

Introduction to ANSYS Mechanical

Realize Your Product Promise®

ANSYS Chapter Overview

In this chapter, performing linear static structural analyses in Mechanical will be covered:

- A. Basics of Linear Static Analysis
- **B.** Geometry
- C. Material Properties
- **D.** Contact
- E. Analysis Settings
- F. Loads
- G. Supports
- H. Load and Support Display
- I. Contact vs Supports
- J. Solving Models
- K. Workshop 7.1, Pump Assembly With Contact
- L. Results and Postprocessing
- M. Linear vs Non Linear
- N. Workshop 7.2, Using Beam Connections
- **O.** Appendix

2

© 2015 ANSYS, Inc. February 27, 2015

ANSYS A. Basics of Linear Static Analysis

The schematic setup for a linear static structural analysis is shown here.

ANSYS . . . Basics of Linear Static Analysis

For a linear static structural analysis, the global displacement vector {x} is solved for in the matrix equation below:

$[K]{x} = {F}$

Assumptions made for linear static structural analysis are:

- [K] , which is the global stiffness matrix, is constant
 - Linear elastic material behavior is assumed
 - Small deflection theory is used
- {F}, which is the global load vector, is statically applied
 - No time-varying forces are considered
 - No damping effects

It is important to remember these assumptions related to *linear static* analysis. *Nonlinear static* and *dynamic* analyses are covered in other training courses.

4 © 2015 ANSYS, Inc. February 27, 2015

ANSYS B. Geometry

In structural analyses, all types of bodies supported by Mechanical may be used.

For *surface bodies*, thickness must be supplied in the "Details" view of the "Geometry" branch.

The cross-section and orientation of *line bodies* are defined within DesignModeler and are imported into Mechanical automatically.

- Mechanical allows a part's stiffness behavior to be defined as rigid/flexible.
 - A rigid body is not meshed with traditional finite elements. Rather it is represented using a single mass element and is thus very efficient in terms of solution times.
 - Parts in an assembly that are included only to transfer loads can be designated as rigid to reduce solution times and model sizes.

A Point Mass can be added to a model's Geometry branch to simulate parts of the structure not explicitly modeled:

• Point mass is affected by "Acceleration," "Standard Earth Gravity," and "Rotational Velocity". No other loads affect a point mass.

Scope		
Scoping Method	Geometry Selection	
Applied By	Remote Attachment	-
Geometry	Direct Attachment	
Coordinate System	Remote Attachment	
🗌 X Coordinate	1.5e-002 m	
Y Coordinate	1.5e-002 m	
Z Coordinate	3.e-002 m	
Location	Click to Change	
Definition		
Mass	1. kg	
Mass Moment of Inertia X	0. kg·m²	
Mass Moment of Inertia Y	0. kg·m²	
Mass Moment of Inertia Z	0. kg·m²	
Suppressed	No	
Behavior	Deformable	
Pinball Region	All	

ANSYS C. Material Properties

Young's Modulus and Poisson's Ratio are always required for linear static structural analyses:

- Density is required if any inertial loads are present.
- Thermal expansion coefficient is required if a temperature load is applied.
- Stress Limits are needed if a Stress Tool result is present.
- Fatigue Properties are needed if Fatigue Tool result is present.
 - Requires Fatigue Module add-on license.
- As shown earlier material properties are assigned in the part details in Mechanical. The user can chose from the dropdown list materials available to this project

ANSYS D. Contact

Surface contact elements in Mechanical can be visualized as a "skin" covering the surfaces of the parts in an assembly.

It is these elements that define the behavior when parts are in contact (e.g. friction, bonding, heat transfer, etc.).

In Mechanical contact pairs are color coded as shown here.

Note, contact is covered in more detail in connection lecture (L05_connections).

ANSYS ... Contact - Spot Weld

Spot welds provide a means of connecting shell assemblies at discrete points:

• Spotweld definition is done in the CAD software. Currently, only DesignModeler and Unigraphics define supported spot weld definitions.

