generated using the current and settings. Hint: The problem geometry areas highlighted. Switching to wireframe mode may ma
		2 Messages	No Selection		visible.
				C+ T+ 0	
i pos icall	sible Me v displav	chanical car the problem	n m	Go To Ob Show Pro	blematic Geometry

graphically display the problem regions (RMB in the message window). Using a wireframe view will make finding these areas easier.

meshing options ight have been se them more

ANSYS ... Meshing Troubleshooting

The mesher also provides visual cues to identify obsolete and/or failed meshes. As shown in the figures below, failed meshes are shaded in maroon and obsolete meshes are colored yellow.

ANSYS G. Workshop 4.1 – Mesh creation

- Workshop 4.1 Mesh Creation
- Goal:
 - Use the various mesh controls to create your mesh.

ANSYS D. Virtual Topology

Virtual topology is a feature that can aid you in reducing the number of elements in the model, simplifying small features out of the model, and simplifying load abstraction. "Virtual Topology" branch is added below the "Model".

Virtual Topology 👔 Merge Cells	Split Edge at +	Split Edge	Split Face at Vertices	🚸 Hard Vertex at +	$\leftarrow \rightarrow$	Edit	X Delete
--------------------------------	-----------------	------------	------------------------	--------------------	--------------------------	------	----------

- For meshing certain CAD models you may want to group faces and/or edges together allowing you to form virtual cells in order to reduce or improve the elements.
- You can split a face to create two virtual faces, or split an edge to create two virtual edges for improved meshing.
- Virtual Cells can be created automatically.

Several Examples Follow . . .

Outline for "bracket2"

In this example one edge of this multibody part has a size control assigned which causes irregularities in the overall mesh.

Shown in the upper right, 3 edges are "virtually" split to accommodate improved elements shapes.

Surface Model Example:

ANSYS . . . Virtual Topology

Model 😭 Geometry 👻 👔 Virtual Topology

Symmetry Symmetry

ns 🛛 🍌 Coordinate Systems

ms 🔰 🐻 Solution Combination

"Virtual Topology" branch is added below the "Model" branch:

- Individual virtual entities do not appear in the tree. Instead, a statistics section in the details lists virtual entities.
- Virtual Cells can be created manually:
 - Select the entities to be included in the virtual cell.
 - Choose "Merge Cells" in the context menu (or RMB > Insert > Virtual Cell)
- Virtual Cells can be created automatically:
 - Low, Medium, High: Indicates how aggressively virtual topology will be searched for.
 - Edges Only: Searches for adjacent edges to be combined.
 - Custom: users have control on specific options

38

Ξ	Definition					
	Method	Automatic				
	Behavior	Low				
-	Advanced	Low				
	Generate on Update	Medium				
	Simplify Faces	High				
	Merge Face Edges	Edges Only				
	Lock Position of Dependent Edge Splits	Custom				

In some instances it may be desirable to modify topology to allow a specific operation (meshing, load, support...).

Split face at vertices

Split Face at Vertices

• Split Edge

🕇 Split Edge at + 🔊 Split Edge

• Add a hard vertex

Hard Vertex at +

Virtual entities can be reviewed, edited or deleted from the context toolbar (highlight Virtual Topology branch):

- Use the arrow keys to cycle through next/previous virtual entities.
- The virtual entity is highlighted graphically and the status bar (bottom of graphics window) indicates the current selection.
- The Edit icon allows access to an editor window where modifications to the virtual entity definition can be made.
- Use "Delete" to remove unwanted virtual entities.

	Propercies
irtual S	plit Edg
General	
Geometry	2 Edge
Suppressed	No

ANSYS . . . Virtual Topology

Keep in mind that the topology can change!

• Example: a chamfer is added to the top surface in this virtual cell. The interior lines are not recognized anymore.

