

Introduction to ANSYS Mechanical

Realize Your Product Promise®

ANSYS Chapter Overview

In this chapter free vibration as well as pre-stressed vibration analyses in Mechanical will be covered.

Chapter Contents:

- A. Basics of Free Vibration
- B. Theory and Assumption
- C. Geometry
- D. Contact
- E. Solution Setup
- F. Modal Results
- G. Vibration With Prestress
- H. Workshop 8.1, Free Vibration Machine Frame
- 2 © 2014 ANSYS, Inc. February 27, 2015

ANSYS A. Basics of Free Vibration

The free vibration analysis procedure is very similar to performing a linear static analysis, so not all steps will be covered in detail.

The schematic setup for modal (free vibration) is shown here. Later a prestressed modal setup will be covered.

ANSYS B. Theory and Assumptions

The linear equation of motion for free, un-damped vibration is

$$[M]{\ddot{u}}+[K]{u}={0}$$

Assume harmonic motion:

$$\{u\} = \{\phi\}_i \sin(\omega_i t + \theta_i)$$
$$\{\ddot{u}\} = -\omega_i^2 \{\phi\}_i \sin(\omega_i t + \theta_i)$$

Substituting $\{u\}$ and $\{\ddot{u}\}$ In the governing equation gives an eigenvalue equation:

$$\left(\left[K \right] - \omega^2 \left[M \right] \right) \left\{ \phi_i \right\} = \left\{ 0 \right\}$$

ANSYS ... Theory and Assumptions

As shown on previous slide, for vibration analysis, the natural circular frequencies ω_i and mode shapes ϕ_i are calculated from:

$$\left(\!\left[K\right]\!-\omega_{i}^{2}\left[M\right]\!\right)\!\!\left\{\!\phi_{i}\right\}\!=0$$

Assumptions for modal analysis:

- [K] and [M] are constant:
 - Linear elastic material behavior is assumed
 - Small deflection theory is used, and no nonlinearities included
 - [C] is not present, so damping is not included
 - {F} is not present, so no excitation of the structure is assumed
 - The structure can be constrained or unconstrained
- Mode shapes {φ} are *relative* values, not absolute

ANSYS C. Geometry

Modal analysis can employ any type of geometry:

- Solid bodies, surface bodies and line bodies.
- The Point Mass feature can be used:
 - A point mass adds mass without additional flexibility to the structure thus reducing the natural frequency (K/M)^0.5.
- Material properties: Young's Modulus, Poisson's Ratio, and Density are required.

Structural and thermal loads are not available in free vibration:

- If no supports (or partial) are present, rigid-body modes will occur at or near 0 Hz.
- The choice of boundary conditions will affect the mode shapes and frequencies of the part. Carefully consider how the model is constrained.

ANSYS D. Contact

Contact regions are available in free vibration analyses however contact behavior will differ for the *nonlinear* contact types:

Conto et Turne	Modal Analysis			
Contact Type	Initially Touching	Inside Pinball Region	Outside Pinball Region	
Bonded	Bonded	Bonded	Free	
No Separation	No Separation	No Separation	Free	
Rough	Bonded	Free	Free	
Frictionless	No Separation	Free	Free	
Frictional	Bonded	Free	Free	

All contact will behave as bonded or no separation in a modal analysis:

- If a gap is present:
 - Nonlinear contacts will be free (no contact).
 - Bonded and no separation contact will depend on the pinball size.

ANSYS E. Solution Setup

Within Mechanical Analysis Settings:

- Specify the number of modes to find (default is 6).
- Optionally specify a frequency search range (defaults from 0Hz to 1e+08Hz).
 - Note: damped modal analysis is covered in the dynamics course.
- Request additional result output if desired.

D	Details of "Analysis Settings"					
	Options					
	Max Modes to Find	6				
	Limit Search to Range	Yes				
	Range Minimum	100. Hz				
	Range Maximum	5000. Hz				
Ŧ	Solver Controls					
+	Rotordynamics Controls					
H	Output Controls					
Ð	Analysis Data Management					

Options				
Solver Controls				
Rotordynamics Controls				
Output Controls				
Stress	No			
Strain	No			
Nodal Forces	No			
Calculate Reactions	No			
General Miscellaneo	. No			

ANSYS ... Solution Setup

When a solution is complete, the solution branch will display a bar chart and table listing frequencies and mode numbers.

RMB to request the modes to be displayed (or select all).

Individual mode shapes can be animated.

Graph			
Animation 🕨 🔳 🕅 🛄 🛛 🤮	10 Frames	 2 Sec (Auto) 	👻 🏣 💽 🎰 3 Cycles
82.872			4.
75. –			I
February 27 2015			

ANSYS F. Modal Results

Modal Results:

- Because there is no *excitation* applied to the structure the mode shapes are *relative* values not actual ones.
- Mode shape results are mass normalized.
 - The same is true for other results (stress, strain, etc.).

Because a modal result is based on the model's properties and not a particular input, we can interpret where the maximum or minimum results will occur for a particular mode shape but not the actual value.

ANSYS G. Vibration with Pre-Stress

While many prestressed modal examples appear in musical instruments (guitar strings, drum heads, etc.), there are numerous engineering applications where the inclusion of prestress effects are critical.

Note: while prestressing in tension will cause frequencies to increase, compressive states can decrease natural frequencies.

ANSYS ... Vibration with Pre-Stress

Setup a pre-stressed modal analysis in the schematic by linking a static structural system to a modal system <u>at the solution level</u>.

• Notice in the modal branch, the structural analysis result becomes an initial condition.

ANSYS ... Vibration with Pre-Stress

• The stress state of a structure under influences the modal solution by modifying the stiffness of the structure.

$$\left(\begin{bmatrix} K + S \end{bmatrix} - \omega_i^2 \begin{bmatrix} M \end{bmatrix} \right) \left\{ \phi_i \right\} = 0$$

The original free vibration equation is
modified to include the [S] term

ANSYS H. Workshop 8.1 – Free Vibration

- Workshop 8.1 Free Vibration Analysis
- Goal:
 - Investigate the vibration characteristics of the machine frame shown here by testing 2 sets of constraints.