ANSYS E. Analysis Settings

The "Analysis Settings" details provide general control over the solution process:

Step Controls:

 Specify the number of steps in an analysis and an end "time" for each step.

Solver Controls:

- Two solvers available (default program chosen):
 - Direct solver (Sparse solver in MAPDL).
 - Iterative solver (PCG solver in MAPDL).
- Weak springs:
 - Mechanical tries to anticipate under-constrained models.

ANSYS ... Analysis Settings

The "Output Controls" section of the analysis settings configures what items are to be written to the results file (defaults shown).

Output controls are intended to allow users to write efficient results files containing only the desired information thereby limiting file sizes.

The most general results quantities are written by default.

Be sure to review the documentation before starting an analysis to make sure the desired results will be written.

Note: the default configuration for output controls can be changed in "Tools > Options > Analysis Settings and Solution".

	calls of Analysis Securitys		
+	Step Controls		
+	Solver Controls		
+	Restart Controls		
+	Nonlinear Controls		
Ξ	Output Controls	aa	
	Stress	Yes	
	Strain	Yes	
	Nodal Forces	No	
	Contact Miscellaneous	No	
	General Miscellaneous	No	
	Calculate Results At	All Time Points	
	Max Number of Result Sets	Program Controlled	

ANSYS F. Loads

Loads and supports respond in terms of the degrees of freedom (DOF) available for the elements used.

With solid geometry the DOF are X, Y and Z translations (for shells and beams we add rotational DOF rotX, rotY and rotZ).

Boundary conditions, regardless of actual names, are always defined in terms of these DOF.

Boundary conditions can be scoped to geometry items or to nodes (depending on load type).

Example: a "Frictionless Support" applied to the face of the block shown would indicate that the Z degree of freedom is no longer free (all other DOF are free).

Frictionless surface

Most of loads and supports can be defined by components of by vector.

Loads and supports having a direction component can be defined in global or local coordinate systems:

 In the Details view, change "Define By" to "Components". Then, select the appropriate CS from the pull-down menu.

	Acceleration (all bodies)	Standard Earth Gravity (all bodies)	Rotational Velocity (selected bodies)
Units	length/time ²	length/time ²	Radian/second or RPM
Defined by	Components Vector	A Direction Local or global coordinate system	Components Vector
Notes	Acceleration: 100 mV ⁴ Component: 0,: 100,0, mV ⁴	Standard Earth Growty: 83866 m/s ² Components: 0,:33866(0, m/s ²)	Rotational Velocity: 50, rad/s Rotation: 0/0;50, rad/s Location: 1;1;0,5 m

Hydrostatic Pressure:

- Applies a linearly varying load to a surface (solid or shell) to simulate fluid force acting on the structure.
- Fluid may be Internal (contained fluid) or external (submerged body).

Internal

External

- 🔍 Bearing Load (force):
- Forces are distributed in compression over the projected area:
 - No axial components.
 - Use only one bearing load per cylindrical surface.
 - If the cylindrical surface is split, select both halves of cylinder when applying the load.
- Bearing loads can be defined via vector or component method.

Bearing Load

Remote Force Loading :

- The user supplies the origin of the force (geometry or coordinates). Mechanical automatically creates a remote point at the force location.
- Can be defined using vector or component method.
- Applies an equivalent force and moment on the surface.
- Example: 10 inch beam with a 1 lbf remote force scoped to the end of the beam. Remote force is located 20 inches from the fixed support.

Details of "Moment Reaction"			
Ð	Options		
E	Results		
1	X Axis	20. lbfrin	
	Y Axis	3.488e-009 lbf+in	
	Z Axis	-2.1246e-007 lbf in	
1	Total	20. lbf in	

Moment Reaction

Details about remote points are covered in L06_Remote BC

19 © 2015 ANSYS, Inc. February 27, 2015

Bolt Pretension:

- Applies a pretension load to a <u>solid cylindrical section</u> or <u>beam</u> using:
 - Pretension load (force)
 - OR
 - Adjustment (length)
- For body loading a local coordinate system is required (preload in z direction).
 - Face selection assumes axial direction of cylindrical surface.
- For multistep analyses additional options are available (covered later).

