

#### Workshop 3.4 Named Selections + Object generator



#### **Introduction to ANSYS Mechanical**

**Realize Your Product Promise®** 



The goal of this workshop is to use several techniques to create named selections and use the object generator in order to minimize the time spent on preprocessing.



## **ANSYS** Project Schematic

1. Double click "Static Structural" analysis type to add a new system.

- 2. From the "Geometry" cell, RMB > "Import Geometry" and browse to: "Valve\_RM\_20130113.stp".
- 3. Double click the "Model" cell to start Mechanical.







## **ANSYS** Preprocessing

- Select one of the holes in the –Y direction RMB > Create Named Selection.
- 5. In the Selection dialog enter the name "Fixed\_support".
- 6. Choose "Apply geometry items of same:".
- 7. Check the box "Size".
- 8. Check the box "Location Y".
- 9. Click the "Ok" button.
- In the tree, highlight the new named selection
  "Fixed\_support" and note the scope of the selection is 9







We will create the different named selections.

11. Repeat the operations 4 -> 10 for the other side of the geometry and name the new named selection "load"





- 12. Choose the Body selection mode
- 13. Select all the bolts > RMB > Create Named Selection

14. In the Selection dialog enter the name "Bolts" and click "OK"

| Apply selected geomet | trv              |
|-----------------------|------------------|
| Apply geometry items  | ofsame:          |
| Size                  |                  |
| Туре                  |                  |
| Location X            | 4.4              |
| Location Y            | 14.              |
| Location Z            |                  |
| Apply To Correspon    | ndina Mesh Nodes |







15. Repeat the operations 12, 13, 14 for the other nuts name the new named selection "Nuts"





With the help of the named selection and the object generator we will minimize the time of the mesh setup.

- 16. Choose the Body selection mode
- 17. Go on Mesh section by clicking on the mesh branch in the tree
- 18. Select one of the nuts > RMB > insert > Sizing
- 19. Choose 2 mm for the size of the element





F Show Vertices Wireframe

De Nomart Colo

A Deset Evolode

16.

Body/Element (Ctr

#### **ANSYS** ... Preprocessing

- 20. Select the Body sizing
- 21. Select the object generator tools



- 22. Change "Graphical Selection" to "Nuts"
- 23. Change "Scope to" to "Each Entity"
- 24. Click on Generate
- 25. The result is an automatic creation of a "Body sizing" for each nut





|      | Mechanical Application                                                                                               |                                                   |                 | # >    |
|------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|--------|
|      | Object Generator                                                                                                     |                                                   |                 |        |
|      | Select tree objects to u<br>geometry to be used a                                                                    | ise as a templa<br>s scoping.                     | ate, and select |        |
|      | Selected Tree Item: B                                                                                                | lody Sizing                                       |                 |        |
| 5    | New objects will be s                                                                                                | coped to the                                      | selected geom   | netry. |
|      | Graphical Selection:                                                                                                 | Nuts                                              |                 | ~      |
| .2.  | Graphical Selection:<br>Geometry can be sco<br>groups of adjacent en                                                 | Nuts<br>ped to individ<br>ntities.                | ual entities or | to     |
| 2.   | Graphical Selection:<br>Geometry can be sco<br>groups of adjacent e<br>Scope To:                                     | Nuts<br>ped to individ<br>ntities.<br>Each Entity | ual entities or | to     |
| 2.2. | Graphical Selection:<br>Geometry can be sco<br>groups of adjacent er<br>Scope To:<br>Ignore Original:                | Nuts<br>ped to individ<br>ntities.<br>Each Entity | ual entities or | to     |
| 23.  | Graphical Selection:<br>Geometry can be sco<br>groups of adjacent e<br>Scope To:<br>Ignore Original:<br>Name Prefix: | Nuts<br>ped to individ<br>ntities.<br>Each Entity | ual entities or | to     |

#### **ANSYS** ... Preprocessing

26. Repeat the operations 16 -> 25 for the mesh of the bolts



## **ANSYS** Environment

We will minimize the time of the boundaries setup with the help of the named

selection and the object generator.

- 27. Choose the Face selection mode
- 28. Go on Loads section by clicking on the static structural branch in the tree
- 29. Select one hole on the -Y direction > RMB > insert > Fixed support



**\$** ▼ **(b**)

Wireframe

 27.

**\*** 

Face (Ctrl+F)



#### **ANSYS** ... Environment

- 30. Select the fixed support
- **31. Select the object generator tools**



- 32. Change "Graphical Selection" to "Fixed\_support"
- 33. Change "Scope to" to "Each Entity"
- 34. Click on Generate

12

35. The result is an automatic creation of a "fixed support" for each holes, which can help on post processing for reaction forces





|     | Mechanical Application Wizar                                 |                            |        |
|-----|--------------------------------------------------------------|----------------------------|--------|
|     | Object Generator                                             |                            |        |
|     | Select tree objects to use as a geometry to be used as scope | i template, and selecting. | ct     |
|     | Selected Tree Item: Fixed S                                  | upport                     |        |
|     | New objects will be scoped                                   | to the selected geo        | metry. |
| 32. | Graphical Selection: Fixed                                   | _support                   | ~      |
| 00  | Geometry can be scoped to<br>groups of adjacent entities.    | individual entities o      | or to  |
| 33. | Scope To: Each                                               | Entity                     | $\sim$ |
|     | Relocate:                                                    |                            |        |
|     | Ignore Original:                                             |                            |        |
|     | Apply Tag:                                                   |                            |        |
| 34. | Generate                                                     |                            |        |



**36.** RMB on static structural > insert > Force

- **37.** In the details view choose for "Scoping method": "Named selection"
- 38. Choose for "Named selection": "Load"
- 39. Change "Defined by" to "component" and put 1000 N for Y direction and -1000N for Z direction

#### 40. Launch the solution by clicking on solve





|     |                   | e                        | -       |     |
|-----|-------------------|--------------------------|---------|-----|
| D   | etails of "Force" |                          | <b></b> |     |
| =   | Scope             |                          |         | 37  |
|     | Scoping Method    | Named Selection          |         | 07. |
|     | Named Selection   | load                     |         |     |
|     | Definition        |                          |         | 38. |
|     | Type              | Force                    |         |     |
|     | Define By         | Components               |         |     |
|     | Coordinate System | Global Coordinate System |         |     |
|     | X Component       | 0, N (ramped)            |         | 20  |
|     | Y Component       | 1000, N (ramped)         |         | 39. |
|     | Z Component       | -1000, N (ramped)        |         |     |
| 102 | Suppressed        | No                       |         |     |

**ANSYS** Results

41. Highlight the Solution branch, RMB > Insert > deformation > Total





# 42. Highlight the Solution branch, RMB > Insert > stress > Equivalent





# **ANSYS** Go further!

If you finish this workshop and find yourself with extra time, you could try the following steps:

1. Try to use named selection and object generator on the post processing in order to be quicker on result demands.