Comp 212 January 31, 2001

Computing the Length of a Scheme-like List

public abstract class AList
{

// Returns the number of elements in this AList.
public abstract int length();

Comp 212 January 31, 2001

Computing the Length of a Scheme-like List (cont.)

public class EmptyList extends AList
{

// Returns O.
public int length()

{

return O;

+

Comp 212 January 31, 2001

Computing the Length of a Scheme-like List (cont.)

public class NEList extends AList
{

// Returns 1 + the number of elements in _rest.
public int length()
{

return 1 + _rest.length();

+

Comp 212 January 31, 2001

An Implementation in Scheme

(define (length a-list)
(cond
[(empty? a-list)
0]
[(cons? a-list)
(addl (length (rest a-list)))]))

Comp 212 January 31, 2001

An EmptyList Object vs. null

e An EmptyList object can perform a computation, e.g.,

// Returns O.
public int length()

{

return O;

+

e null is not an object. It cannot perform computations.

Comp 212 January 31, 2001

The Singleton Pattern

e Conceptually, there is only one empty list in the “world”.
— This concept is akin to that of the empty set: there is only one empty

set.

e How can we ensure that only one instance of EmptyList can be created
throughout the life of a program?

e There is a way to design a class to ensure such uniqueness property. It
is called the Singleton Design Pattern.

Comp 212 January 31, 2001

The Singleton Pattern (cont.)

e The following UML diagram describes the pattern:

SingletonClass
. = [
-$_instance: SingletonClass Private constructor has empty body.
-m_:m__.mﬁ_“_:n_mmm_ﬂ] B Mo external client can call this private
+Elniquelnstance() : SingletonClass constructor for instantiation.

Checkif _instance is null or not.
If it i= null, instantiate it.
return _instance.

e Note: The field _instance and the method UniqueInstance() are of
class scope (i.e. static).

Comp 212 January 31, 2001

The Singleton Pattern (cont.)

e The method UniqueInstance() is called a "factory” method as it is
used to manufacture an instance, though unique, of the SingletonClass.

e The class SingletonClass is appropriately called a "factory”. In this very
special case, SingletonClass manufactures its own (unique) instance.
(Recall that we saw the Factory Pattern in Lab 2.)

Comp 212 January 31, 2001

One EmptyList Object is Enough

public class EmptyList extends AList

{

private static EmptyList _instance;

// NOTE: The constructor is private so that no client can
// instantiate an EmptyList. I.e., there is one "true"
// empty list, Singleton, and every list uses it.

private EmptyList()

{
+

public static EmptyList makeEmptyList ()
{
if (_instance == null)
_instance = new EmptyList();
return _instance;

+

Comp 212 January 31, 2001

One EmptyList Object is Enough

public class EmptyList extends AList
{
public final static EmptyList Singleton = new EmptyList();

/ **
* NOTE: The constructor is private so that no client can
* instantiate an EmptyList. I.e., there is one "true"
* empty list, Singleton, and every list uses it.
*/
private EmptyList()
{
¥

10

Comp 212

The final Modifier

e The final modifier prevents

— the class,
— the method, or
— the field

from being extended or overridden.

e In some sense, final is the opposite of abstract.
class/method /field cannot be both final and abstract.

January 31, 2001

Thus, a

11

Comp 212 January 31, 2001

The final Modifier (cont.)

e |f a field is declared final, then its declaration must include a variable
initializer.

— Example
public final static EmptyList Singleton = new EmptyList();

12

