Comp 212 January 31, 2001

Computing the Length of a Scheme-like List

public abstract class AList
{

// Returns the number of elements in this AList.
public abstract int length();
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Computing the Length of a Scheme-like List (cont.)

public class EmptyList extends AList
{

// Returns O.
public int length()

{

return O;

+
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Computing the Length of a Scheme-like List (cont.)

public class NEList extends AList
{

// Returns 1 + the number of elements in _rest.
public int length()
{

return 1 + _rest.length();

+
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An Implementation in Scheme

(define (length a-list)
(cond
[(empty? a-list)
0]
[(cons? a-list)
(addl (length (rest a-list)))]))
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An EmptyList Object vs. null

e An EmptyList object can perform a computation, e.g.,

// Returns O.
public int length()

{

return O;

+

e null is not an object. It cannot perform computations.
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The Singleton Pattern

e Conceptually, there is only one empty list in the “world”.
— This concept is akin to that of the empty set: there is only one empty

set.

e How can we ensure that only one instance of EmptyList can be created
throughout the life of a program?

e There is a way to design a class to ensure such uniqueness property. It
is called the Singleton Design Pattern.
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The Singleton Pattern (cont.)

e The following UML diagram describes the pattern:

SingletonClass
. = [
-$_instance: SingletonClass Private constructor has empty body.
-m_:m__.mﬁ_“_:n_mmm_ﬂ ] B Mo external client can call this private
+Elniquelnstance( ) : SingletonClass constructor for instantiation.

Checkif _instance is null or not.
If it i= null, instantiate it.
return _instance.

e Note: The field _instance and the method UniqueInstance() are of
class scope (i.e. static).
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The Singleton Pattern (cont.)

e The method UniqueInstance() is called a "factory” method as it is
used to manufacture an instance, though unique, of the SingletonClass.

e The class SingletonClass is appropriately called a "factory”. In this very
special case, SingletonClass manufactures its own (unique) instance.
(Recall that we saw the Factory Pattern in Lab 2.)
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One EmptyList Object is Enough

public class EmptyList extends AList

{

private static EmptyList _instance;

// NOTE: The constructor is private so that no client can
// instantiate an EmptyList. I.e., there is one "true"
// empty list, Singleton, and every list uses it.

private EmptyList()

{
+

public static EmptyList makeEmptyList ()
{
if (_instance == null)
_instance = new EmptyList();
return _instance;

+
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One EmptyList Object is Enough

public class EmptyList extends AList
{
public final static EmptyList Singleton = new EmptyList();

/ **
* NOTE: The constructor is private so that no client can
* instantiate an EmptyList. I.e., there is one "true"
* empty list, Singleton, and every list uses it.
*/
private EmptyList()
{
¥
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The final Modifier

e The final modifier prevents

— the class,
— the method, or
— the field

from being extended or overridden.

e In some sense, final is the opposite of abstract.
class/method /field cannot be both final and abstract.

January 31, 2001

Thus, a
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The final Modifier (cont.)

e |f a field is declared final, then its declaration must include a variable
initializer.

— Example
public final static EmptyList Singleton = new EmptyList();
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