Comp 212 February 19, 2001

Nested Classes

e Besides fields and methods, a Java class can also contain other classes.

class EnclosingClass {

class ANestedClass {

+

e The rules for defining such classes are similar to fields and methods.

— Access specifier:
x A class defined inside of another class can be public, protected,
package private, or private.
— Scope specifier:
x A class defined inside of another class can be static or non-static.



Comp 212 February 19, 2001

Static Nested Classes

e When it is defined as static, it is called a static nested class.

class EnclosingClass {

static class AStaticNestedClass A{

}

— The members (i.e. fields, methods, classes) of a static nested class
can access only static members of the outer class.
x The enclosing class is called the outer class.

e Usage:

— Static nested classes are used mostly to avoid name clash and to
promote information hiding.



Comp 212 February 19, 2001

Inner Classes

e When it is non-static, it is called an inner class.

class EnclosingClass {

class AnInnerClass {

+

— An inner class is a nested class whose instance exists within an instance
of its enclosing class and has direct access to the instance members of
its enclosing instance.



Comp 212 February 19, 2001

Inner Classes (cont.)

class EnclosingClass {

class AnInnerClass implements IMyInterface {

+

IMyInterface myMethod()
{

return new AnInnerClass();

+
}



Comp 212 February 19, 2001

Inner Classes (cont.)

o Usage:

— Event listeners for Java GUI components are implemented as inner

classes.
— In the state design pattern, the states of an object are often
implemented as inner objects.
* Since an inner object has access to its outer object (the context),
there is no need to have set and get methods for the state.



Comp 212 February 19, 2001

Anonymous Inner Classes: An Example

public class LRStruct
{

public final String toString()
{
return _head.toString(this);

+



Comp 212 February 19, 2001

Anonymous Inner Classes: An Example (cont.)

abstract class ANode

{

String toString(LRStruct owner)
{
return (String)owner.execute(
new IAlgo()
{
public Object emptyCase(LRStruct host, Object input)
{

return "()";

+

public Object nonEmptyCase(LRStruct host, 0Object input)
{

return "(" + host.getFirst() + host.getRest().execute(
new IAlgo()



Comp 212 February 19, 2001

{
public Object emptyCase(LRStruct h, Object inp)

{
return ")";
+
public Object nonEmptyCase(LRStruct h, Object inp)
{
return " " + h.getFirst() +
h.getRest() .execute(this, null);
+
}, null);
t
}, null);



