Comp 212 February 4, 2000

Design Patterns

e The Union Pattern
e The Strategy Pattern

e The Composite Pattern

Comp 212 February 4, 2000

Object-oriented Programming Principles

1. Objects are the only things that can perform computations.

2. Encapsulate that which varies (a variant) into a class, and make all
related variants into concrete subclasses of an " abstract class’ .

e E.g., Rectangle and Circle extend Shape.

3. Program to the interface (or abstract class).

e E.g., _shape.dArea(); where _shape is AShape, not Rectangle or
Circle.

Comp 212 February 4, 2000

The Union Pattern

e Suppose | face the problem of computing the areas of geometrical shapes
such as rectangles and circles.

e OOPP #0 suggests that | build objects that are capable of computing
these areas.

e The variants for this problem are the infinitely many shapes: rectangles,
circles, etc.

— OOPP #1 drives me to define concrete classes such as Rectangle and
Circle, and make them subclasses of an abstract class, called AShape,
which has the abstract capability of computing its area.

x This is an example of the simplest yet most fundamental OO design
pattern called the Union Pattern. It is the result of applying OOPP
#0 and OOPP #1.

Comp 212 February 4, 2000

The Union Pattern (cont.)

e The Union Pattern is the result of partitioning the sets of objects in the
problem domain into disjoint subsets and consists of

— an abstract class (AClass) representing the superset of all the objects
of interest,

— several concrete subclasses (Variantl, Variant2) representing disjoint
subsets of the above superset;
* the union of these subsets equals the superset.

Comp 212 February 4, 2000

The Union Pattern (cont.)

e A client of the Union Pattern uses instances of the concrete subclasses
(Variantl, Variant2), but should only see them as AClass objects.

— The client class code should only concern itself with the public methods
of AClass and should not need to check for the class type of the
concrete instances it is working with.

« Conditional statements to distinguish the various cases are gone,
reducing code complexity and making the code easier to maintain.

Comp 212

February 4, 2000

The Union Pattern (cont.)

- S Y SR
ClientClass

programs only to the abstract
class.

...... =

#sUpersets

AClass
Tabstract}

+oomaoutelinpul Object] : Ohiect

#subsets #subsets

Variant1 Variant2

{concretel Iconcretel
+computeinput: Ohject) : Ohject +computelinput: Ohject) : Ohject

Comp 212 February 4, 2000

The Strategy Pattern

e Recall the Pizza problem. The Pizza has a shape and delegates the
computation of its area to its shape.

— |t does not care what the exact type of its shape is.
— It only knows that its shape is capable of computing the appropriate

area.
— This is an example of what is called the Strategy Pattern.

* The Pizza uses its shape as a "strategy’ to compute its area.

Comp 212 February 4, 2000

The Strategy Pattern (cont.)

In general, the strategy pattern consists of a union pattern of strategies,
and a client class, the context, that contains a reference to the abstract

strategy in the union.

e The context delegates the work to this stategy reference.

— In our Pizza example, the context is the Pizza class, and the abstract
AShape plays the role of the (abstract) strategy.

Comp 212 February 4, 2000

The Strategy Pattern (cont.)

ContextClass AStrategy
- _strat AStrategy has-a strategy reompute(inout Object) - Object
+ContextClazs(s: AStrategy) s
+setStrategy(s: AStrategy)

+computel(input; Ohject) : Ohject

campute {(input: Ohject). Ohject {
return _strat.compute {input);

h

Strategy1 Strategy2?

+compute(input. Ohject) DEm_H_ +compute(input. Object) : Ohject

Comp 212 February 4, 2000

The Composite Pattern

e Often, we combine (or compose) objects to form new objects. Recursive
composition, in particular, is a common object design.

— APolynomial is an example.
— The recursive object structural design gives rise to recursive algorithms

on the object.

e This design pattern is called the Composite Pattern.

10

Comp 212

The Composite Pattern (cont.)

AComponent
+operation)’) n parts
+oetPartin: inf) - AComponent
Basic1 Basic2 Composite
- part!: AComponent
+operation() +operation() -_part2: ACompanent L~ |

-_parthl: AComponent

+operationd)

getPart (1) throws an
exception.

operation() {

..... _part aperation {)

_part? operation {) ...

..... _parth . operation () ..

February 4, 2000

11

Comp 212 February 4, 2000

The Composite Pattern (cont.)

e In the previous diagram, classes Basicl and Basic2 correspond to the
base cases of the recursion, and Composite corresponds to the non-base

Cases.

e The method operation() for Composite is mostly recursive.

12