[=]	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Face	
Ξ	Definition		
	Туре	Bolt Pretension	
	Suppressed	No	
	Define By	Load	
	Preload	1000. N	

$$\varepsilon_{th}^{x} = \varepsilon_{th}^{y} = \varepsilon_{th}^{z} = \alpha \left(T - T_{ref} \right)$$

- Applies a uniform temperature in a structural analysis.
- A reference temperature must be provided (can apply to all bodies or individuals).

)e	tails of "Static Structural (A5)"	ettings	
-	Definition		
	Physics Type	Structural	
	Analysis Type	Static Structur	al
	Solver Target	Mechanical AP	DL
7	Options	,	
	Environment Temperature	22. °C	
۲	Generate Input Only	NO	

Reference temperature in Environment (e.g. Static Structural), applies to all bodies

21 © 2015 ANSYS, Inc. February 27, 2015

De	etails of "Thermal (Condition"		
Ξ	Scope			
	Scoping Method	Geometry Selection	21	
	Geometry	1 Body		
	Definition			
-	Type	Thermal Condition		
	Magnitude	100. °C (ramped)		
	Suppressed	NO		
(Graphics Pro	perties		
I	Definition			
[Suppressed	ł	No	
Stiffness Behavior Flexible		Flexible	s	
1	Coordinate Sy	stem	Default Co	ordina
F			a contract of the second second	_
	kererence i en	nperature	By Body	
F	Reference Ten Reference Ten	nperature nperature Value	By Body 22. °C	

Reference temperature can be applied to individual bodies

ANSYS G. Supports

- **Constraints all degrees of the selected entity:**
 - Solid bodies: constrains x, y, and z.
 - Surface and line bodies: constrains x, y, z, rotx, roty and rotz.

💶 Displacement: 🖪 🖻 🖻

- Allows for imposed translational displacement in x, y, and z (in userdefined Coordinate System).
- Entering "0" means that the direction is *constrained*, leaving the direction blank means the direction is free.

- Applies "flexible" frictionless support to a face.
- Foundation stiffness is the pressure required to produce unit normal deflection of the foundation.

De	Details of "Displacement"		
Ξ	Scope	0	
	Scoping Method	Geometry Selection	
	Geometry	1 Face	
	Definition	0	
	Define By	Components	
	Туре	Displacement	
	X Component	0. mm (ramped)	
	Y Component	Free	200
	Z Component	Free	
	Suppressed	No	

Details of "Elastic Support"		t" f	ļ
E	Scope		
	Scoping Method	Geometry Selection	
	Geometry	1 Face	
Ξ	Definition		
	Туре	Elastic Support	
	Suppressed	No	
	Foundation Stiffness	1. N/mm ³	-

ANSYS ... Supports

🖙 Frictionless Support: 🛛 🖻 🖻

- Applies constraints (fixes) in the normal direction on surfaces.
- For solid bodies, this support can be used to apply a structural 'symmetry' boundary condition.
- Examples . . . ۲

🥝 Cylindrical Support:

• Provides individual controls (fixed/free) for axial, radial, or tangential constraints.

• Applied on cylindrical surfaces only.

-	Franci			-
=	scope		19799 - 600	
	Scoping Method	Geometry	Selection	
	Geometry	1 Face		
	Definition			
	Туре	Cylindrical	Support	
	Radial	Fixed		
	Axial	Fixed		
	Tangential	Free		•
	Suppressed	No		

Example . . .

