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Understanding Private and Protected

e Can one object access the private and protected members (i.e., fields,
methods, and constructors) of another object of the same class?

— For example, is the following class definition allowed?
class MyInteger {
private int iAmPrivate;

boolean isEqualTo(MyInteger anotherInteger) A
return iAmPrivate == anotherlInteger.iAmPrivate;

+
}
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Understanding Private and Protected (cont.)

e Yes.

— Objects of the same type have access to one another's private and
protected members.
* This is because access restrictions apply at the class or type level (all
instances of a class) rather than at the object level (this particular
instance of a class).
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Understanding Private and Protected (cont.)

e Example

class ConstPoly extends APolynomial

{

// 1f parameter APolynomial p is a constant polynomial,

// returns a ConstPoly whose coefficient is the sum

// of the coefficients of this ConstPoly and p. Otherwise,

// asks p to add this APolynomial to itself.

public APolynomial add(APolynomial p)

{

return (0 == p.getDegree()) 7 new ConstPoly(_coef +
p._coef)

p.add(this);
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“this”

e In any method or constructor, this refers to the object on which the
method is being performed. It's useful when you

1. need to access a field that is obscured by a parameter or
2. want to pass the object as an argument to a method.
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What’s Wrong With This Picture?

e Each time we want to compute something new, we edit each class in
order to add methods to it.

e |s there a way to add new behavior to AList or APolynomial without
touching any of the existing code, leaving everything that has been
written so far unchanged?
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Toward a Solution ...

e The key is to encapsulate the variant behaviors in a separate Union
Pattern (OOPP #1).

— The invariant behaviors are the constructor and methods getFirst ()
and getRest ().
— The variant behaviors are the infinitely many algorithms (i.e.
computations) that we want AList to perform.
x For AList to execute any of these algorithms, we just need to add
one more method to AList.
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The Visitor Pattern

e The visitor pattern is a framework for communication and collaboration
between two union patterns: a "host” union and a "visitor’ union.

— An abstract visitor is usually defined as an interface in Java.
x |t has a separate method for each of the concrete variants of the
host union.

public interface IListAlgo {

public abstract Object forEmpty(AList host,
Object input);

public abstract Object forNonEmpty(AList host,
Object input);
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— The abstract host has a method (called the "hook”) to "accept” a
visitor ...

public abstract class AList
{

public abstract Object execute(IListAlgo algo,
Object input);
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— and leaves it up to each of its concrete variants to call the appropriate
visitor method.

class NEList extends AList {

public Object execute(IListAlgo algo, Object input)
{
return algo.forNonEmpty(this, input);
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The Visitor Pattern (cont.)

e The concrete visitor implements the interface defined by the abstract
visitor.

public class Length implements IListAlgo

{

public final static Length Singleton = new Length();

private Length()

{
}

public Object forEmpty(AList host, Object input)
{

+
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public Object forNonEmpty(AList host, Object input)

11
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The Visitor Pattern (cont.)

e This "decoupling” of the host’s structural behaviors from the extrinsic
algorithms on the host permits the addition of infinitely many external
algorithms without changing any of the host union code.

e This extensibility only works if the taxonomy of the host union is stable
and does not change.

— If we have to modify the host union, then we will have to modify ALL
visitors as well!

12
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Declaring Interfaces

e \What is an interface?

— A set of method and constant declarations, without the method
implementations.
x Example
public interface Colorable {
public void setColor(int color);
public int getColor();

+

— One interface can extend another interface.
x Example
public interface Paintable extends Colorable {
public static final int MATTE = O, GLOSSY = 1;
public void setFinish(int finish);
public int getFinish();
+
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Using Interfaces

e How do you use an interface?

— In a class definition, we say that a class implements an interface.
x Example
class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int _color;
public void setColor(int color) { _color = color; }
public int getColor() { return _color; }

+

— An interface is a reference type, just like a class.
x Example
Colorable widget = new ColoredPoint();
widget.setColor (GREEN) ;

14
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Using Interfaces (cont.)

e A class can implement one or more interfaces.

— Example #1
class MyClass implements IYourInterfacel,
IYourInterface2 {

}

— Example #2
class PaintedPoint extends ColoredPoint implements Paintable
{
int _finish;
public void setFinish(int finish) {
_finish = finish;
¥
public int getFinish() { return _finish; }
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