As sketched below a unit parametric triangle is mapped to the flat $x-y$ plane and has a normal applied pressure acting upon it. The geometric and pressure data are:

Node	$x(m)$	$y(m)$	$p\left(N / m^{2}\right)$
1	0	0	40
2	4	0.5	34
3	2	5	46

At the parametric point ($r=0.37, s=0.24$) find:
a. The coordinates on the plane
b. The pressure at the point
c. The 2 by 2 Jacobian matrix
d. The determinant of the Jacobian matrix
e. The inverse of the Jacobian matrix
f. The local parametric pressure gradient
g. The physical pressure gradient

Mech 517 What is the physical pressure gradient at parametric point $(0.4,0.4)$?

