Comp 212 February 9, 2001

LRStruct: An Enhanced AList

e LRStruct supports additional operations on the list structure:

— void insertFront(Object dat)
— Object removeFront ()

— void setFirst(Object dat)

— void setRest(LRStruct tail)



Comp 212 February 9, 2001

Contrasting LRStruct from AList

e Constructing an AList of one object ...

{ ...

AList list = ListFactory.Singleton.makeEmptyList();

list = ListFactory.Singleton.makeNEList(new Integer(-1),
list);

e Constructing an LRStruct of one object ...

{ ...
LRStruct list = new LRStruct(); // an empty list
list.insertFront (new Integer(-1));



Comp 212 February 9, 2001

Contrasting LRStruct from AList (cont.)

e What is printed?

{ ...
AList list = ListFactory.Singleton.makeEmptyList();

AList altL = list;

list = ListFactory.Singleton.makeNEList(new Integer(-1),
list);

System.out.println(altL) ;



Comp 212 February 9, 2001

Contrasting LRStruct from AList (cont.)

e What is printed?

{ ...
LRStruct list = new LRStruct(); // an empty list
LRStruct altL = list;

list.insertFront(new Integer(-1));
System.out.println(altL);



Comp 212 February 9, 2001

The State Pattern

e Define an abstract class for the states of the system.

— This abstract state class should provide all the abstract methods for
all of the concrete subclasses.

e Define a concrete subclass of the abstract class for each state of the
system.

— Each concrete state must implement its own concrete methods.

e Represent the system by a class containing an instance of a concrete
state.

— This instance represents the current state of the system.



Comp 212 February 9, 2001

The State Pattern (cont.)

e Define methods for the system to return the current state and to change
state.
e Delegate all requests made to the system to the current state instance.

— Since this instance can change dynamically, the system will behave as
if it can change its class dynamically.