ANSYS ... Supports

- 🖳 Simply Supported:
- Can be applied on edge or vertex of surface or line bodies
- Prevents all translations but all rotations are free
- Fixed Rotation:
- Can be applied on surface, edge, or vertex of surface or line bodies
- Constrains rotations but translations are free

Simply Supported Edge

Fixed Rotation Edge

26 © 2015 ANSYS, Inc. February 27, 2015

ANSYS H. Load and Support Display

Two display options are available for boundary conditions:

- By default, boundary conditions are displayed using a color scheme relating to the class of the condition such as loads, supports, displacements, etc. (figure on left).
- Users can toggle on "Random Colors" to assign each boundary condition a unique color (figure on right).
 Random Colors

ANSYS I. Supports vs Contacts

Contacts are used to define the interaction between <u>two represented bodies</u> on an assembly model.

Supports are used to define the interaction between <u>a body and the environment</u> (ground for example)

Supports will define interaction with the environment

Contact will be defined at bodies' interfaces

ANSYS J. Solving the Model

To solve the model click on the "Solve" button on the Standard Toolbar.

- Two processors used if present (default).
- To set the number of processors use, "Tools > Solve Process Settings".

Note : By default, Mechanical use two processors. In order to run faster your models, it is possible to define more CPUs to use for a solve. This feature is available using a specific license (HPC).

ANSYS K. Workshop 7.1

- Workshop 7.1 Structural Analysis With Contact
- Goal:
 - A five part assembly representing an impeller type pump is analyzed with a 100N load on the belt.

Numerous structural results are available:

- Directional and total deformation.
- Components, principal, or invariants of stresses and strains.
- Contact output.
- Reaction forces.
- More

In Mechanical, results may be requested before or after solving.

- If you solve a model then request results afterwards, click on the "Solve" button, and the results will be retrieved (the results file is re-read).
- You can also right click the Solution branch or a new result item and "Evaluate All Results".
- A new solution is not required.

Contour and vector plots are usually shown on the deformed geometry.

Use the Context Toolbar to change settings.

Results can be scoped to various geometry and FE entities as well as named selections. (note these controls are covered in a later chapter).

The deformation of the model can be plotted:

• Total deformation is a scalar quantity:

$$U_{total} = \sqrt{U_x^2 + U_y^2 + U_z^2}$$

- The x, y, and z components of deformation can be requested under "Directional", in global or local coordinates.
- Vector plots of deformation are available (see below).

Stresses and strains:

- Stresses and (elastic) strains have six components
 (x, y, z, xy, yz, xz) while thermal strains have three components (x, y, z)
- For stresses and strains, components can be requested under "Normal" (x, y, z) and "Shear" (xy, yz, xz). For thermal strains, (x, y, z) components are under "Thermal."
- Principal stresses are always arranged such that s1 > s2 > s3
- Intensity is defined as the largest of the absolute values
 - s1 s2, s2 s3 or s3 s1

Stress Tool:

Calculates safety factors based on several material failure theories

(4):

- Ductile Theories:
 - Maximum Equivalent Stress
 - Maximum Shear Stress
- Brittle Theories:
 - Mohr-Coulomb Stress
 - Maximum Tensile Stress
- Safety factor, safety margin and stress ratio can be plotted.
- User specified failure criteria can be entered.

De	tails of Stress For	
	Definition	
	Theory	Max Equivalent Stress
ł	Stress Limit Type	Custom Value
	Stress Limit	Tensile Yield Per Material Tensile Ultimate Per Material Custom Value

In addition to the standard result items one can insert "user defined" results.

These results can include mathematical expressions and can be combinations of multiple result items.

Define in 2 ways:

• Select "User Defined Result" from the solution context menu

• OR - From the Solution Worksheet highlight result > RMB > Create User Defined Result.

er Defin	ed Result Expr	essions				
Туре	Data Type	Data Style	Component	Expression	Output Unit	-
U	Nodal	Scalar	X	UX	Displacement	
U	Nodal	Scalar	Y	UY	Displacement	
U	Nodal	Scalar	Z	UZ	Displacement	
U	Nodal	Scalar	SUM	USUM	Displacement	
U	Nodal	Vector	UVECTORS.	TIMEC LORS	Displacement	
S	Element Nodal	Scalar	Create User	Defined Recult	Stress	
S	Element Nodal	Scalar	Create User	Dennea Resaic	Stress	
<	Element Nodal	Scalar	7	57	Strace	

Details allow an expression using various basic math operations as well as square root, absolute value, exponent, etc..

