Comp 212 February 5, 2001

Understanding Private and Protected

e Can one object access the private and protected members (i.e., fields,
methods, and constructors) of another object of the same class?

— For example, is the following class definition allowed?
class MyInteger {
private int iAmPrivate;

boolean isEqualTo(MyInteger anotherInteger) A
return iAmPrivate == anotherlInteger.iAmPrivate;

+
}



Comp 212 February 5, 2001

Understanding Private and Protected (cont.)

e Yes.

— Objects of the same type have access to one another's private and
protected members.
* This is because access restrictions apply at the class or type level (all
instances of a class) rather than at the object level (this particular
instance of a class).



Comp 212 February 5, 2001

Understanding Private and Protected (cont.)

e Example

class ConstPoly extends APolynomial

{

// 1f parameter APolynomial p is a constant polynomial,

// returns a ConstPoly whose coefficient is the sum

// of the coefficients of this ConstPoly and p. Otherwise,

// asks p to add this APolynomial to itself.

public APolynomial add(APolynomial p)

{

return (0 == p.getDegree()) 7 new ConstPoly(_coef +
p._coef)

p.add(this);



Comp 212 February 5, 2001

“this”

e In any method or constructor, this refers to the object on which the
method is being performed. It's useful when you

1. need to access a field that is obscured by a parameter or
2. want to pass the object as an argument to a method.



Comp 212 February 5, 2001

What’s Wrong With This Picture?

e Each time we want to compute something new, we edit each class in
order to add methods to it.

e |s there a way to add new behavior to AList or APolynomial without
touching any of the existing code, leaving everything that has been
written so far unchanged?



Comp 212 February 5, 2001

Toward a Solution ...

e The key is to encapsulate the variant behaviors in a separate Union
Pattern (OOPP #1).

— The invariant behaviors are the constructor and methods getFirst ()
and getRest ().
— The variant behaviors are the infinitely many algorithms (i.e.
computations) that we want AList to perform.
x For AList to execute any of these algorithms, we just need to add
one more method to AList.



Comp 212 February 5, 2001

The Visitor Pattern

e The visitor pattern is a framework for communication and collaboration
between two union patterns: a "host” union and a "visitor’ union.

— An abstract visitor is usually defined as an interface in Java.
x |t has a separate method for each of the concrete variants of the
host union.

public interface IListAlgo {

public abstract Object forEmpty(AList host,
Object input);

public abstract Object forNonEmpty(AList host,
Object input);



Comp 212 February 5, 2001

— The abstract host has a method (called the "hook”) to "accept” a
visitor ...

public abstract class AList
{

public abstract Object execute(IListAlgo algo,
Object input);



Comp 212 February 5, 2001

— and leaves it up to each of its concrete variants to call the appropriate
visitor method.

class NEList extends AList {

public Object execute(IListAlgo algo, Object input)
{
return algo.forNonEmpty(this, input);



Comp 212 February 5, 2001

The Visitor Pattern (cont.)

e The concrete visitor implements the interface defined by the abstract
visitor.

public class Length implements IListAlgo

{

public final static Length Singleton = new Length();

private Length()

{
}

public Object forEmpty(AList host, Object input)
{

+

10



Comp 212 February 5, 2001

public Object forNonEmpty(AList host, Object input)

11



Comp 212 February 5, 2001

The Visitor Pattern (cont.)

e This "decoupling” of the host’s structural behaviors from the extrinsic
algorithms on the host permits the addition of infinitely many external
algorithms without changing any of the host union code.

e This extensibility only works if the taxonomy of the host union is stable
and does not change.

— If we have to modify the host union, then we will have to modify ALL
visitors as well!

12



Comp 212 February 5, 2001

Declaring Interfaces

e \What is an interface?

— A set of method and constant declarations, without the method
implementations.
x Example
public interface Colorable {
public void setColor(int color);
public int getColor();

+

— One interface can extend another interface.
x Example
public interface Paintable extends Colorable {
public static final int MATTE = O, GLOSSY = 1;
public void setFinish(int finish);
public int getFinish();
+

13



Comp 212 February 5, 2001

Using Interfaces

e How do you use an interface?

— In a class definition, we say that a class implements an interface.
x Example
class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int _color;
public void setColor(int color) { _color = color; }
public int getColor() { return _color; }

+

— An interface is a reference type, just like a class.
x Example
Colorable widget = new ColoredPoint();
widget.setColor (GREEN) ;

14



Comp 212 February 5, 2001

Using Interfaces (cont.)

e A class can implement one or more interfaces.

— Example #1
class MyClass implements IYourInterfacel,
IYourInterface2 {

}

— Example #2
class PaintedPoint extends ColoredPoint implements Paintable
{
int _finish;
public void setFinish(int finish) {
_finish = finish;
¥
public int getFinish() { return _finish; }

15



