Comp 212

March 12, 2001

Standard Method Invocation Via Single-Dispatching

e When a method is performed on an object, the resultant behaviour is
defined by the implementation of that method in the object’s class.

_
= obj ect. net hod(param;

Concrete Class #1 Concrete Class #2

Ret Type net hod(Par aniType paran) Ret Type net hod(Par aniType paran)

Concrete Class #3

Ret Type net hod(Par aniType param

Comp 212 March 12, 2001

The Limitation

e Sometimes the behaviour must also be determined by the type of the
parameter object.

Comp 212 March 12, 2001

The Situation

e Suppose that there is a class hierarchy with superclass SuperClass and
subclasses SubA, SubB and SubC.

e Suppose that we have a piece of code that reads:

SuperClass a = getTarget();
SuperClass b = getParameter();
a.commonMethod (b) ;

getTarget () and getParameter () can return any of the subclasses.

Comp 212 March 12, 2001

The Situation Continues . . .

e Each of the subclasses has its own implementation of commonMethod ().

e But there are several versions of commonMethod(), each taking one of
the sibling classes as input:

void commonMethod(SubA param) { . . . }
void commonMethod(SubB param) { . . . }
void commonMethod(SubC param) { . . . }

Comp 212 March 12, 2001

The Situation Continues . . .

e We know that the commonMethod () that executes will be determined by
the type of the object referenced by a.
— If a references an object of type SubA, then SubA’'s commonMethod ()

will be called;
— If a references an object of type SubB, then SubB’'s commonMethod ()

will be called:;
— etc.

Comp 212 March 12, 2001

The Problem

e But, the Java compiler cannot necessarily determine the type of the
object referenced by b. So, it cannot choose the appropriate method
implementation.

— For example,

void method(SuperClass a, SuperClass b)
{

a.commonMethod (b) ;

Comp 212 March 12, 2001

A Strawman Solution

e One solution would be to declare a single commonMethod() with
parameter type SuperClass, to test the type of the parameter object,
and to execute different code as a result:

void commonMethod(SuperClass param)

{

if (param instanceof SubA) {

} else if (param instanceof SubB) {
} else if (param instanceof SubC) {

} else
. // probably throws an exception

Comp 212 March 12, 2001

Don’t do that!

e This is, however, contrary to the principles of object-oriented
programming.

— If a new class of parameter object was added, then the test code would
also have to be modified to accomodate the new class (a maintenance
issue).

Comp 212 March 12, 2001

A Better Solution: Double-Dispatching

e A better solution is to make use of the polymorphic nature of the
language and to use a technique known as double dispatching.

— This involves adding a new method (we'll call this a secondary method)
to the classes of all the potential parameter objects and then calling
this from the original method with the receiver as a parameter.

x The secondary method’s name is typically constructed from the
primary method’s name followed by the class name of the original
receiver.

Comp 212 March 12, 2001

Double-Dispatching (cont.)

e For example,
class SubA extends SuperClass {

void commonMethod(SuperClass param)

{
param.commonMethodFromSubA (this) ;
+
void commonMethodFromSubA(SubA param) { . . . }
void commonMethodFromSubB(SubB param) { . . . }

void commonMethodFromSubC(SubC param) { . . . }

10