User defined results can be labeled with a user "Identifier".

Result legend contains identifier and expression.

My_DSum

2.0021e-002 mm

0. mm

Calculate Time History | Yes

Identifier

Minimum

Maximum

- Results

Reaction forces at constraints or contacts can be obtained using a "Reaction Probe".

Probes can be inserted manually (like other results) or constraints/contacts can be drag and dropped onto the Solution branch as a shortcut.

1	Definition			
	Тура	Force Reaction		
ŝ	Type Leasting Mathed	Poundamy Condition		
		Soundary Condition		
	Boundary Condition	Compression Only Support		
	Orientation	Global Coordinate System		
	Suppressed	No		
	Options			
	Result Selection	All		
	Display Time	End Time		
Results				
	X Axis	-100. N		
	Y Axis	-7.7846 N		
İ	Z Axis	-1.6597e-015 N		
	Total	100.3 N		
	Maximum Value (Over Time		
	X Axis	-100. N		
Y Axis		-7.7846 N		
Z Axis		-1.6597e-015 N		
	Total	100.3 N		
Minimum Value Over Time				
	X Axis	-100. N		
	Y Axis	-7.7846 N		
	Z Axis	-1.6597e-015 N		
	Total	100.3 N		

After a static structural solve, you have to check results. A check consists of verify the static equilibrium:

 $\mathbf{F}_{applied} = \mathbf{F}_{reaction}$

Reaction probes have to be used to calculate static equilibrium.

Simple example : F_{applied :} Acceleration : Fy=m*a => Fy=6.08 N

	TYPE	MASS
	1 0.61	9953E-03
D	etails of "Acceleratio	n"
	Scope	
	Geometry	All Bodies
	Definition	
	Define By	Components
	Coordinate System	Global Coordinate System
	X Component	0. mm/s ² (ramped)
	Y Component	9810. mm/s ² (ramped)
	Z Component	0. mm/s ² (ramped)
	Suppressed	No

F_{reaction :}

ANSYS M. Linear vs Non Linear solve

In a linear analysis, the matrix equation [K]{x}={F} is solved in one iteration. That means the model stiffness does not change during solve : [K] is constant.

A non linear solve allow stiffness changes and uses an iterative process to solve the problem. In a static structural analysis, ANSYS runs a non linear solve automatically when the model contains :

- Non linear material laws : Plasticity, Creep, Gasket, Viscoelasticity ...
- Non linear contact : Frictionless, Rough, Frictional
- Large deflection turned « ON»
- Compression only support
- Joints
- Bolt pretension
- Compression only or tension only Spring

ANSYS N. Workshop 7.2

- Workshop 7.2 Using Beam Connections
 - In the flange model shown we will use Mechanical's beam connection feature to simulate bolted fasteners in the model.

O. APPENDIX

- Analysis Settings : Restart controls
- Nodal Load and Supports
- Results and Postprocessing

ANSYS Analysis Settings : Restart controls

The "Restart Controls" section of the analysis settings configures how ANSYS produces restart points throughout a solve.

This is very handy for nonlinear analysis as a converged solution is not guaranteed, and the user has to occasionally adjust the solver setting from a particular intermediate stage of the solve.

For linear static analysis, by default no restart points are created.

This is covered in more detail in the Introduction to Structural Nonlinearity course.

	Static Structu	iral (A5) ettings port (A6) ion Information		
De	etails of "Analysis Settings"			
+	Step Controls			
 Solver Controls 				
	Solver Type	Program Controlled		
	Weak Springs	Off		
	Large Deflection	On		
	Inertia Relief	Off		
Ξ	Restart Controls	1		
	Generate Restart Points	Program Controlled		
	Retain Files After Full Solve No			
+	Nonlinear Controls			
+	Output Controls			
+	Analysis Data Management	:		
Ŧ	Visibility			

ANSYS Nodal Loads and Supports

Certain loads and supports can be applied directly to the nodes.

