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Nested Classes

e Besides fields and methods, a Java class can also contain other classes.

class EnclosingClass {

class ANestedClass {

+

e The rules for defining such classes are similar to fields and methods.

— Access specifier:
x A class defined inside of another class can be public, protected,
package private, or private.
— Scope specifier:
x A class defined inside of another class can be static or non-static.
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Static Nested Classes

e When it is defined as static, it is called a static nested class.

class EnclosingClass {

static class AStaticNestedClass A{

}

— The members (i.e. fields, methods, classes) of a static nested class
can access only static members of the outer class.
x The enclosing class is called the outer class.

e Usage:

— Static nested classes are used mostly to avoid name clash and to
promote information hiding.
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Inner Classes

e When it is non-static, it is called an inner class.

class EnclosingClass {

class AnInnerClass {

+

— An inner class is a nested class whose instance exists within an instance
of its enclosing class and has direct access to the instance members of
its enclosing instance.
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Inner Classes (cont.)

class EnclosingClass {

class AnInnerClass implements IMyInterface {

+

IMyInterface myMethod()
{

return new AnInnerClass();

+
}
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Inner Classes (cont.)

o Usage:

— Event listeners for Java GUI components are implemented as inner

classes.
— In the state design pattern, the states of an object are often
implemented as inner objects.
* Since an inner object has access to its outer object (the context),
there is no need to have set and get methods for the state.
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Anonymous Inner Classes: An Example

public class LRStruct
{

public final String toString()
{
return _head.toString(this);

+
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Anonymous Inner Classes: An Example (cont.)

abstract class ANode

{

String toString(LRStruct owner)
{
return (String)owner.execute(
new IAlgo()
{
public Object emptyCase(LRStruct host, Object input)
{

return "()";

+

public Object nonEmptyCase(LRStruct host, 0Object input)
{

return "(" + host.getFirst() + host.getRest().execute(
new IAlgo()
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{
public Object emptyCase(LRStruct h, Object inp)

{
return ")";
+
public Object nonEmptyCase(LRStruct h, Object inp)
{
return " " + h.getFirst() +
h.getRest() .execute(this, null);
+
}, null);
t
}, null);



