Comp 212 February 18, 2000

Overview

e Interfaces

e [he Visitor Pattern Continued

— APolynomial



Comp 212 February 18, 2000

Declaring Interfaces

e \What is an interface?

— A set of method and constant declarations, without the method

implementations.
x Example
public interface Colorable {
public void setColor(int color);
public int getColor();

}

— One interface can extend another interface.

*x Example
public interface Paintable extends Colorable {

public static final int MATTE = 0, GLOSSY = 1;
public void setFinish(int finish);
public int getFinish();

}



Comp 212 February 18, 2000

Using Interfaces

e How do you use an interface?

— In a class definition, we say that a class implements an interface.
*x Example
class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int _color;
public void setColor(int color) { _color = color; }
public int getColor() { return _color; }

+

— An interface is a reference type, just like a class.
*x Example

Colorable widget = new ColoredPoint();
widget.setColor (GREEN) ;



Comp 212 February 18, 2000

Using Interfaces (cont.)

e A class can implement one or more interfaces.

— Example #1
class MyClass implements IYourInterfacel,
IYourInterface2 {

}
— Example #2
class PaintedPoint extends ColoredPoint implements Paintable
{
int _finish;
public void setFinish(int finish) {
_finish = finish;
}
public int getFinish() { return _finish; }



Comp 212 February 18, 2000

The Standard Visitor Pattern

e The polynomial system in homework #1 can be implemented as a
Polynomial /Visitor framework based on the visitor pattern described in
the GoF book (“Design Patterns”).

— The abstract polynomial, APolynomial, has two concrete variants,
ConstPoly and NonConstPoly, and acts as the host to its visitors.
— The visitors implement the algorithms that operate on polynomials.
* These algorithms are modeled as a Java interface, IVisitor, which
has exactly two methods:
1. Object forConst(ConstPoly poly, Object input) to act
on ConstPoly objects and
2. Object forNonConst(NonConstPoly poly, Object input) to
act on NonConstPoly objects only.



Comp 212 February 18, 2000

The Standard Visitor Pattern (cont.)

e APolynomial can execute any algorithm that is implemented as a
concrete subclass of IVisitor via the abstract "hook” method:

Object execute (IVisitor algo, Object input).

— ConstPoly.execute(...) will call algo.forConst(...) passing
itself as the (concrete) host,
— while NonConstPoly.execute(...) will callalgo.forNonConst(...)
passing itself as the host.
* Polymorphism will ensure that, at run time, the proper calls will be
made, reducing code complexity.



Comp 212 February 18, 2000

Software Engineering Issues

e It is good software engineering practice to shield clients from the details
of correctly manufacturing concrete instances of polynomials.

— For this reason, the constructors for ConstPoly and NonConstPoly
are package private.
— A factory class, PolyFactory, is provided to build ConstPoly and
NonConstPoly objects.
% |t checks for valid input before calling on the appropriate constructors
to instantiate and initialize concrete polynomial objects.
* PolyFactory resides in the same package as ConstPoly and
NonConstPoly and thus can access all package private elements.



Comp 212 February 18, 2000

Software Engineering Issues (cont.)

e Each of the visitor's methods explicitly prescribes what concrete subclass
of APolynomial must be passed to it as a parameter.

— As a consequence, APolynomial and all of its subclasses must be
public in order for any concrete visitor to use them.

* In practice, the developer of this polynomial/visitor framework would
deliver APolynomial, ConstPoly, NonConstPoly, IVisitor, and
PolyFactory in one package to the client.

% Any client can develop any concrete visitors to add on to the existing
system without rewriting/recompiling any of the existing code.

The concrete visitors are usually in different packages created by
the clients to suit their needs.

Since APolynomial, ConstPoly, NonConstPoly, IVisitor,
and PolyFactory are all public classes, they can be directly
manipulated by any client via their public behaviors.



Comp 212 February 18, 2000

Software Engineering Issues (cont.)

e It is good software engineering practice to program at the highest level
of abstraction (OOPP+#2: Program to the (abstract) interface).

e In the preceding version of the polynomial/visitor framework, the visitor
interface requires a specific concrete subclass of APolynomial for each
of its methods and thus violates this principle.



Comp 212 February 18, 2000

Software Engineering Issues (cont.)

e We would like to hide more of the details of the implementation from
the clients: ConstPoly and NonConstPoly should be hidden from the
clients and made package private.

— This will allow us more flexibility in modifying our implementation of
APolynomial without changing any of the clients’ code.

— We can achieve this goal because in our current design, ConstPoly
and NonConstPoly have the same public methods as their abstract
superclass APolynomial.

* And since the visitors only deal with the public methods of the host,
they need not know about the concrete subclasses of APolynomial.

* We can promote the standard visitor pattern to a higher level of
abstraction by making the visitor interface depend only on the
abstract host.

10



Comp 212 February 18, 2000

A Variant of the Visitor Pattern

e The only change we need to make is to redefine the visitor interface
IVisitor and the corresponding method signatures of all of its concrete
implementations to require APolynomial as a host instead:

1. Object forConst(APolynomial host, Object input) to act on
ConstPoly objects only, and

2. Object forNonConst(APolynomial host, Object input) to act
on NonConstPoly objects only.

e Everything else remains the same.

— Polymorphism will ensure that, at run time, the proper calls will be
made by the proper concrete subclass, reducing code complexity.

11



Comp 212 February 18, 2000

Example: Array Implementation

e By hiding the details of implementation and exposing only the abstract
class APolynomial to all of its clients, in particular its visitors, we can
change the implementation of APolynomial without affecting any of the
existing client code.

— For example, we can implement the polynomials using arrays.

* All we need to do is to create a class ArrayPoly as a subclass
APolynomial, and modify PolyFactory to make use of the package
private constructors for ArrayPoly.

All the pre-existing visitors for APolynomial remain intact and
need not be recompiled to work with the new implementation.
All client code external to the polynomial package should work
with modification /recompilation as well.

12



