Numerical integration: $\int_{\square} \boldsymbol{F}(r) d \square \approx \sum_{q=1}^{n_{q}} \boldsymbol{F}\left(r_{q}\right) w_{q}$

$$
\int_{\Omega} \boldsymbol{F}(r) d \Omega=\int_{\square} \boldsymbol{F}(r)\left|\boldsymbol{J}^{\boldsymbol{e}}\right| d \boxtimes \approx \sum_{q=1}^{n_{q}} \boldsymbol{F}\left(r_{q}\right)\left|\boldsymbol{J}^{e}\left(r_{q}\right)\right| w_{q}
$$

Number of points for exact polynomial integration: Degree $\leq\left(2 n_{q}-1\right)$
Gaussian 1-D one-point line rule data, in unit coordinates and natural coordinates:

$$
r_{1}=0.5, \quad w_{1}=1 ; \quad a_{1}=0, w_{1}=2
$$

Gaussian 1-D two-point line rule data, in unit coordinates and natural coordinates:

$$
\begin{aligned}
& r_{1}=(1-1 / \sqrt{3}) / 2=0.21132, r_{2}=(1+1 / \sqrt{3}) / 2=0.78867 \\
& w_{1}=w_{2}=0.50000 \\
& a_{1}=-1 / \sqrt{3}=-0.57735, a_{2}=1 / \sqrt{3}=0.57735 \\
& w_{1}=w_{2}=1.00000
\end{aligned}
$$

Figure 3.1-1 Natural 1, 2, and 3 point quadrature points, ξ, on a line

Mech 417/517 Homework

HW 2, 1/25/18 due 1/30/18

1. Evaluate the 'measure' of the unit coordinate space by numerical integration:

$$
I_{r}=\int_{\square} d \square=\int_{0}^{1} d r \quad\left(\int_{0}^{1} 1 d r\right)
$$

2. Evaluate the 'measure' of the natural coordinate space by numerical integration:

$$
I_{a}=\int_{\square} d \square=\int_{-1}^{1} d a \quad\left(\int_{-1}^{1} 1 d a\right)
$$

HW 3, 1/25/18 due 2/1/18

1. Evaluate the integral of the interpolation functions of a quadratic line element in unit coordinates where $\boldsymbol{H}(r)=\left[\begin{array}{ll}\left(1-3 r+2 r^{2}\right) & \left(4 r-4 r^{2}\right) \\ \left(1-r+2 r^{2}\right)\end{array}\right]$:

$$
\boldsymbol{I}_{\boldsymbol{r}}=\int_{\square} \boldsymbol{H} d \square=\int_{0}^{1} \boldsymbol{H} d r
$$

2. For uniform meshes and constant properties, the symmetric square matrix \boldsymbol{m} often appears where $\boldsymbol{m}=\int_{0}^{1} \boldsymbol{H}(r)^{\boldsymbol{T}} \boldsymbol{H}(r) d r$ of size $n_{n} \times n_{n}$ for a line element with n_{n} nodes. Determine the
polynomial degree of the integrand and the number of Gaussian quadrature points needed to integrate that matrix for a cubic line element, $n_{n}=4$, where

$$
\begin{array}{cl}
\boldsymbol{H}(r)=\frac{1}{2}\left[\left(2-11 r+18 r^{2}-9 r^{3}\right)\right. & \left(18 r-45 r^{2}+27 r^{3}\right) \ldots \\
\left(-9 r+36 r^{2}-27 r^{3}\right) & \left.\left(2 r-9 r^{2}+9 r^{3}\right)\right]=\left[\begin{array}{llll}
H_{1} & H_{2} & H_{3} & H_{4}
\end{array}\right]
\end{array}
$$

3. For a cubic line element evaluate the scalar sum $s=\sum_{k} H_{k}(r)$.

HW 4, 2/1/18 due 2/6/18

1. Resolve Example 8.1-2 using a linear element with $\boldsymbol{H}(r)=[(1-r) r]$.
2. Resolve Example 8.1-3 using a linear element with $\boldsymbol{H}(r)=[(1-r) r]$.

Mech 517
3. In addition to all of the above assignments, use numerical integration to form the matrix $\boldsymbol{m}=\int_{0}^{1} \boldsymbol{H}(r)^{\boldsymbol{T}} \boldsymbol{H}(r) d r$ for a cubic line element.

