## A Binary Search Tree (BST)

- The defining property of a BST is that
- for each node n in the tree, every key in  $n\sp{\prime}s$  left subtree is less than n's key and every key in n's right subtree is greater than n's key.



#### **Binary Search Trees**

How many steps (in the worst case) would it take to find a key in the following tree?



### Binary Search Trees (cont.)

The same keys might be arranged to form a "perfectly" unbalanced tree.



April 9, 2001

# Binary Search Trees Insertion

would 79 go? Where would 30 go into the following tree? Where would 32 go? Where



## **Binary Search Trees Deletion**

- Deleting a leaf node, e.g., 68, is easy.
- Deleting an "interior" node, e.g., 53, is hard.

