Comp 212 April 11, 2001

Game Trees

e Suppose that we have a two-player game in which the players take turns
making moves.

— Further, we assume that the game will always end in either (1) a
victory by one player over the other or (2) a draw.

e \We can model the game as a multiway tree.

— Each node in the game tree corresponds to a possible configuration of
the “game board".

— The initial configuration of the “game board” is the root node.

— A leaf node corresponds to an end-of-game configuration: a win, a
loss, or a draw.



Comp 212

Game Trees: An Example

\

\
-
yz

Phe Phe I A
- -~ \
- - |
- - | \
- _- \
-7 Phe ! \
P P | \
- - | N
~ ~
- - | \
- - \
- - | \
\W\\ \W\\ y N\
Phe Phe I A
- -~ | \
~ ~
- - | \
- _- \
-7 Phe ! \
P P | \
- - | N
~ ~
- - | \
- - \
- - | \
\W\\ \W\\ y N\

April 11, 2001



Comp 212 April 11, 2001

Game Trees: An Example (cont.)

e Assume the players are John and Mary.

e \When John is to make a move, he will move to a game node that is best
for him.

— What is best for John is based on some numerical value that he
associates with each of the possible next moves.
x How are the value of each of the game node calculated?
- What follows is one such possible computation.



Comp 212 April 11, 2001

Min-Max Algorithm

e For each leaf node X, John can assign a value of 1 to X if he wins, 0 if
he ties, and -1 if he loses.

— Conceptually, John defines a “pay-off” function P as follows:
1 if John wins
P(X) = 0 if John ties
-1 if John loses

where X 1s a leaf.



Comp 212 April 11, 2001

Min-Max Algorithm (cont.)

e John assigns a value to a non-leaf node X, as follows:

V(X) =
max { V(c) | ¢ is a child node of X }
1f John moves next

min { V(c) | ¢ is a child node of X }
if Mary moves next

where X 1s not a leaf.

— The idea is that John would move to a node that has the maximum
value for him, and Mary would do her best by moving to a node that
has the minimum value (from John's perspective).



Comp 212 April 11, 2001

Min-Max Algorithm (cont.)

e In general, it is not possible to examine all leaf nodes of a non-trivial
game.

— At best, you can examine the game tree up to certain depth.



Comp 212 April 11, 2001

Modified Min-Max Algorithm

e Instead of flip-flopping between max and min as described above, we
can reformulate the min-max strategy based on the simple mathematical
formula:

max(a, b) = -min(-a, -b)



Comp 212 April 11, 2001

Modified Min-Max Algorithm (cont.)

o Let

E(n) be the pay-off function that John uses to evaluate
a game node n.

o Let

e(n) = E(n) if n is node from which John is
to make the next move

-E(n) if Mary is to make the next move.



Comp 212 April 11, 2001

Modified Min-Max Algorithm (cont.)

o Let

ModMinMax(x) = e(x), if x is a leaf of the game subtree

max (-ModMinMax(c)), if x is not a leaf
of the game subtree and c ranges over all
of the (immediate) children of x.



Comp 212 April 11, 2001

Modified Min-Max Algorithm (cont.)

e Given x, a game tree node (i.e., a game board configuration), and d, the
number of lookahead moves from x, compute the value of x based on
the min-max formula:

int ModMinMax (GameNode x, int d)

if x 1s a leaf node or == 0
then return e(x)
else // c[0] is the first child node of x.
ans = -ModMinMax(c[0], 4 - 1)
for (int i = 1; i < number of children of x; i++)
temp = -ModMinMax(c[i]l, d - 1);
if ans < temp
then ans = temp;
return ans;

10



Comp 212 April 11, 2001

Alpha-Beta Pruning

e In computing the min-max value of a game tree node, we can skip
(" prune”) the evaluation of some of the node’s children.

e Let alpha be a lower bound for the value of a max node A, and let B be
a child node of A.

— If the value v of a child of B is less or equal to alpha, then we can use
v as a value for B and skip the rest of the children of B.
x This is called "alpha pruning”.

11



Comp 212 April 11, 2001

Alpha Pruning

e In the figure below, alpha = 20, and we can prune the rest of the children
of C2, once the value of D is (recursively) computed.

maz(cl, ¢, ci)

O e @ @/

2 cannot be
larger than 15
and thushasno
effect on the
parett's walue.

12



Comp 212 April 11, 2001

Beta Pruning

e Let beta be an upper bound for the value of a min node B, and let C be
a child node of B.

— If the value v of a child of C is greater or equal to beta, then we can
use v as a value for C and skip the rest of the children of C.
x This is called "beta pruning”.

13