ANSYS E. Direct Meshing

Local meshing

Bodies can be replaced/meshed/remeshed individually Subsequent bodies will use the attached face mesh The meshing results will depend on the meshing order RMB on the body(ies) and generate the mesh locally

	Automated meshing	Hexas		Meshing first the pipe then the block	Hexas		Meshing first the block then the pipe	Wedges
_			M	eshed with defau	lt meshing setti	ings		
Statistics			statistics		E	Statistics		
	Nodes	8282		Nodes	24810		Nodes	13897
	Elements	34527		Elements	80178		Elements	60932
	Mesh Metric	Orthogonal Quality		Mesh Metric	Orthogonal Quality		Mesh Metric	Orthogonal Quality
	Min	0.280416425480607		Min	0.172748547853107		Min	0.336740641439225
	Max 📃	0.998788494222392		Max	0.999836842472065		Max 🗌	0.999369993571416
	Average	0.85833002242294		Average	0.869178740711722		Average	0.866831224319874
	Standard Deviation	8.53178108109779E-02		Standard Deviation	0.093626215921133		Standard Deviation	8.45868210177912E-02

ANSYS F. Mesh Quality Criteria

You can check mesh quality using Mesh Metrics

Remember : specific criterias for each physic

Details of "Mesh"		무			
Defaults					
+ Sizing					
Inflation					
Patch Conforming Options					
Patch Independent Options	Patch Independent Options				
+ Advanced	Advanced				
Defeaturing	Defeaturing				
 Statistics 	Statistics				
Nodes	45213				
Elements	26935				
Mesh Metric	None	-			
	None	A			
	Element Quality Aspect Ratio Jacobian Ratio Warping Eactor	Ш			
	Parallel Deviation	-			

ANSYS ... Mesh Quality Criteria

Users can use display style option in details of mesh. This option able to display mesh in color by quality metrics

 Mesh

 Element Quality

 0.99989 Max

 0.9106

 0.82131

 0.73203

 0.64274

 0.55346

 0.46477

 0.37488

 0.2856

 0.49631 Min

	⊕…,∕ጭ Connections ⊟…,∕ጭ Mesh ↓,∕௸ Body Sizing		Ŧ
D	etails of "Mesh"		д
-	Display		
	Display Style	Element Quality	-
+	Defaults	Body Color	
+	Sizing	Shell Thickness	
+	Inflation	Element Quality	Ξ
+	Patch Conforming Options	Aspect Ratio	
+	Patch Independent Options	Jacobian Ratio	
+	Advanced	Warping Factor	-
+	Defeaturing	[
+	Statistics		

ANSYS ... Mesh Quality Criteria

Example of mesh metric : Element Quality :

This metric is based on the ratio of the volume to the edge length for a given element

Note : more information on other mesh metrics are in appendix

ANSYS G. Workshop 4.2 – Mesh Control

- Workshop 4.2 Mesh Control
- Goal:
 - Use the various mesh controls to enhance the mesh for the model.

H. APPENDIX

- Model Assembly
- Other Mesh Quality Criteria

47 © 2015 ANSYS, Inc. February 27, 2015

ANSYS MODEL ASSEMBLY

Geometry is not only the starting point of a Workbench based structural simulation.

Multiple finite element models can be assembled and leverage all Mechanical functionalities, including contact detection.

ANSYS ... MODEL ASSEMBLY

You can import mesh data (solids and shells) from CDB* file into Workbench using the External Model system and also scale, rotate or translate parts.

Contact detection will happen as if you are working with geometry data.

* .cdb is a file of model and database information which contains model data in terms of ANSYS input commands

Multiple WB systems can also be combined. Geometry Mesh and Named Selections are retrieved.

ANSYS Other Mesh Quality Criteria

Aspect Ratio : Lengthening of element

Jacobian Ratio :

Warping Ratio :

0	0.1	1	ø
Perfect			Bad

approximately 0.2

approximately 0.4

0 Perfect	0.2	0.4	Bad	ø

Parallel Deviation :

ANSYS Other Mesh Quality Criteria

Maximum Corner Deviation :

Skewness

Orthogonal Quality :

