

Introduction to ANSYS Mechanical

Realize Your Product Promise®

Problem statement:

- The model consists of a workbench archive file representing a valve and piston assembly with loads applied (see figure on left).
- As the figure on the right shows, a gap exists between the piston and bore (0.39 mm).
- Our goal is to:
 - Solve the model as is with no interface treatment (results will be non physical).
 - Solve the model a second time using an appropriate initial contact offset to close the gap.

ANSYS Project Schematic

Begin a new Workbench session and, from the Project page, choose "Restore Archive . . . " and browse to the file "Contact_Interface.wbpz" and Open (location provided by instructor).

When prompted, "Save" using the default name and the same location.

From the "Units" menu verify:

- Project units are set to "Metric (kg, mm, s, °C, mA, N, mV).
- "Display Values in Project Units" is checked (on).
- 3 © 2015 ANSYS, Inc. February 27, 2015

Units	Help
	SI (kg,m,s,K,A,N,V)
	Metric (kg,m,s,°⊂,A,N,V)
	U.S.Customary (lbm,in,s,°F,A,lbf,V)
~	Metric (kg,mm,s,°C,mA,N,mV)
	U.S.Customary (lbm,ft,s,F,A,lbf,V)
	Display Values as Defined
~	Display Values in Project Units
	Unit Systems

ANSYS ... Project Schematic

1. "!" show next to the geometry means that the geometry file is not available and so we can not open it in DesignModeler

2. From the Static Structural system double click (or RMB > Edit) the "Model" cell.

3. When Mechanical opens, verify the units are set to "Metric (mm, kg, s, mV, mA)".

ANSYS Preprocessing

- 3. Verify the boundary conditions are set as described here:
 - Force (20N in +Y) applied to the end of the piston shaft.
 - Fixed supports applied to the 4 holes in the valve.
 - Remote displacement applied to the inside face of the piston:
 - X = 0
 - Y = Free
 - Z = 0
 - RotX = 0
 - RotY = 0
 - RotZ = Free

- 4. Check the current contact settings:
 - Notice the contact type is frictionless and that no offset has been specified in the form of an interface treatment.
 - All other settings are left as default.

• Recall that a 0.39 mm gap exists between the piston and valve. With the boundary conditions as set, we should expect the piston to be initially free as the force is applied.

5. Solve the model:

- When the solution completes, go to Solution information in the tree. A message should indicate possible rigid body motion has occurred.
- A quick check of the magnitude of total deformation should confirm the message.
- A magnified deformation shows the 2 parts have separated as expected.

A: Static Structural Total Deformation Type: Total Deformation Unit: mm Time: 1 16530 Max 14693 12856 11020 9183.2 7346.6 5509.9 3673.3 1836.6 0 Min

ANSYS Background

- Background: how would we find the size of the gap?
 - One method is to select the circular lines for the piston and the bore and request the "Selection Information".

Coordinate System	: Global C	oordinate Sy:	stem 💌		Show Ind	dividual a	nd Summary
Entity	Length (mm)	Centroid X(mm)	Centroid Y(mm)	Centroid Z(mm)	Body	Туре	Radius (mm)
2 Edges, Summary	109.26	29.75	-18.097	.2194e-0:			
Edge 1	53,407	29.75	-18.098	.3621e-0:	Piston	Circle	8.5
Edge 2	55.858	29.75	-18.097	083e-01	Valve	Circle	8.89

- From the information panel we can see 8.89 8.5 = 0.39 mm gap.
- 8 © 2015 ANSYS, Inc. February 27, 2015

ANSYS ... Background

- Background: how would we find the size of the gap?
 - A second method is to insert the Contact Tool at the Connections branch and "Generate Initial Contact Results".

• The initial information shows a Gap of 0.3851 mm.

Initial Informa	l Information						
For additional options, please visit the context menu for this table (right mouse button)							
Name	Contact Side	Туре	Status	Number Contacting	Penetration (mm)	Gap (mm)	G
Frictionless - Valve To 1	Contact	Frictionless	Near Open	0.	0.	0.3851	0
Frictionless - Valve To 1	Target	Frictionless	Inactive	N/A	N/A	N/A	N

ANSYS Preprocessing

To address the gap in the contact return to the contact details:

- 6. In the "Offset" field enter 0.39.
 - Verify the Interface Treatment is set to "Add Offset, No Ramping".
- 7. Re-solve the model.
 - The model should solve in several iterations.

6

D	etails of "Frictionless - Valve To	o Piston"				
-	Scope					
	Scoping Method	Geometry Selection				
	Contact	3 Faces				
	Target	1 Face				
	Contact Bodies	Valve				
	Target Bodies	Piston				
-	Definition					
	Туре	Frictionless				
	Scope Mode	Automatic				
	Behavior	Program Controlled				
	Trim Contact	Program Controlled				
	Trim Tolerance	0.5 mm				
	Suppressed	No				
	Advanced					
	Formulation	Program Controlled				
	Detection Method	Program Controlled				
	Penetration Tolerance	Program Controlled				
	Normal Stiffness	Program Controlled				
	Update Stiffness	Program Controlled				
	Stabilization Damping Factor	0.				
	Pinball Region	Program Controlled				
	Time Step Controls	None				
	Geometric Modification					
	Interface Treatment	Add Offset, No Ramping				
	Offset	0.39 mm				
	Contact Geometry Correction	None	•			
	Target Geometry Correction	None				

ANSYS Postprocessing

8. The deformation and stress results now appear to be reasonable.

Total Deformation

11 © 2015 ANSYS, Inc. February 27, 2015

ANSYS ... Postprocessing

- 9. Insert the Contact Tool into the Solution branch.
 - Check the Contact Status to verify contact has been maintained.

Notes:

- The initial solution verified that rigid body motion was occurring when we tried to apply a force to parts which were separated by an initial gap.
- We were able to determine the gap size using 2 different methods in order to determine how to address the contact problem.
- With the gap size verified, we input an initial offset at the contact, effectively closing the gap.

- In the first configuration (Add offset = 0), apply a displacement instead of the force. Why does the calculation not diverge ?
- In the first configuration (Add offset = 0), change the Interface Treatment to "Adjust to Touch". Is there a difference between this configuration and adding an offset of 0.39mm ?