Nodal Loads:

- Must be applied to nodal named selections. .
- Load directions depend on the orientation of the node. •

Note : for example it could be useful in case of restart when a load must be added after a full solve

Each node has an associated local "nodal" coordinate system. By default these systems are aligned with the global Cartesian system but can be reoriented into a local system for loading purposes.

It is with respect to these nodal coordinate systems that the X, Y, Z components of FE loads are defined.

Ξ	Scope				
	Scoping Method	Named Selection			
	Named Selection	Load Nodes			
-	Definition				
	Туре	Force			
	Coordinate System	Nodal Coordinate System			
	🔄 X Component	0. N (ramped)			
	Y Component	10. N (ramped)			
	Z Component	0.N (ramped)			
	Divide Load by Nodes	Yes			
	Suppressed	No			

ANSYS ... Nodal Loads and Supports

To apply a nodal load, after choosing the type of load from the "Direct FE" menu the load details allow choice of named selection and magnitude.

	No	dal Force		
De	tails of "Nodal Force"			
Ξ	Scope			
	Scoping Method	Named Selection		
	Named Selection	Load Nodes		
Ξ	Definition			
	Туре	Force		
	Coordinate System	Nodal Coordinate System		
	🗌 X Component	0. N (ramped)		
	Y Component	10. N (ramped)		
	Z Component	0. N (ramped)		
	Divide Load by Nodes	Yes		
	Suppressed	No		

A: Static Structural Nodal Force Time: 1. s 11/10/2011 1:59 PM Nodal Force: 10. N Components: 0., 10., 0. N

ANSYS ... Nodal Loads and Supports

To change a nodal load direction the node's orientation must be changed using a local coordinate system.

Choose "Nodal Orientation" from the Direct FE menu:

- Pick the nodal named selection in the details from a drop down list.
- Pick the coordinate system to reference from a drop down list.

Note: a "Nodal Orientation" branch will be placed in the tree's environment branch.

	No	dal Force			
De	tails of "Nodal Force"				
	Scope				
	Scoping Method	Named Selection			
	Named Selection	Load Nodes			
	Definition				
	Туре	Force			
	Coordinate System	Nodal Coordinate System			
	🛄 X Component	0. N (ramped)			
	Y Component	10. N (ramped)			
	Z Component	0. N (ramped)			
	Divide Load by Nodes	Yes			
	Suppressed	No			

		Nodal Orientation	
)e	tails of "Nodal Orient	tation"	
Ξ	Scope		
	Scoping Method	Named Selection	
	Named Selection	Load Nodes	
	Coordinate System	Coordinate System	
3	Definition		
	Suppressed	No	

ANSYS ... Nodal Loads and Supports

Notes on nodal boundary conditions:

FE Rotation applies only when surface or line geometry is present (rotational DOF).

Since Direct FE loads are often applied to multiple nodes there is a control for how the load is distributed.

- Divide Load by Nodes (default):
 - Yes: divides the magnitude by the number of nodes and applies equal loads to each (F/Num to each node).
 - No: applies the full load magnitude to each node (F applied to each node).
- Using the example at right choosing "No" results in a total load of (10 N * 12 Nodes = <u>120 N</u>).

Contact results are requested via a "Contact Tool" under the Solution branch.

Contact regions can be selected in the graphics window or using a Worksheet.

48

E Scope	12 1200 0000				
Scoping	Method Worksh	ieet	-		
1	Contact Too				
	Contacts Selection All Co	ntacts	_	Add	Remove
	Contact Side Both			Apply	1
	For additional optic	ons, please visit the	e context mer	nu for this ta	ble (right mouse butt
	Name	Contact Side			
	Contact Region	n Both			

