

Introduction to ANSYS Mechanical

Realize Your Product Promise®

In this workshop we will analyze the pump housing shown below for its heat transfer characteristics.

Specifically a plastic and an aluminum version of the housing will be analyzed using the same boundary conditions.

Our goal is to compare the thermal results for each configuration.

Assumptions:

The pump housing is mounted to a pump which is held at a constant 60 °C. We assume the mating face on the pump is also held at this temperature.

The interior surfaces of the pump are held at a constant temperature of 90 °C by the fluid.

The exterior surfaces are modeled using a simplified convection correlation for stagnant air at 20 °C.

ANSYS Project Schematic

1. From the Toolbox, double click "Steady-State Thermal" to create a new Steady State Thermal system.

 RMB the Geometry cell and "Import Geometry" – browse to the file: "Pump_housing.stp".

ANSYS ... Project Schematic

3. Double click "Engineering Data" and activate the Data Source filter.

 With "General Materials" highlighted click the '+' next to "Aluminum Alloy" and "Polyethylene" properties to add them to the project.

5. "Return to Project".

ANSYS ... Project Schematic

6. Double click the "Model" cell to open the Mechanical application.

- 7. From the Units menu choose/verify:
 - "Metric (mm, kg, N, s, mV, mA)"
 - "Celsius (For Metric Systems)"

ANSYS Preprocessing

- 8. Change the material and mesh on the pump housing (part '1'):
 - a. Highlight "1" under geometry.
 - **b.** From details assign the material "polyethylene".
 - C. Highlight the Mesh branch and set the mesh relevance = 100.
 - d. Use Element Size = 4 mm

ANSYS Environment

- 9. Apply temperatures (highlight the Steady State Thermal branch):
 - **a.** Select the interior surfaces (13 faces) of the pump housing (hint: use "Extend To Limits" selection feature).
 - **b.** RMB > Insert > Temperature.
 - c. Set "Magnitude" field to 90 °C.
 - d. Select the mating surface of the pump housing.
 - e. "RMB > Insert > Temperature".
 - f. Set "Magnitude" field to 60 °C.

	De	д		
		Scope		
		Scoping Method	Geometry Selection	
		Geometry	1 Face	
		Definition	1	
		Туре	Temperature	
)f		🗌 Magnitude	60. °⊂ (ramped)	
/		Suppressed	No	

ANSYS ... Environment

- **10. Apply Convection:**
 - a. Select the exterior (32) surfaces of the pump housing (hint: use extend to limits).
 - **b.** "RMB > Insert > Convection".
 - C. In the "Details of Convection" click in the "Film Coefficient" field and choose "Import ... ".

Be sure to choose import for convections.

- d. "Import" the correlation "Stagnant Air Simplified Case".
- e. Set the "Ambient Temperature" field to 20 °C.

D	tails of "Convection"	–						
Ξ	Scope				•	ш		Þ
	Scoping M 10C.	ometry Selection		A Import Time Dependent			Add	Remove
	Geometry	Faces		84 · · · · · · · · · · · · · · · · · · ·	Convection Data to Import:			
Ξ	Definition			🔉 Import Temperature Dependent		40.1		
١.	Type	Convection		Export	Stagnant Air - Simplified Case	10a.		
U	Film Coefficient	Tabular Data			Stagnant Air - Vertical Planes1			
12	Coefficient Type	Average Film Temperature		Constant	Stagnant Air - Vertical Planes			
Ы	Ambient Temperature	20.°C (ramped)			Stagnant Water - Simplified Case			
Ľ	Convection Matrix	Program Controlled						
	Suppressed	No	0e.	Function	4			Þ
9	© 2015 ANS	SYS, Inc. Feb	ruary 27, 2	2015			ОК	Cancel

Import Time Dependent.

强 Import Temperature Dependent.

10b.

Insert

Temperature

Convection

💴 Radiation

🔍 Heat Flow

Commands

🤹 Perfectly Insulated

10a.

a

Import Convection Data

Convection Samples C:\Program Files\ANSYS Inc\v160\aisol/Com

Data Source:

ANSYS Solution – Model A

11. Solve the model.

12.

12. When the solution is complete insert Temperature and Total Heat Flux results (solve to evaluate results).

Results for polyethylene model.

🔍 Total Heat Flux

ANSYS Model B Setup

- 13. From the project schematic RMB in the A1 cell and "Duplicate".
- 14. Double click the Model branch in the second (B) system
- 15. When the new model opens change the material to "Aluminum Alloy" as in step 8.
- 16. Solve the model.

ANSYS Solution – Model B

Results for aluminum alloy model.

Compare Heat Flux:

• Highlight the "Total Heat Flux" results from each model and switch to vector display mode.

ANSYS ... Postprocessing

Heat balance

Drag and drop the three boundary conditions to the solution and verify the heat balance.

ANSYS Go further!

At the end of steady state thermal analysis, we know the temperature fields in the housing. Now, create a thermal-stress analysis in order to evaluate the stress level and thermal strains in the part.

